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Effects of electrode surface roughness on motional heating of trapped ions
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Electric-field noise is a major source of motional heating in trapped-ion quantum computation. While the
influence of trap-electrode geometries on electric-field noise has been studied in patch potential and surface
adsorbate models, only smooth surfaces are accounted for by current theory. The effects of roughness, a ubiquitous
feature of surface electrodes, are poorly understood. We investigate its impact on electric-field noise by deriving
a rough-surface Green’s function and evaluating its effects on adsorbate-surface binding energies. At cryogenic
temperatures, heating-rate contributions from adsorbates are predicted to exhibit an exponential sensitivity to
local surface curvature, leading to either a large net enhancement or suppression over smooth surfaces. For typical
experimental parameters, orders-of-magnitude variations in total heating rates can occur depending on the spatial
distribution of adsorbates. Through careful engineering of electrode surface profiles, our results suggests that
heating rates can be tuned over orders of magnitudes.
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I. INTRODUCTION

Laser-cooled trapped ions are a well-established candi-
date for implementing quantum computation [1]. However,
decoherence remains a primary obstacle to the scalability
of such systems. Motional heating from electric-field noise
[2] in particular is especially detrimental to the multiqubit
operations required for universal quantum computation. It
is thus imperative that its origins are well understood in
overcoming this problem.

Significant progress has been made in the understanding
the origins and factors influencing electric-field noise in
trapped-ion systems. In experimental studies, observed heating
rates are orders of magnitude larger than predictions of
Johnson noise, suggesting the existence of a nonfundamental
“anomalous heating” [2]. Indeed, the d−4 scaling of heating
rates, with ion-electrode distance d, is in general agreement
with predictions of uncorrelated fluctuating surface sources
[3,4]. Furthermore, the reduction of heating rates by a factor
of ∼100 after in situ Ar+ bombardment [4] and by a factor
of ∼2 after pulsed-laser cleaning [5] suggests that adsorbed
impurities are a primary sources of surface fluctuations. Com-
bined with the measured exponential suppression of heating
rates with decreasing temperature [6,7], a compelling physical
model for electric-field noise is thus thermally activated dipole
fluctuations of adsorbed atoms or molecules [8,9].

It is known that details in the fabrication process of surface
electrode traps play a strong role in measured heating rates,
particularly at cryogenic temperatures [6,9]. Celebrated works
include the recognition that effects such as electrode geometry
can play a strong role in the distance scaling of heating
rates [10], and that the scaling law of heating rates at low
temperatures is of the form exp(−T0/T ) [6,7], with activation
energy T0 ∼ 100 K. However, not all parameters influencing
this are understood. One feature ubiquitous across all such
traps and particularly poorly controlled is surface roughness,
but a systemic study into its effects remains lacking. Being a
geometric feature, surface roughness deserves consideration.
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Indeed, a rough estimate suggests that roughness could alter
T0 by ∼10%, thus leading to dramatic changes of heating rates
in the cryogenic regime.

In this work, we theoretically model the effects of electrode
surface roughness on trapped-ion heating rates driven by
adsorbate dipole fluctuations [8]. We solve the rough-surface
Green’s function perturbatively and apply it to find that
roughness strongly affects the adsorbate-surface interaction
potential. This greatly influences the strength of fluctuations
and the spatial distribution of noise sources, and hence pre-
dicted heating rates. Our focus on these effects leads to a more
detailed understanding of the origins of electric-field noise,
improving on prior works where noise sources are assumed to
be identical and uniformly distributed on a smooth surface.

We find that the heating rates are exponentially enhanced
or suppressed depending on the root-mean-square surface
curvature—a measure of roughness—and the detailed spatial
distribution of adsorbates. For example, in the regime where
the number density of adsorbate is large, or the adsorbate-
surface system is not in thermal equilibrium, a uniform
density distribution of adsorbates results and leads to a
predicted enhancement of heating rates over a smooth surface.
Conversely, in the case of a sparse spatial distribution of
adsorbates at thermal equilibrium, a suppression of heating
rates is possible. These effects are particularly prevalent at
low temperatures and are strongly influenced by the profile of
surface roughness.

We review in Sec. II the mechanism through which electric-
field noise is generated by adsorbate dipole fluctuations and
define surface roughness. In Sec. III, the effects of surface
roughness on this mechanism is evaluated systematically by
obtaining the rough-surface Green’s function in Sec. III A
and calculating its impact on the adsorbate-surface interaction
potential in Sec. III B. The consequences of this modified
potential are studied in Sec. IV, with two primary effects.
First, in Sec. IV A, the dipole fluctuation spectral density of
adsorbates is found to be highly sensitive to local surface
curvature. Second, in Sec. IV B, the spatial distribution of
adsorbates is shown to correlate with the local adsorbate-
surface binding energy. These effects are compounded in
Sec. IV C to obtain heating rates averaged over expected
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distributions of surface roughness and adsorbate distributions.
Additional discussion and further work is considered in Sec. V.

II. MODEL

We briefly review the well-studied model of ion-trap mo-
tional heating due to electric-field noise [2,11] in Sec. II A. This
electric-field noise is assumed to arise from adsorbate dipole
fluctuations [8,11] and we highlight the dominant factors that
modulate its contribution to the electric-field-noise spectral
density. The mechanism behind these dipole fluctuations is
outlined in Sec. II B, and all these factors are impacted by
electrode surface roughness, which is defined in Sec. II C.

A. Dipole-fluctuation-induced heating

Consider a single trapped ion with charge q, mass m,
and secular frequency ω. A fluctuating electric field �E at the
position of the ion drives excitation from the motional ground
state of the ion wave packet to its first-excited state. The rate
of this transition defines the heating rate [2]

�0→1 = q2

4m�ω
SEk

(ω), (1)

where SEk
is the corresponding electric-field-noise spectral

density in the kth direction. Due to this direct proportionality,
we will refer to �0→1 and SEk

interchangeably in the following.
The quantity

SEk
(ω) ≡ 2

∫ ∞

−∞
〈Ek(t)Ek(t + τ )〉t eiωτ dτ = 2|Ek(ω)|2, (2)

where 〈〉t represents time averaging, is established via the
Wiener–Khinchin theorem [12], which relates the autocorre-
lation function and the power spectral density of a signal.

Dipole fluctuations are widely believed to be a dominant
source of electric-field noise. In this model, the generated
electric field Ek(ω) at ion position �r is [10]

Ek(ω) =
∑

i

∂

∂ �n′i ∂�rk
G(�ri

′,�r )μi(ω), (3)

where �n′
i is the unit vector normal to the surface at loca-

tion �ri
′ of the ith adsorbate, G is Green’s function that

satisfies ∇2G(�r ′
,�r ) = δ(�r ′ − �r ) with the boundary condition

G(�r ′,�r) = 0 when �r ′ is on the electrode surface, and μi(ω)
represents dipole fluctuations in the frequency domain.

To zeroth order, the interaction between adatom dipoles
is neglected. This produces a completely uncorrelated dipole
spectrum

2〈μi(ω)μ∗
j (ω)〉 = δijSμi

(ω), (4)

where 〈〉 is the ensemble average, and Sμ(ω) is the power
spectral density of dipole fluctuations, defined in the same
way as Eq. (2). Combining Eqs. (2)–(4), we obtain the net
electric-field spectral density

SEk
(ω) =

∑
i

Sμ(�ri
′,ω)

∣∣∣∣ d

d �n′
i

∂�rk
G(�ri

′,�r )

∣∣∣∣
2

. (5)

In typical experiments, the spacing between adatoms
∼10 nm is much smaller than the ion-electrode spacing

of 10–100 μm [13]. Thus we take the continuum limit by
replacing the sum in Eq. (5) with an integral over the electrode
surface R:

SEk
(ω) =

∫
�r ′∈R

σμ(�r ′)Sμ(�r ′,ω)

∣∣∣∣ d

d �n′
i

∂�rk
G(�ri

′,�r)

∣∣∣∣
2

d�r ′,

(6)
σμ(�r ′) =

∑
i

δ(�r ′ − �ri
′),

where σμ(�r ′) represents the local density of adsorbates at
�r ′. Thus we see the three primary factors that influence the
electric-field-noise spectrum in Eq. (6), and hence heating
rates: (1) the spatial distribution of adsorbates σμ, (2) the dipole
noise emission strength Sμ, and (3) the Green’s function G.
These factors all depend on electrode roughness, which we
demonstrate in Sec. III and IV.

B. Electrode-adsorbate interactions

The dipole spectral density depends strongly on the
species of adsorbate in question—these range from organic
hydrocarbon chains to single atoms [14]. We only consider
better-understood physical adsorption of atoms [8,11], or
adatoms, which results from a balance between the attractive
van der Waals force and the repulsive atom-wall electron
exchange interaction force [15].

The van der Waals atom-wall potential arises from the
interaction of an atomic dipole with its image charge. Hence,
it scales as

V (z) = −C3

z3
, (7)

where z is the atom-wall distance [16]. This is balanced
by the repulsive atom-wall exchange potential. Whereas the
atom-atom potential is represented by the Lennard–Jones 6-12
potential [17] with scaling r−12, the atom-surface repulsion
potential is calculated by integrating this potential over the
electrode bulk in the continuum limit. For an infinite plane,
one obtains the 9-3 potential [18]

U (z) = C9

z9
− C3

z3
, (8)

where C9 and C3 are positive parameters dependent of specific
species of adatoms and electrode atoms.

This 9-3 potential holds several bound vibrational states,
with the ground states localized around the minimum of the
potential U (z). This minimum

U = U (z0) (9)

approximates the binding energy of the ground state, where z0

is the classical equilibrium position of this minimum. In the
following, this classical approximation is justified because we
only consider small shifts in ratios of U with respect to local
surface curvature. These states can be approximated with a
local harmonic potential, which allows one to estimate the
energy spacing between the ground state and the first-excited
state:

ν =
√

1

m

∂2U

∂z2

∣∣∣∣∣∣
z0

. (10)
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This harmonic approximation is justified so long as ∂2U
∂z2

remains relatively constant over the spatial extent of the
ground-state wave packet.

At cryogenic temperatures, adatom dynamics are well
approximated by a thermally activated two-level system. The
dipole fluctuation spectral density is given by a Lorentzian
[19]:

Sμ(ω) = (〈μ1〉 − 〈μ0〉)2 2�0

ω2 + �2
0

e− hν
kT , (11)

where 〈μi〉 is the expectation value dipole moment for the vi-
brational state |i〉,�0 and ν are the transition rate and frequency
from the ground state to the first-excited state, respectively, and
T is electrode temperature. It has been suggested that these
transitions could be induced by vibrations of electrode atoms,
resulting in fluctuations of the adatom-electrode interaction
potential U (z) [8,11,13] driving a phonon-induced transition
rate

�0 ∝ ν4. (12)

The exact form of �0 turns out to be unimportant because its
variation with roughness is small compared to other effects, as
shown in Sec. III.

C. Surface roughness

Surface electrode roughness describes height deviations
from a smooth conducting surface on length scales much
smaller than the gross geometry of electrode. We parametrize
surface roughness and adatom positions with the two Cartesian
coordinate systems shown in Fig. 1. Let us denote the
hypothetical smooth surface to be the x-y plane at z = 0 where
z is the axis normal to the x-y plane. The rough surface R is
thus defined through the height function z = h(x,y). At any
given point (x,y), denote the plane tangent to the rough surface
to be the x̃-ỹ plane, and z̃ to be the axis normal to it.

FIG. 1. Cartesian coordinates defining positions on smooth and
rough surfaces. The xyz coordinates describe the macroscopic smooth
planar geometry and is the reference against which the rough surface
is defined through the height function z = h(x,y). The x̃ỹz̃ axes
describe a local coordinate system tangent to the rough surface at
position (x,y,h(x,y)).

We assume that the height function defining roughness is
random in the sense of its autocorrelation function. Although
this could be arbitrary, we use the very common Gaussian
model in the following for concreteness:

〈h(�r )h(�r + �v )〉 = L2e−v2/d2
0 , (13)

where 〈·〉 denotes the ensemble average over surfaces, L is
the root-mean-squared height of bumps on the surface, d0

is the characteristic correlation length describing the width
of these bumps, and �r, �v are vectors on the smooth z = 0
plane. It is also a commonly assumed property of random
surfaces that their Fourier components h(�k) = ∫

h(�r )ei�k·�rd�r
are independent [20,21]:

〈h(�k)h( �k′)〉 = |h(�k)|2δ(�k + �k′). (14)

The surface curvature H will be central to our results

H (�r ) = 1
2∇2h(�r ), (15)

where ∇2 = ∂2
x + ∂2

y is the Laplacian. In particular, we will be
concerned with its probability distribution P (H ). For Gaussian
rough surfaces, it can be proven from Eqs. (13) and (14) and
Wick’s theorem that H is Gaussian distributed

P (H ) = 1

H0

√
2π

e−H 2/2H 2
0 . (16)

The variance H 2
0 of H can be computed from

H 2
0 = 〈H (�r )2〉 =

∫
H (�r )2d�r. (17)

By taking the Fourier transform of H (�r ),

H (�r ) = 1

4π

∫
−k2h(�k)ei�k·�rd�k, (18)

applying the Wiener–Khinchin theorem,∫
H (�r )2d�r = 1

8π

∫
�k4|h(�k)|2d�k, (19)

and taking derivatives of∫
〈h(�r )h(�r + �v )〉d�r = 1

2π

∫
|h(k)|2ei�k·�vd�k, (20)

we find that

4H 2
0 = L2(∇2)2e−|�r |2/d2

0 ||�r |=0 = 32L2

d4
0

, (21)

thus the rms curvature H0 = 23/2L

d2
0

. Note that, although we

made assumptions on the autocorrelation function, this could
in principle be directly measured.

III. EFFECTS OF ROUGHNESS ON THE
ADSORBATE-SURFACE POTENTIAL

Due to various imperfections during fabrication, roughness
is a ubiquitous property of electrode surfaces and must be
accounted for due to its influence on all three components in
Eq. (6). These are (1) the surface Green’s function d

d �n′
i

G(�ri
′,�r)

which is altered by the geometric effect of a deformed
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boundary; (2) the dipole emission spectrum Sμ(�r ′,ω) which
shifts due to the change of interaction strength between
adatoms and the surface; and (3) the adatom spatial density
σμ(�r ′), which follows the spatially varying interaction strength
at thermal equilibrium. In this section, we focus on (1) and its
impact on the atom-surface interaction potential. Factors (2)
and (3) are analyzed in Sec. IV.

The Green’s function is obtained in Sec. III A by solving
Laplace’s equation for rough-surface conducting boundary
conditions. This is generally difficult—most prior art for
rough surfaces considers the scattering of electromagnetic
waves in the far-field limit [22,23]. However, we require the
Green’s function for static sources in the near-field regime.
Thus, we treat the surface roughness as a small parameter
in a perturbative solution with respect to the smooth-surface
Green’s function.

With this rough-surface Green’s function, we calculate in
Sec. III B the shift in the adatom-surface interaction potential.
In the presence of roughness, induced charges from the adatom
are displaced to positions dependent of local topography of the
surface and therefore modify the van der Waals’ interaction
potential. We find that negative (positive) surface curvatures
result in a weaker (stronger) van der Waals potential, which
is consistent with analytical calculations for a spherical
conductor or cavity in Ref. [24]. Furthermore, these curvatures
lead to a weaker (stronger) atom-surface repulsion potential
due to fewer (greater) electrode atoms contributing to atom-
atom repulsion. Combining these two effects, the minima of the
adatom-surface interaction potential—the binding energy—is
correlated with the local curvature.

A. Rough-surface Green’s function

Our use of rough surfaces means that traditional image
charge methods are inapplicable for calculating Green’s
functions. Thus, we develop a perturbative solution by treating
roughness as a perturbation to a smooth surface. The obtained
perturbative solution allows us to calculate the change of
adatom-electrode interaction potential with respect to a smooth
surface, and thereafter furnishes the shift in noise spectral
density of Eq. (6).

We solve for the Green’s functions G(�r,�v,λ) with
the boundary condition G(�r,�r ′,λ) = 0 for �r ′ : (x,y,z) =
(r ′

x,r
′
y,λh(�r ′⊥)) where λ is a mathematically constructed

parameter we choose with its value between 0 and 1, and
�r ′⊥ is the projection of �r ′ on the x-y plane. When λ = 0,
the boundary condition is G(�r,�r ′,0) = 0 on z = 0—a smooth
infinite plane solved by the image charge method with the
well-known solution

G0(�r,�v ) ≡ G(�r,�v,0) = 1

4π

(
1

|�r − �v| − 1

|�r − (�v − 2vzẑ)|
)

,

(22)

where �v : (x,y,z) = (vx,vy,vz) is an arbitrary point with
vz > 0.

The known solution G0 at λ = 0 provides a starting point for
calculating the Green’s function for surface roughness h(�r ′) at
λ = 1. Equation (22) allows us to obtain the series expansion

of G:

G(�r,�v,λ) =
∞∑
i=0

λiGi(�r,�v ),

with ∇2
vGi(�r,�v ) = 0, i � 1. (23)

When �r ′ : (x,y,z) = (r ′
x,r

′
y,λh(�r ′⊥)), the left-hand side of

Eq. (23) is 0. By Taylor expanding the right-hand side and
setting the coefficient of λn to zero, we obtain equations
relating higher orders Gn(�r,�r ′⊥) with h(�r ′⊥) and lower orders
G0(�r,�v ), . . . ,Gn−1(�r,�v ):

n = 1 : h(�r ′⊥)
∂

∂�z ′ G0(�r,�r ′⊥) + G1(�r,�r ′⊥) = 0,

n = 2 :
h2(�r ′⊥)

2

∂2

∂�z ′2 G0(�r,�r ′⊥) + h(�r ′⊥)
∂

∂�z ′ G1(�r,�r ′⊥)

+G2(�r,�r ′⊥) = 0,

n = k :
k∑

i=0

hk−i(�r ′⊥)

(k − i)!

∂k−i

∂�z ′k−i
Gi(�r,�r ′⊥) = 0. (24)

The Gn(�r,�v ) are solved iteratively by starting from n =
1,2, . . .. To obtain Gn(�r,�v ) from Gn(�r,�r ′⊥), notice that
Gn(�r,�v ) → 0 when vz → ∞ and a general solution

Gn(�r,�v ) = 1

2π

∫
An( �k′)ei �k′ ·�v⊥e−| �k′|vzd �k′ (25)

is obtained, where An( �k′) is defined through the boundary
condition

Gn(�r,�v⊥) = 1

2π

∫
An( �k′)ei �k′ ·�v⊥d �k′, (26)

where �v⊥ is (vx,vy,0), the projection of �v onto the z = 0
surface, and �k′ = (kx,ky,0). Observe that Eq. (25) reduces to
Eq. (26) when vz = 0, so the expression in Eq. (25) indeed
satisfies the boundary condition. The existence of such An( �k′)
arises from the invertibility of Fourier transforms, and the
uniqueness of Gn(�r,�v ) is a consequence of Liouville’s theorem
of harmonic functions. Thus, given Gn(�r,�v⊥) and An( �k′) from
Eq. (26),

∂m

∂(�z ′)m
Gn(�r,�r ′⊥) = 1

2π

∫
(−|�k′|)mAn( �k′)ei �k′ ·�v⊥d �k′, (27)

which allows the calculation of Gn+1(�r,�v ). After obtaining
Gn(�r,�v ), G(�r,�v ) is calculated by

G(�r,�v ) = G(�r,�v,1) =
∞∑
i=0

Gi(�r,�v ). (28)

This perturbative approach is valid so long as surface
roughness is small. To be precise, we require

hn(�r ′⊥)

n!

∂n

∂�z ′n Gi(�r,�r ′⊥)

for any desired order i to vanish for large n, which is satisfied
if max (z0|H |,r−1

z |h|) � 1, where rz is the z component of �r ,
and H is the curvature of the rough surface.
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B. Change of surface potential to first order

We are now ready to compute the shift in the atom-
surface interaction potential, which is the sum of the van der
Waals attractive potential and the exchange force repulsion
potential. As shown in Fig. 1, we place the adatom at
�r : (x̃,ỹ,z̃) = (0,0,rz̃) and approximate the local surface as
parabolic (justified in the appendix):

h̃p(x̃,ỹ) = ax̃2 + cỹ2, (29)

where

a = 1

2

∂2

∂x̃2
h̃, c = 1

2

∂2

∂ỹ2
h̃.

The axis x̃, ỹ are chosen such that ∂2

∂x̃∂ỹ
h̃ = 0. The impact on

potential is then calculated to first order in a, c.

1. van der Waals attractive potential

The van der Waals interaction is calculated by evaluating
the interaction energy of an adatom dipole with its image
charge, and then taking the expectation value of this interaction
energy, assuming the adatom in its atomic ground state. The
procedure is as follows: we apply the Green’s function method
to calculate the potential in the space above the electrode and
the induced charge at the electrode surface in the case of a
single charge and an electric dipole, respectively; we then
calculate the attraction force exerted on the dipole, which is
integrated to obtain the van der Waals potential.

Consider an ion with charge q placed at position �r above a
rough surface R. The potential V (�r,�v,q) satisfies

V
(�r,�r ′,q

) = 0, for �r ′ ∈ R,

∇2
�vV (�r,�v,q) = q

ε0
δ(�r − �v ),

(30)

and therefore V (�r,�v,q) = q

ε0
G(�r,�v ).

Applying Eqs. (23) and (24) by denoting Vi(�r,�v,q) =
q

ε0
Gi(�r,�v ), we obtain

V0(�r,�v,q) = q

4πε0

(
1

|�r − �v | − 1

|�r − (2�v⊥ − �v )|
)

,

V1(�r,�v⊥,q) = − q

2πε0
h̃(�v⊥)

rz̃

|�r − �v⊥|3 ,

(31)

where �v⊥ is now the projection of �v onto the z̃ = 0 surface. The
induced charge due to a single ion σq(�r ′), �r ′ ∈ R is calculated
via Gauss’s law:

σq(�r ′) = −ε0
d

dñ′ V (�r,�r ′,q), (32)

where ñ′ is the normal vector of R at �r ′. To first order in h̃, ñ′
is approximated by z̃ in the subsequent calculations, which
gives

σq(�r ′) = −ε0
d

dz̃
V0(�r,�r ′⊥,q) − ε0

d

dz̃
V1(�r,�r ′⊥,q) + O(h2).

(33)

The dipole-induced charge σp(�r ′) can be obtained by
superposing induced charge from two opposite-signed charges
at different position �r . For adatoms, the displacement vector

�d , defined as the ratio between dipole and charge �p
q

, has a

typical value of ∼0.1 Å. Since it is much smaller than the
atom-electrode distance, which is on the order of ∼2 Å, we
approximate σp to first order in �p and h:

σp(�r ′) = −ε0
d

dñ′

[
V

(
�r + �p

q
,�r ′,q

)
− V (�r,�r ′, − q)

]

= −ε0
�p
q

· �∇�r

(
d

dz̃
V0( �r⊥,�r ′⊥,q) + d

dz̃
V1( �r⊥,�r ′⊥,q)

)
.

(34)

The van der Waals potential is the work done by moving
the dipole from z̃ = ∞ to �r . Thus,

V(rz̃) =
∫ rz̃

R=∞
Fz̃((x̃,ỹ,z̃) = (0,0,R))dR, (35)

where Fz̃ = �p · �∇( �E · (0,0,1)), and �E is the electric field
established by the induced charge on the surface:

�E(�r ) =
∫

r∈S

1

4πε0
σ
(�r ′) �r − �r ′

|�r − �r ′|3 d�r ′⊥ + O
(
h2

)
, (36)

where S is the parametric surface (x̃,ỹ,ax̃2 + cỹ2). The O(h2)
term in Eq. (36) comes from changing the integrating measure
from �r ′ to �r ′⊥.

Typical atomic-state transition frequencies are on the
order of several THz or higher. Thus, in the regime where
the electrode temperature is equal to or lower than room
temperature, all adatoms can be assumed to be in their internal
atomic ground state, and we assume the dipole fluctuations in
the orthogonal directions to be independent, meaning that the
expectation value of the operator

〈pipj 〉 = d2
i δij , (37)

and therefore the cross terms pipj in Fz̃, vanish. Combining
Eqs. (31), (34), (37), we obtain

Fz̃(rz̃) = − 1

4πε0

[
3
(
d2

x̃ + d2
ỹ + 2d2

z̃

)
16rz̃

4

+ (a + c)

(
2d2

z̃ + 3d2
x̃ + 3d2

ỹ

16rz̃
3

)]
, (38)

which with Eq. (35) gives the van der Waals potential

V(rz̃) = − 1

4πε0

(
d2

4rz̃
3

+ (a + c)
d2

4rz̃
2

)
, (39)

when d2
x̃ = d2

ỹ = d2
z̃ = d2 is isotropic. The term a + c reflects

the mean curvature at the point (x̃,ỹ,h̃(x̃,ỹ)). In the coordinate
system (x,y,z), this mean curvature is

H (x,y) =
(
1 + h2

y

)
hxx − hyhxhxy + (

1 + h2
x

)
hyy

2
(
1 + h2

x + h2
y

)3/2

= 1

2
(hxx + hyy) + O(h3), (40)

where hi ≡ ∂
∂i

h, hij ≡ ∂2

∂i∂j
h with i,j being the i,j th direc-

tions. Thus from Eq. (39) and (40), the van der Waals’ potential
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to first order in H in the (x,y,z) coordinate system is

V(z) = − 1

4πε0

(
d2

4z3
+ H (x,y)

d2

4z2

)
. (41)

2. Adatom-surface repulsive potential

The repulsion potential can be calculated by integrating
over the bulk of electrode atoms, each of which has a repulsion
potential proportional to r−12 where r is the distance between
the electrode atom and the absorbed atom. By taking the
continuum limit of electrode atoms, the repulsion potential
can be calculated via the integral

R(rz̃) =
∫ h̃p(x̃,ỹ)

z̃=−∞

∫
Cr

[(rz̃ − z̃)2 + x̃2 + ỹ2]6
dx̃dỹdz̃, (42)

where Cr is a constant describing the strength of the r−12

repulsion between an adatom and an electrode atom.
To first order in the height function h̃p(x̃,ỹ) = ax̃2 + cỹ2,

the integral in Eq. (42) is approximated by

R(rz̃) =
∫ 0

z̃=−∞

∫
Cr

[(rz̃ − z̃)2 + x̃2 + ỹ2]6
dx̃dỹdz̃

+
∫

Crh̃(x̃,ỹ)(
rz̃

2 + x̃2 + ỹ2
)6 dx̃dỹ

= πCr

45rz̃
9

+ πCr (a + c)

40rz̃
8

. (43)

Using the relation H = a + c, we can combine Eq. (39) and
Eq. (43) to obtain the full first-order surface potential

U (rz̃) = − d2

16πε0

(
1

r3
z̃

+ H

r2
z̃

)
+ 2πCr

90

(
1

r9
z̃

+ 9H

8r8
z̃

)

= −C3

(
1

rz̃
3

+ H

rz̃
2

)
+ C9

(
1

rz̃
9

+ 9H

8rz̃
8

)
. (44)

Note that for a planar surface with H = 0, the potential in
Eq. (44) reduces to the expected 9-3 Lennard–Jones potential.
For small values of |H |rz̃ � 1, the sign of surface curvature
produces shifts in interaction potential seen in Fig. 2. At
regions of local positive curvature, the depth of potential well
U and the vibrational excitation frequency ν are larger, and
vice versa for regions of local negative curvature.

IV. EFFECTS OF ROUGHNESS ON HEATING RATES

The dependence of the adsorbate-surface potential on local
surface curvature seen in Eq. (44) directly influences predicted
heating rates. Specifically, the adsorbate dipole fluctuation
spectral density Sμ in Eq. (11) exhibits an exponential sen-
sitivity to the transition frequency of the ground state, and we
examine its dependence on roughness in Sec. IV A. This effect
is compounded by the spatial distribution of adsorbates σμ

which is shown in Sec. IV A to concentrate around regions of
stronger binding energies at thermal equilibrium. We average
these effects over distributions of surface roughness presented
in Sec. II C to obtain in Sec. IV C the ratio of expected
heating rates between rough and smooth surfaces in typical
experimental regimes.

FIG. 2. Qualitative plot of interaction potential U (z) from
Eq. (44) for surfaces that are planar, H = 0, have positive curvature,
H > 0, and negative curvature, H < 0. The distance scale depicted
is typical for adsorbates, in this case a hydrogen adatom on a
gold surface. Note in particular the direction of the shift of the
binding energy, defined as the minimum U = U (z0), and the transition
frequency, defined through the second derivative of U (z) at z = z0.
In the case of H-Ag interactions, z0 ≈ 1.5 Å.

A. Changes to dipole spectral density

The dipole spectral density of Eq. (11) is a thermally
activated process and hence highly sensitive to the vibrational
transition frequency ν of Eq. (10). For typical adatom-surface
interactions, ν is on the order of 1 THz at ∼100 K. Hence
in the cryogenic regime where T � 100 K, a small change
of ν induces a large enhancement or suppression of Sμ(ω) ∝
exp(−hν/kT ), such as from the sign of local surface curvature
H . To first order,

Sμ(ω,H ) = (〈μ1〉 − 〈μ0〉)2 2�0

ω2 + �2
0

e− hνp [1+O(H )]
kT . (45)

In this cryogenic regime, we treat μ and �0 as constants as
they only contribute linearly to the dipole spectral density, in
contrast to the exponential dependence on ν = νp[1 + O(H )],
where νp is the transition frequency for planar surface
interaction.

By using the rough-surface interaction potential given
in Eq. (44), the dependence of the rough-surface transition
frequency on surface curvature can be obtained by using a
harmonic approximation:

ν = νp

(
1 + Hz0

6
+ O(H 2)

)
, (46)

where z0 is the adatom-surface equilibrium position. From
Eqs. (11) and (46), the ratio of Sμ between rough surface and
planar surface to leading order is

Sμ(ω,H )

Sμ(ω,0)
= exp

(
−hνp

kT

Hz0

6

)
, (47)

which, at cryogenic temperatures, shows a exponential depen-
dence on roughness through the local surface curvature H .

B. Changes to adatom spatial distribution

We see from Eq. (47) that the dipole spectral density Sμ

depends strongly on the location of an adatom. In particular,
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FIG. 3. Distribution of adatoms (dots) on a rough surface (line)
in two limiting regimes. (a) The thermal regime where atoms
equilibrate at positions of positive curvature where the binding energy
is enhanced. (b) The uniform regime where atoms are uniformly
distributed, such as at nonequilibrium, or if binding sites are full. The
roughness (vertical axis) is exaggerated.

either an exponential enhancement or suppression is possible
depending on the sign of local surface curvature H . From
Eq. (6), the spatial distribution σμ of adatoms is thus critical in
determining whether a net increase or decrease in heating rates
over smooth surfaces is observed. For instance, suppression of
the electric-field-noise spectral density SE occurs if all the
adatoms are located at sites with positive curvature, as seen in
the top panel of Fig. 3.

The spatial distribution of adatoms is greatly affected by
the binding energy U in Eq. (9). For example, adatoms at
thermal equilibrium are more likely to be present at sites of
higher binding energy. Due to the presence of roughness, this
binding energy varies with location on the surface and can
induce a spatial distribution significantly different from the
typically assumed uniform distribution. This dependence of U
on surface curvature can be obtained by minimizing Eq. (44):

U = Up

(
1 + 15Hz0

16
+ O(H 2)

)
, (48)

where Up is the binding energy for planar surfaces.
We consider two extreme regimes of interest for the spatial

distribution of adatoms:
(1) The uniform regime [Fig. 3(b)]: the spatial distribution

of adatoms is approximately uniform, with constant density

σμ(�r ) = σμ = N∫
d�r , (49)

where N is the total number of adatoms. This arises when
many adatoms are present on the surface, or a strong repulsive
interaction exists between adatoms. Alternatively, the surface
right after fabrication and before annealing might also be
uniformly distributed, as the adatoms have not had time to
reach thermal equilibrium. Given time, this uniform distri-

bution relaxes to a Fermi–Dirac distribution through adatom
diffusion [25], leading to the thermal regime.

(2) The thermal regime [Fig. 3(a)]: we neglect the interac-
tion between the adatoms and assume Fermi–Dirac statistics
for binding sites. The local filling fraction can be written as

θ (�r ) ∝
[

1 + exp

(−U(�r ) − μ

kT

)]−1

, (50)

where U(�r ) is the local binding energy as a function of
position and μ is the chemical potential. Since U/k is
typically on the order of 1000 K [26,27], the range of binding
energies at cryogenic temperatures U0Hrmsz0 � kT , and we
assume a zero-temperature distribution of adatoms:

θ
(�r ′) = (μ + U(�r)), (51)

where  denotes the Heaviside step function. The adatom
density σμ(�r ) is related to the filling fraction by

σμ(�r ) = Nθ (�r )∫
θ (�r )d�r . (52)

The behavior described by these extremes of the uniform
and thermal spatial distribution of adatoms provides valuable
intuition about intermediate distributions between them. Fur-
thermore, both of these extremes could occur in experiments
due to the wide variation of diffusion constants for adatoms
between 10−15 to 10−9 m2/s, which lead to timescales of 10
to 107 s for a typically sized ion trap with length dimensions
∼0.1 mm.

C. Heating rates for random rough surfaces

The heating rate is directly proportional to the spectral
density of electric-field noise. In the limit of small roughness,
the deviation of the Green’s function term in Eq. (6) only
induces a linear dependence of roughness on heating rates; thus
we focus on the dominant terms of dipole-emission spectrum
Sμ(�r ′,ω) and adatom spatial density σμ(�r ′). Because these
have a multiplicative effect, their contribution to electric-field
noise can be significantly stronger than expected when two
are correlated. To obtain an averaged expression for heating
rates, it is necessary to integrate over the surface of interest.
This can be performed by using a distribution P (H ) for the
key parameter of surface curvature H . In the following, we
apply the Gaussian rough surfaces of Sec II C, where P (H ) is
Gaussian distributed.

Given a fixed total number of adatoms on the surface, we
evaluate the ratio of ensemble averaged heating rates of rough
surfaces in the uniform regime Suniform to planar surface heating
rate Splanar:

Suniform

Splanar
=

∫ ∞

−∞
P (H ) exp

(−Hz0

6

hνp

kT

)
dH

= exp

[(
H0z0

(23/2)(3)

hν0

kT

)2
]
. (53)

We see a strong exponential enhancement of heating rates
in Fig. 4 which arises from adatoms at regions of nega-
tive curvature. These adatoms are more weakly bound to
the surface and consequently fluctuate exponentially more
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FIG. 4. Ratio of heating rate for rough surfaces Srough to heating
rate for planar surfaces Splanar with respect to root-mean-squared
surface curvature H to first order in H . Normalized for the same
number of adsorbates, a uniform distribution (thick) of adatoms sees
a strong exponential enhancement. When the distribution relaxes to
thermal equilibrium (dashed), heating rates are gradually suppressed
depending on the filling fraction θ of binding sites. The shaded area
depicts the estimated contribution of higher order H 2 terms for typical
physical surfaces. Parameter values are hνp/kB = 200 K, z0 = 3 Å,
T = 4 K.

strongly—outweighing the reduced contribution from adatoms
at regions of positive curvature. Note that, while we operate
in the regime |Hz0| � 1, taking the limits of the integration
to infinity is justified because the Gaussian P (H ) decays
exponentially more rapidly than the integrand.

The ratio between rough-surface heating rates in the thermal
regime Sthermal and Splanar once again for fixed number of
adatoms is

Sthermal

Splanar
= 1

θ

∫ ∞

H (θ)
P (H ) exp

(−Hz0

6

hνp

kT

)
dH

= exp

[(
H0z0

(23/2)(3)

hνp

kT

)2
]
f (θ ),

f (θ ) = 1

2θ

{
1 − erf

(
H (θ )

21/2H0
+ H0z0

(23/2)(3)

hνp

kT

)}
, (54)

where θ = 〈θ (�r ′)〉 is the mean filling fraction, and H (θ ) is
such that∫ ∞

H (θ)
P (H )dH = 1

2

[
1 − erf

(
H (θ )

21/2H0

)]
= θ. (55)

This complicated expression simplifies at two extremes for the
filling fraction:

(1) θ = 1: In this case, H (θ ) = −∞, so f (θ ) = 1 and
Eq. (54) is identical to that of the uniform regime.

(2) θ � 1: In this case H (θ ) is a large positive number,
but we limit it to not too much larger than 1/z0 where our

perturbative approach breaks down. To order O( 1
H (θ) ),

Sthermal

Splanar
≈

(
1 + H 2

0 z0

6H (θ )

hνp

kT

)−1

exp

(
−H (θ )z0

6

hνp

kT

)
.

(56)

Unlike the uniform case, a suppression of heating rates
seen in Fig. 4 occurs because all adatoms are localized to
regions of positive curvature H (θ ) > 0. From Eqs. (46) and
(45), these binding sites with deeper potential wells have larger
transitional frequencies, leading to smaller dipole fluctuations.

We can also estimate the error in the ratio of heating
rates arising from only considering terms linear in H in this
perturbative approach. This is done by obtaining an order-of-
magnitude estimate for the coefficient of next-leading-order
H 2 terms in U and ν. Through an exact calculation of the
interaction between an adatom and a spherical conducting
cavity in the appendix, the ratio between second-order H 2

and the first-order H terms is CHz0, where C ≈ 1.19 is a
constant on the order of unity. Assuming that this magnitude
of C is typical for physical surfaces, we obtain the shaded
region in Fig. 4 for variations in heating rates to second order
with C ∈ [−1.19,1.19].

Regardless of the exact form of the surface curvature
distribution P (H ), a general trend is observed. Heating rates
are enhanced when the adatom spatial distribution overlaps
with regions of negative curvature such as in the uniform
regime, and heating rates are suppressed when a large fraction
of adatoms are localized to regions of positive curvature, such
as in the thermal regime. Indeed, more exact results could be
obtained with a more judicious choice of surface-roughness
autocorrelation functions.

V. CONCLUSION

We developed an analytic approach for calculating the
effects of electrode surface roughness on the adsorbate model
of electric-field noise, and thus the heating rates of trapped
ions. Our calculations predict that, for surfaces with roughness
of the scale of nanometers, an exponential suppression or
enhancement of heating rates is possible, depending on the
filling fraction and distribution of surface adatoms.

Our analysis provides a possible explanation for the wide
spread of experimentally observed heating rate. Because
roughness is poorly controlled in many experiments, possible
significant factors could even include process details of the
electrode trap fabrication [6]. However, since the range of
activation energy ν0H0z0 is on the order of 100 K, we expect
this roughness effect to only be significant at cryogenic temper-
atures. Although we only considered adatom adsorbates, our
results motivate the investigation of other adsorbate models
which could be dominant at higher temperatures.

It would be of interest to perform a systematic study of
heating rates with roughness as a control parameter. For
example, surface curvatures of H0 ∼ 1 nm−1 have been
engineered on a Ag surface [28], which from our results would
correspond to a ∼100-fold enhancement or suppression of
heating rates at cryogenic temperatures. Thus, measuring the
heating rates of ions in traps with rough surfaces at temperature
between 4 and 100 K could provide a strong experimental
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validation of the surface adsorbate theory of electric-field noise
and would enable global probes of surface parameters through
heating-rate measurements.
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APPENDIX: JUSTIFICATION OF PARABOLIC
APPROXIMATION

From the geometry shown in Fig. 1,

z1 =
√

1 + (hx)2 + (hy)2z0 = [1 + O(h2)]z0, (A1)

and

d

dñ
G(r,r ′

⊥) =
√

1 + (h̃x̃)2 + (h̃ỹ)2
d

dz̃
G(r,r ′

⊥)

= [1 + O(h2)]
d

dz̃
G(r,r ′

⊥). (A2)

Thus to first order, the terms h, z0, z1 and d
dñ

, d
dz̃

are
interchangeable, respectively. Under this assumption, Eq. (36)
can be expanded to first order in h as in

∂

∂z̃
Ez̃(�r ) =

∫
1

4πε0

{[(
1

|�r − �r ′
⊥ |3 − 3r2

z̃

|�r − �r ′
⊥ |5

)
+ h̃(�r ′

⊥ )

(
9rz̃

|�r − �r ′
⊥ |5 − 15r3

z̃

|�r − �r ′
⊥ |7

)]
σ0(�r ′)

+
(

1

|�r − �r ′
⊥ |3 − 3r2

z̃

|�r − �r ′
⊥ |5

)
σ1(�r ′)

}
d�r ′

⊥ ,

∂

∂x̃
Ez̃(�r ) =

∫
1

4πε0

{[
3(r ′

x̃ − rx̃)rz̃

|�r − �r ′
⊥ |5 + h̃(�r ′

⊥ )

(
15(r ′

x̃ − rx̃)r2
z̃

|�r − �r ′
⊥ |7 − 3(r ′

x̃ − rx̃)

|�r − �r ′
⊥ |5

)]
σ0(�r ′) + 3(r ′

x̃ − rx̃)rz̃

|�r − �r ′
⊥ |5 σ1(�r ′)

}
d�r ′

⊥ , (A3)

∂

∂ỹ
Ez̃(�r ) =

∫
1

4πε0

{[
3
(
r ′
ỹ − rỹ

)
rz̃

|�r − �r ′
⊥ |5 + h̃(�r ′

⊥ )

(
15(r ′

ỹ − rỹ)r2
z̃

|�r − �r ′
⊥ |7 − 3(r ′

ỹ − rỹ)

|�r − �r ′
⊥ |5

)]
σ0(r ′) + 3(r ′

ỹ − rỹ)rz̃

|�r − �r ′
⊥ |5 σ1(r ′)

}
d�r ′

⊥ ,

where σ0(r ′) is

σ0(�r ′) = −ε0
∂

∂z̃
V0(�r,�r ′

⊥ ), (A4)

and σ1(r ′) is

σ1(�r ′) = −ε0
∂

∂z̃
V1(�r,�r ′

⊥ ), (A5)

with

V1(�r,�r ′
⊥ ) = −h̃(�r ′

⊥ )
∂

∂z̃
V0(�r,�r ′

⊥ ). (A6)

A local parabolic approximation is justified by showing
consistency with randomly generated rough surfaces. We
consider the form

hg(x,y) =
∑

1�N,M�200

{aN,M cos[k(Nx + My)] − aN,M

+ bN,M sin[k(Nx + My)]}, (A7)

in which the sinusoid terms represents the Fourier-transformed
coefficients of hg whose magnitudes are determined by the
height autocorrelation function, and the spatially constant an,m

terms are introduced to set h(0,0) = 0 for convenience. k is
the grid size in the Fourier space for us to replace the integral
by summation, in this section set to be 1

50
1
d0

.
For surfaces with a Gaussian autocorrelation function,〈

a2
N,M

〉 = 〈
b2

N,M

〉 ∝ e
− N2+M2

l2 . (A8)

We set l = 50 in our simulation, so that the autocorrelation
function takes the form

〈hg(�r )hg(�r + �v )〉 = L2e
− v2

d2
0 . (A9)

In this case, the parabolic surface takes the form

h(x̃,ỹ) =
∑

1�N,M�200

−k2

(
N2

2
x̃2 + NMx̃ỹ + M2

2
ỹ2

)
.

(A10)

Denote the perfect plane surface potential as Up(z),
the parabolic surface potential as U (z), and the Gaussian-
generated surface potential as Ug(z). We define the error ratio
ε as

ε =
∣∣∣∣U (z0) − Ug(z0)

U (z0) − Up(z0)

∣∣∣∣. (A11)

The total error consists of the error from the van der Waals’
potential and the repulsion potential. If we use a similar
definition of the error ratio from the van der Waals’ potential
and repulsion potential,

εV =
∣∣∣∣V(z0) − Vg(z0)

V(z) − Vp(z)

∣∣∣∣,
εR =

∣∣∣∣R(z0) − Rg(z0)

R(z0) − Rp(z0)

∣∣∣∣,
(A12)

in which, as in the case of total potential U , the potentials
without scripts correspond to the parabolic surface z = h(x,y),
the ones with subscripts g correspond to the Gaussian-
generated surface z = hg(x,y), and the ones with subscript
p correspond to the perfect plane surface.

From Eq. (44),∣∣∣∣V(z) − V0(z)

R(z) − R0(z)

∣∣∣∣ = 8

3
+ O(Az0), (A13)
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FIG. 5. ε value for the van der Waals’ potential (red) and the
repulsion (blue) potential. For typical electrode surfaces, the error
on the potential curve from approximating the whole surface as
a parabolic surface is less than 5%, and therefore the parabolic
approximation is valid.

which yields

ε < 4 max {εV ,εR}. (A14)

The dependence of εV and εR on d0 is plotted in Fig. 5. For
typical metal surfaces, d0/z0 > 20. Therefore, in our regime
of interest, ε < 0.05 and the parabolic approximation is valid
in this regime.

Estimate of the H2 term in U and ν using a spherical geometry

Identical to the treatment in Sec. III B, we calculate the
van der Waals’ interaction potential between a dipole and a
conducting sphere through the work done in moving the dipole
from infinity.

Let the sphere be described by x2 + y2 + z2 = R2, and the
dipole �d1 = (dx,dy,dz) be located at (0,0,R − z). By using
the standard image-charge method, one obtains at position
(0,0, R2

R−z
) an image dipole

�d2 =
(

− R3

(R − z)3
dx, − R3

(R − z)3
dy,

R3

(R − z)3
dz

)

and an image charge

dzR

(R − z)2
.

The force between dipoles �d1, �d2 is given by

�Fdd · r̂ = 3

4πε0r4
[ �d1 · �d2 − 3( �d1 · r̂)( �d2 · r̂)], (A15)

where �r is the relative position �r1 − �r2, and the force between
a dipole �d and a single charge q is

�Fdq · r̂ = −2q �d · r̂

4πε0r3
. (A16)

By using Eqs. (A15) and (A16), the attraction force in the z

direction between the dipole and a conducting sphere is

Fz(z) = −3
(
d2

x + d2
y + 2d2

z

)
4πε0

R3(R − z)

z4(2R − z)4

+ d2
z

4πε0

2R(R − z)

z3(2R − z0)3 , (A17)

and thus the van der Waals’ interaction to O((z/R)2) for an
isotropic atom (dx = dy = dz = d) can be written as

Fz(z) = − 1

4πε0

[
3
(
d2

x + d2
y + 2d2

z

)
16z4

+ 1

R

(
2d2

z + 3d2
x + 3d2

y

16rz̃
3

)

+ 1

2R2

(
2d2

z + 3d2
x + 3d2

y

16rz̃
2

)]
. (A18)

By imposing the isotropic condition dx = dy = dz = d on the
atomic state, the van der Waals’ potential becomes

V(z) = − 1

4πε0

(
d2

4z3
+ 1

R

d2

4z2
+ 1

R2

d2

4z

)
. (A19)

The curvature of the sphere is a + c = H = 1
R

. Therefore,
Eq. (A19) agrees with our perturbative result in Eq. (41) to
first order.

The repulsion potential is the integration of 1/r12 over the
bulk, which in the case of a spherical conductor is

R(z) =
∫ ∞

r=R

r2dr

∫
d�

Cr[
r2 + (R − z)2 − 2(R − z)r cos θ

]6

= π

5(R − z)

(
z + 8R

72z9
− 10R − z

72(2R − z)9

)
, (A20)

which, to O((z/R)2) can be written as

R(z) = πCr

45

(
1

z9
+ 9

8Rz8
+ 9

8R2z7

)
. (A21)

Again, Eq. (A21) agrees with Eq. (43) to first order.
By using the harmonic approximation at the equilibrium

position, we obtain the transition frequency to second order in
z/R:

ν = νp

(
1 + 1

3

z

R
+ 257

648

z2

R2

)
. (A22)

Thus the contribution from the quadratic term is factor C z
R

=
CHz larger than the first-order term where C is a constant on
the order of unity (∼1.19).
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