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Photoionization of an atom in the presence of a uniform static electric field provides the unique opportunity
to expand and visualize the atomic wave function at a macroscopic scale. In a number of seminal publications
dating back to the 1980s, Fabrikant, Demkov, Kondratovich, and Ostrovsky showed that this goal could be
achieved by projecting slow (meV) photoionized electrons onto a position-sensitive detector and underlined the
distinction between continuum and resonant contributions. The uncovering of resonant signatures was achieved
fairly recently in experiments on the nonhydrogenic lithium atoms [Cohen et al., Phys. Rev. Lett. 110, 183001
(2013)]. The purpose of the present article is the general description of these findings, with emphasis on the
various manifestations of resonant character. From this point of view, lithium has been chosen as an illustrative
example between the two limiting cases of hydrogen, where resonance effects are more easily identified, and
heavy atoms like xenon, where resonant effects were not observed.
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I. INTRODUCTION

Our intimate knowledge of atomic-scale systems and their
quantum description is entirely based on the key concept of the
wave function, obtained by solving the Schrödinger equation.
Nevertheless, and with very few exceptions, the wave function,
or its squared modulus, is generally not measured directly.
Great progress has been achieved in recent years towards
the development of a variety of strategies and approaches,
aiming to a more-or-less direct and, if possible, complete
observation of the wave function itself. These approaches
depend, of course, on the intrinsic nature of the system under
study. For example, microscopy techniques, such as scanning
tunneling or atomic force microscopy, were employed for
the detection of photoemission from a molecule deposited
on a surface [1,2] and allowed for the reconstruction of
its molecular orbitals [3]. Furthermore, imaging methods in
conjunction with strong laser fields permitted the tomographic
reconstruction of the electron density of ground-state atoms
and small molecules [4,5]. On the other hand, the development
of quantum optics in connection with weak-measurement
concepts [6] and experiments [7] led to the complete (am-
plitude and phase) determination of the wave function of the
photon [8]. In the present article we exploit another imaging
technique, so-called photoionization microscopy, suitable for
the experimental observation of the squared modulus of the
wave function of an electron emitted from an atomic system.
This is achieved by recording the two-dimensional flux of very
slow electrons ejected in an ionization process in the presence
of a static electric field. At present the method cannot provide
information on the wave function’s phase. Nevertheless, it is
one out of a few, if not the only one, having the advantage that
the squared modulus of the wave function is directly recorded,
i.e., it is projected and it is visible on the surface of the detector
without any requirements for further processing, hypotheses,
or tomographic inversion.

Within the context discussed here, the term “microscopy”
refers to the experimental capability of extending the atomic

or molecular wave function to macroscopic dimensions. From
this point of view, the photoionization of a simple atom in
the presence of an external electric field constitutes a perfect
case study, owing to the coexistence of purely continuum
as well as quasibound atomic states (resonances) just above
the ionization threshold. In that sense, photoionization mi-
croscopy does not provide access solely to free-electron wave
functions, but provides access also to atomic wave functions
of quasibound states, the latter bearing intrinsic properties
of the atomic system under study. The above notions were
explored for the first time during the 1980s and early 1990s
by Fabrikant, Demkov, Kondratovich, and Ostrovsky in a
famous series of articles devoted to a thorough and essentially
semiclassical analysis of the hydrogenic Stark effect [9–12].
Dealing first with the simpler case of photodetachment [10],
the connection between interference patterns and classical
electron trajectories was then extended to the far more
complicated case of photoionization. In that latter case, the
presence of narrow Stark resonances and their impact on the
interference patterns was examined separately.

A photodetachment microscope [13] was experimentally
implemented soon after the emergence of photoelectron
imaging techniques [14]. This experimental breakthrough ver-
ified unambiguously the close connection between quantum
interferences and classical trajectories, allowing in addition
for electron affinity measurements with unprecedented ac-
curacy [15]. A few years later photoionization microscopy
experiments were performed with xenon atoms [16–18].
Remarkably, in all these experiments, the number and position
of nodes of the recorded wave function evolved smoothly with
photon energy, and remained to a large extent insensitive to the
presence of resonances. This fact was attributed to the coupling
between continuum and quasibound states, induced by the
large ionic Xe+ core. This interaction is absent in the hydrogen
atom because of the orthogonality between its continuum and
quasibound states. Nevertheless, subsequent [19] as well as
recent [20–22] theoretical developments predicted that the
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observation of resonant effects in nonhydrogenic atoms is
indeed also possible under certain conditions. It became, how-
ever, evident that a first step towards this goal is the observation
of resonant phenomena in atoms with a single valence electron
outside closed (sub)shells, the latter forming an ionic core of
small size in order to minimize the aforementioned coupling.
We have indeed demonstrated recently the appearance of
resonant signatures in photoionization of lithium atoms [23],
immediately followed by a clear demonstration in the hydro-
gen atom itself [24]. This latter experiment fully verified old,
as well as recent [25,26], theoretical works. Finally, another
experimental demonstration of resonant effects was even more
recently achieved in helium atoms [27].

The purpose of the present article is a detailed description
of our findings in the lithium experiment over the whole energy
range between the saddle-point energy and the zero-field
ionization limit. The small ionic core of this atom allows
for the observation of resonant effects. Lithium is therefore
representative of a general atomic system standing between
hydrogen (exhibiting clear resonant effects) and heavy atoms
like xenon (where no resonant effects were experimentally
observed). Emphasis will be given to the differences observed
between the continuum and the resonant images of wave
functions, as well as their connection with the aforementioned
recent experimental achievements [24,27] and theoretical work
[19–22]. A quite brief presentation of our nonresonant data
was given in [28], for the purpose of testing the so-called
coupled-channel theory. Here, however, the interpretation of
our experimental results is based on an electron wave-packet
propagation approach, relying on solving the time-dependent
Schrödinger equation (TDSE).

The rest of the article is organized as follows: In the
second section we describe the photoionization microscope
as well as the full experimental setup and procedure. Next, we
briefly review the essential points of the theory of the Stark
effect [11,12,29] upon which photoionization microscopy is
based, as well as the computational, TDSE-solving, procedure
providing radial distributions that can be compared with the
experimental ones. The fourth section is devoted to a pre-
sentation and discussion of both our continuum and resonant
experimental results on lithium. Finally, in the concluding
section, we discuss perspectives for further work.

II. EXPERIMENTAL SETUP AND PROCEDURE

In our experiment a beam of lithium atoms is produced
by laser ablation of a pure lithium metallic rod. The lithium
atoms are entrained in a pulsed helium gas jet controlled by a
piezoelectric valve operated at 10 Hz. The source chamber is
pumped by a 750 l/s diffusion pump. The lithium beam enters
the interaction chamber through a 1-mm-diameter skimmer
placed 2 cm downstream from the nozzle. The interaction
chamber is pumped by a 250 l/s turbomolecular pump. The
beam of ground-state lithium atoms interacts at right angles
with a tunable UV laser beam delivered by a high-finesse
optical parametric oscillator system (Spectra-Physics MOPO).
The system operates at a repetition rate of 10 Hz and
delivers light pulses of ∼1 mJ energy and ∼5 ns duration. Its
∼0.05 cm−1 linewidth is adequate for resolving Stark spectral
structures that may be separated by less than 1 cm−1 and

for avoiding any blurring of the image interference patterns.
The atomic and laser beams are both perpendicular to the
electron spectrometer (and electric field) axis. The final Stark
states are single-photon excited out of the 2S1/2 (1s22s)
lithium ground state (wavelength range 232–228 nm) and
their azimuthal quantum number m is selected by directing
the linear laser polarization either along the direction of the
electric field (dipole selection rule �m = 0), or perpendicular
to it (|�m| = 1).

Our microscope is similar to the one employed in earlier ex-
periments [16–18,30]. It is based on a standard three-electrode
velocity-map imaging (VMI) spectrometer design [31], and
a full analytical description of its geometry, dimensions,
and operating conditions is available in [32]. Photoionization
takes place in the center between the first two electrodes:
a solid repeller plate and an extractor plate with a hole in
its center. These electrodes are biased at voltages VR and
VE respectively. The third electrode is grounded and of the
same design as the extractor plate. The holes of the last two
electrodes create an inhomogeneous electric field allowing
the fulfillment of the VMI condition [31]. The field variation
near the center of the interaction region is roughly linear. It
amounts to about 2%/mm along the spectrometer axis and
about 0.1%/mm transversely to this axis [32]. For maintaining
an overall electric field variation below ±0.1%, we limit the
axial dimension of the interaction volume below 200 μm (by
moderately focusing the laser beam using an ≈25-cm–focal-
length lens) and its transverse dimension below 2 mm (by
placing a diaphragm transversely to the lithium beam path at
the entrance of the spectrometer). Hence, within the limited
laser-atom interaction volume the field may be considered as
being nearly constant.

Photoelectrons resulting from the photoionization of
lithium atoms are accelerated by the field towards the end
of a field-free drift tube. An electrostatic magnifying Einzel
lens, consisting of three identical equally spaced electrodes
with holes at their centers, is placed in the middle of this tube
[33]. A voltage VL is applied to the middle electrode, while
the other two are grounded. The electrons are detected at the
end of the drift region by a two-dimensional position-sensitive
detector (PSD). The PSD is made of a tandem microchannel
plate (MCP) assembly followed by a phosphor screen. A CCD
camera is used to record the two-dimensional distribution of
the light spots on the phosphor screen. Recorded images are
transferred to a PC, where they are accumulated over several
thousand laser shots. In order to improve the signal-to-noise
ratio the MCP is operated with a 100-ns gate [34]. The entire
spectrometer, including the electrodes, the drift tube, and the
detector assembly, is shielded against external magnetic fields
by a double μ-metal layer, ensuring a magnetic field below
1 μT in its interior.

The VMI condition [31] is fulfilled for a given ratio of
the voltages VR and VE, which is determined by the design
of the spectrometer and moderately depends on whether the
Einzel lens is on or off. The chosen values of VR, VE, and
VL result in a field strength F ≈ 1 kV/cm at the center of the
interaction region and an up to ∼20-fold magnification of the
images. For ∼10 meV electrons (roughly the range of interest
in our experiments) such a magnification leads to typical image
sizes of ∼10 mm and a ∼1 mm spacing between consecutive
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fringes. Without any magnification the same images would
have a size of ∼1 mm and a fringe separation of ∼100 μm.
This separation is comparable to the resolution limit of our
PSD and would make the observation of the structure of the
wave function hardly achievable.

III. PRINCIPLES OF PHOTOIONIZATION MICROSCOPY
AND THEORETICAL CALCULATIONS

A. Qualitative quantum mechanical description

Let us begin by presenting the principles of photoionization
microscopy by means of a review of the quantum mechanical
theory of the Stark effect. The Hamiltonian of a hydrogen
atom (Z = 1) in a uniform static electric field of strength F

directed along the z axis [Fig. 1(a)], is separable in parabolic
coordinates ξ = r + z, η = r–z, and ϕ = arctan(y/x). Sep-
arability along ϕ leads to the azimuthal quantum number
m, while separability along ξ and η involves two separation
constants, Z1 and Z2 = Z–Z1, and leads to parabolic quantum
numbers n1 and n2, counting the nodes in the ξ and η parts
of the wave function, respectively [11,12,29,35]. Due to the
asymptotic form of the ξ potential curve V1(ξ ) for ξ → ∞, the
electron motion is always bound along the ξ coordinate [see
Fig. 1(c)]. The energy range of interest here is located between
the classical saddle-point energy Ecl

sp = –2F 1/2 atomic units
(a.u.) and the field-free ionization limit E = 0. For E � Ecl

sp

the asymptotic behavior of the η-potential curve V2(η) for
η → ∞ allows the escape of the electron in the negative
z direction, along the η coordinate [Figs. 1(d) and 1(e)].

FIG. 1. Wave-function microscopy aims at observing the spatial
structure of the electronic wave function. (a) The electron flux
stemming from the photoionization of an atom in the presence of
a static electric field is recorded perpendicularly to the field and
at macroscopic distance, i.e., approximately along a given constant
η = ηo paraboloid. (b),(c) The image corresponds to the squared
modulus of the wave function along the ξ coordinate where the
electron motion is always bound. In (b) the nodes of the wave function
are clearly observed in the example shown (with x and y denoting the
detector plane), recorded with F ≈ 1 kV/cm and electron excitation
energy exceeding Ecl

sp by 10 meV. Depending on the electron energy
with respect to the maximum of the η potential, the classical electron
motion may be either bound (d) or free (e). In the former case the
electron can escape solely via tunneling and the image corresponds
to a direct macroscopic projection of a quantum standing wave
characterizing the quasibound electronic state (nres

1 , nres
2 , m) where

the electron is initially localized within the inner η-potential well.

Each n1 is associated with a threshold E
n1
thr, found by solving

the equation E=–2[Z2(E,m,F,n1)F ]1/2 [29]. For a given n1

the quantum number n2 is meaningful only when E < E
n1
thr.

Each (n1, n2) pair corresponds to a quasibound state for
which the electron escapes solely via tunneling through the η

potential [Fig. 1(d)]. For E > E
n1
thr where n2 loses its meaning,

the electron escapes over the η-potential barrier [Fig. 1(e)].
Thus, within Ecl

sp � E � 0 quasidiscrete and continuum Stark
states with different n1 values coexist. All hydrogenic Stark
states with different n1 are orthogonal to each other.

Wave-function microscopy aims at recording the photocur-
rent density,

j (ξ,η) ∝ i

[
ψ

∂ψ∗

∂η
− ψ∗ ∂ψ

∂η

]
(1)

at a macroscopic distance, along a given constant η = ηo

paraboloid which crosses the z axis at z = zo = –ηo/2 where
the detector is located [see Figs. 1(a) and 1(b)] [16,18]. In
Eq. (1) ψ is the final-state electron wave function. Since
ηo → ∞ while the ξ motion is bound, it holds that ξ �
ηo and the paraboloid may be well approximated by a
plane perpendicular to the z axis. It is to be emphasized
that, although wave-function microscopy experiments provide
directly photoelectron angular distributions [36], the afore-
mentioned interference patterns refer principally to the radial
distributions of the observed images.

Let us consider first the continuum spectrum in the absence
of any resonance and denote by no

1 the highest quantum number

corresponding to an open n1 channel for a given E (i.e., E
no

1
thr �

E � E
no

1+1
thr ). Then, Eq. (1) for this so-called background (BG)

density is put into the form

jBG(ξ,η = ηo) ∝
∣∣∣∣∣∣

no
1∑

n1=0

cn1χ1,n1 (ξ )

∣∣∣∣∣∣
2

, (2)

where χ1,n1 denotes wave functions along the ξ coordinate and
cn1 the corresponding weights which depend on the excitation
process. The coherent superposition of Eq. (2) has the form
of an interferogram, which is dominated by χ1,no

1
and exhibits

no
1 dark fringes. As is made evident from Fig. 2, no

1 increases
monotonically with energy for a given field strength.

Let us now consider the additional presence of a single
narrow resonance corresponding to a quasibound state and
associated with a parabolic quantum number nres

1 . Given that

E < E
nres

1
thr and E

no
1

thr � E � E
no

1+1
thr , it necessarily holds that

nres
1 > no

1. The quasidiscrete state’s wave function χ1,nres
1

(ξ )
modifies the photocurrent density j (ξ,η = ηo) according to

jBG+res(ξ,η = ηo) ∝
∣∣∣∣∣∣anres

1 ,n2χ1,nres
1

(ξ ) +
no

1∑
n1=0

cn1χ1,n1 (ξ )

∣∣∣∣∣∣
2

,

(3)
where the weight anres

1 ,n2 depends on n2. The latter, however,
cannot, in principle, be extracted from jBG+res(ξ,η = ηo).
For a sufficiently narrow resonance, the wave function χ1,nres

1

dominates the interferogram. Therefore, jBG+res(ξ,η = ηo) is
expected to evolve nonmonotonically in the vicinity of res-
onances. Specifically, quantitative calculations [12,25] reveal
the following on-resonance characteristics:
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FIG. 2. Parabolic n1-channel threshold energies E
n1
thr as a function

of the strength of the static electric field, for Z = 1, m = 0, and
quantum numbers n1 = 0−22. The thresholds are given in terms
of the dimensionless energy parameter ε = E/|Ecl

sp|, where the
classical saddle-point energy (corresponding to ε = –1) is Ecl

sp =
–2F 1/2 a.u. ≈ –6.121[F (V/cm)]1/2 cm−1. The thresholds were deter-
mined by solving the equation E = –2[Z2(E,F,m,n1)F ]1/2, where
the separation constants Z2(E,F,m,n1) = Z–Z1(E,F,m,n1) were
computed by solving the Coulomb-Stark Schrödinger equation along
the ξ coordinate.

(i) A strong modification of the interference pattern that
can include a fringe number change. Hence, jBG+res(ξ,η = ηo)
can exhibit nres

1 dark fringes while their number is reduced to
no

1 at electron excitation energies just below and just above the
resonance.

(ii) A modulation of the fringe contrast due to the coherent
superposition of resonant and nonresonant contributions in
Eq. (3).

(iii) A broadening of the image outer ring, associated with
tunneling ionization. For the hydrogen atom, the effect was
first pointed out by Kondratovich and Ostrovsky [12] (see
Fig. 4 therein) and more thoroughly analyzed recently by
Zhao and Delos [25]. It was also noticed by Texier in his Xe
calculations [19]. It corresponds to an on-resonance increase
of the tunneling probability through the potential barrier of
V2(η) as a result of the electron’s high localization near the
edge of the potential.

The ultimate goal of photoionization microscopy is to
uncover the features of j (ξ,η = ηo) stemming from the
resonant state(s) χ1,nres

1
. For the hydrogen atom this was

achieved quite recently [24]. Of course, the observation of
these features in atoms more complex than hydrogen is
of fundamental significance, as it will turn photoionization
microscopy into a more general technique, eventually capable
of dealing with polyatomic systems. However, the Hamiltonian
of complex atoms in the presence of an external electric
field is no longer separable in parabolic coordinates due to
short-range interactions occurring when the excited electron
penetrates the ionic core. This leads to a mixing between
hydrogenic states of different n1, which are no longer pure
eigenstates of the atom. Hence, even if the system is initially
prepared in a quasidiscrete state, it may “leak” (autoionize)
to the degenerate continua. As a result the resonant features

(i)–(iii) may be obscured. The degree of core penetration
can be assessed by a comparison of the magnitude of
the quantum defects μ
 for the ns, np, and nd Rydberg
series. The substantial difference between xenon (μs ≈ 4.0,
μp ≈ 3.5, and μd ≈ 2.4) and lithium (μs ≈ 0.4, μp ≈ 0.05,
and μd ≈ 0.002) [37] quantum defects partly explains why
resonant effects were not observed in the heavy xenon atom
experiment [16,17] while being apparent in lithium [23]. The
above arguments also suggest that the hydrogenic behavior
can be induced by configuring the experiment in a manner
where high-|m| states are populated, suppressing contributions
from highly penetrating low-
 orbitals. Moreover, it would be
desirable to employ single-m excitation schemes in order to
bypass the complications arising from interferences among
different m components [19]. Finally, theoretical calculations
demonstrating resonant effects in xenon [19] and the alkali-
metal atoms [21] point towards an extreme sensitivity of the
resonant manifestations to the field strength. This is compatible
with the findings of the He experiment [27], where the resonant
character was unveiled near avoided crossings [38] between
pairs of resonances. Near the centers of these crossings, one
of the resonances is decoupled from the degenerate continua,
leaving tunneling as the only electron escape mechanism.

B. Connection between quantum mechanical and classical
Coulomb-Stark problem

The classical treatment of the Coulomb-Stark problem deals
solely with open n1 channels, since tunneling is classically
forbidden. Therefore, taking into account the above point (iii),
it is expected that any deviations from the well-known classical
energy dependence of the maximum radius of photoelectron
impacts would potentially signal the presence of resonances.
Our purpose here is to establish a connection between the
classical and quantum mechanical descriptions of the problem,
in order to unveil the conditions under which such deviations
would be easier to observe.

Classical simulations [39] and subsequent experimental
verifications [40,16,17] showed that a particular characteristic
of slow photoelectron imaging is the appearance of two
concentric structures in the recorded images. The outer one
stems from classical source-to-detector electron trajectories,
which are complicated and intersect the negative z axis
at least once. The maximum classical radius Rc

max of this
so-called indirect contribution is related to the excitation
energy through a simple analytical expression (see Eq. (11) of
[39]). The inner structure (direct contribution) appears only for
E � Edir ≈ 0.775Ecl

sp and stems from simple quasiparabolic
trajectories that do not intersect the z axis. The classical
radius RI of the direct contribution is zero at E = Edir and
its energy dependence is different from that of Rc

max [39],
but for E > 0 it approaches and finally matches Rc

max. A
classification of the two contributions is provided via the
electron’s launch angle β with respect to the electric field.
All escaping trajectories correspond to launch angles β �
βc ≡ arcsin[E/Ecl

sp](E � 0), while for β < βc the electron is
classically bound. Note that βc = 0 for E � 0. The indirect
trajectories are distinguished from the direct ones through the
angle βo for which the corresponding trajectory intersects the
z axis at infinity. Indirect trajectories correspond to launch
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FIG. 3. Classical separation constant Z1 = Zcos2(β/2) (with
Z = 1) (continuous line) as a function of the electron’s launch angle β

and the quantized quantum mechanical values 0 � Z
n1
1 � Z (drawn

by horizontal line segments whose length is irrelevant), obtained
by solving the Coulomb-Stark Schrödinger equation along the ξ

coordinate for the (ε = E/|Ecl
sp|, F , m) set given in the plot. A few

selected parabolic quantum numbers n1 are provided next to the
corresponding line segments. Also shown by vertical lines are the
critical angles βc and βo, separating the regions related to quasibound
states, indirect and direct contributions (see text), as well as the
classical radius of impact on the detector (dashed line), computed
as described in [39].

angles within the [βc,βo] interval and the direct ones to the
[βo,π ] one.

A connection with the quantum description may be
achieved through the separation constant Z1, which is clas-
sically given by Z1 = Zcos2(β/2). On the other hand, the
solution of the Schrödinger equation along the ξ coordi-
nate provides a discrete set of separation constants Z

n1
1 =

Z1(E,F,m,n1). As an example, Fig. 3 shows the classical
dependence of Z1 as a function of β, along with the critical
angles βc and βo and the computed quantum mechanical Z

n1
1

values for m = 0, F = 1 kV/cm, and ε ≡ E/|Ecl
sp| = –0.5.

The conditions 0 � Z
n1
1 � Z are fulfilled for the quantum

numbers n1 = 0 to n1 = 27. By inspection of the graph, we
note that the direct contribution consists of ξ wave functions
with quantum numbers in the range 0 � ndir

1 � 11, while
the indirect contribution spans the 12 � nind

1 � 21 range.
Evidently, any possible presence of quasibound Stark states
would necessarily correspond to 22 � nres

1 � 27 (for 0 < β <

βc). Hence, for this particular (E, F , m) set, the maximum
number of continua is no

1 = 21 (in accord with the computation
of Fig. 2) and, therefore, no

1 is equal to the maximum number
nind

1,max of dark fringes that may be exhibited by the indirect
contribution. Furthermore, the direct contribution will exhibit
at most ndir

1,max = 11 dark fringes. Consequently, since ndir
1,max <

nind
1,max < nres

1 , the direct contribution will never correspond
to resonances. Moreover, because the predicted on-resonance
broadening of the image outer ring due to tunneling is strongly
connected with the larger values of nres

1 , it is expected that
this broadening would occur at the outer part of the indirect

contribution. Finally, for ε > εdir = Edir/|Ecl
sp| ≈ −0.775 the

coexistence of the resonant contribution with the non-resonant
direct one would make the uncovering of fringe number
changes quite difficult and, additionally, resonant nres

1 values
around ∼25 would necessitate the extreme limits of the
microscope’s spatial resolution. Hence, it is made clear that
the most suitable energy range for observing resonant effects
is located below Edir, where only the indirect contribution is
present and the number of continua and fringes is relatively
small.

C. Wave packet propagation calculations

We now turn to a quantitative theoretical description
of photoionization microscopy which is based on a wave
packet propagation approach, according to which an initial
wave function is built at time t = t0 and is subsequently
propagated until time t > t0, by solving the TDSE. The main
methodological aspects of the approach can be found in [41]
and have been modified and adapted for the present purposes
in [22]. Using first-order time-dependent perturbation theory
the TDSE is (in a.u.),

i
∂

∂t
− (Hat + HF − E)  = S(r,t), (4)

where E is the electron energy, the term HF = Fz corresponds
to the Stark Hamiltonian associated with the static electric
field, which is oriented along the z axis, and Hat stands for the
free-atom Hamiltonian,

Hat = −1

2

∂2

∂r2
+ L̂2

2r2
+ V (r) (5)

with L̂ the angular momentum operator. In Eq. (5) V (r) is
a radial atomic potential describing the interaction between
the valence electron and the ionic core. For the hydrogen atom
V (r) is simply written as –1/r , while for nonhydrogenic atoms
with a finite-size ionic core it assumes the following parametric
form:

V (r) = −Z
(r)

r
− αd

2r4
f (r), (6)

where αd is the dipole polarizability of the ionic core and
f (r) is a cutoff function, remedying the unphysical small-r
behavior of the dipole polarization term –αd/2r4. The effective
charge Z
(r) in Eq. (6) is parametrized as Z
(r) = 1 +
(Z − 1)e−α

(1)

 r + α

(2)

 re−α

(3)

 r . For the lithium atom, the nuclear

charge is Z = 3 and the employed cutoff function as well as all
the relevant parameters can be found in [42]. The source term
S(r,t) in Eq. (4) arises from the laser-excited electron wave,
assuming the appropriate angular momentum and magnetic
quantum numbers 
 and m, respectively. Specifically, this term
is defined as

S(r,t) = f (t)S(r) Ym

 (7)

where Ym

 is the spherical harmonic of the outgoing electron

[L̂2Ym

 = 
(
 + 1)Ym


 ] and S(r) is r times the radial 2s
function. Finally, in Eq. (7) the employed cw-type time
dependence, f (t) = 1 + erf(t/tw), gives a smooth turn-on for
the laser with time width of tw, and for larger times the electron
wave is continuously launched.
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The calculation starts from t0 ∼ –2tw. The wave packet
propagation is calculated through the split-operator method
[43], on a two-dimensional (r,l) grid. Propagation continues
for a time t > t0 for which the transients from the laser
turn-on have decayed to zero. The computed wave function
is numerically summed over the orbital angular momenta 


yielding ψm(ρ,z), where m is the azimuthal angular momen-
tum and (ρ,z) denote cylindrical coordinates. For accelerating
convergence we apply a Hankel transform to ψm(ρ,z) and
obtain

sim(kρ,z) =
∫

dρρψm(ρ,z)Jm(kρρ), (8)

where Jm(kρρ) is a Bessel function and kρ is proportional
to the distance from the z axis at z = zo (the location of the
detector). For zo → –∞ the radial distribution is proportional
to kρ |sim(kρ,zo)|2. The latter quantity is plotted and compared
to the experimental results. The operation of Eq. (8) on
the wave function ψm(ρ,z) simulates velocity-map imaging
[31], since in terms of classical light or particle optics a
VMI spectrometer may be regarded as a Fourier (or Hankel
for cylindrical symmetry) transformer, relating the particle’s
radial distribution at the source plane to its vectorial velocity
distribution (the latter projected on the detector plane) [32]. In
the present case, however, it is employed solely for the purpose
of speeding up the calculation, because sim(kρ,zo) is found
to converge much more rapidly than ψm(ρ,z). Thus, Eq. (8)
effectively propagates the wave function at large distances,
without the need to actually solve the TDSE up to these
distances.

IV. RESULTS AND DISCUSSION

A. Energy evolution of nonresonant images: General overview

Before presenting the specific resonant features unveiled
by the lithium images, it is instructive to discuss first their
general evolution with energy. Indeed, resonant signatures may
be unveiled only after nonresonant features have been well
characterized. Selected images are presented in Figs. 4 and
5(a), for m = 0 and |m| = 1 final Stark states, respectively.
For the employed single-photon excitation scheme from the
ground state of Li, both series of images probe the p character
of the Stark states. This is evident in the angular distribution
exhibited by the |m| = 1 set but obscured in the m = 0 disk-
shaped images, because in the latter case the laser polarization
is perpendicular to the PSD plane.

Starting from a “point” image at ε ≈ –1 and up to ε ≈
εdir = Edir/|Ecl

sp|, we observe, as expected, only the indirect
contribution. Although these ε < εdir nonresonant images
correspond to a coherent ξ wave function superposition [see
Eq. (2)], they show no sign of beating effects and their
number of fringes increases smoothly with a rate that can
be predicted by inspection of Fig. 2. A few selected radial
distributions extracted from the |m| = 1 images of Fig. 5(a)
are given in Fig. 5(b) along with the corresponding curves
obtained by the wave packet calculations. The latter were
performed using F = 1000 V/cm and tw = 50ps. The wave
function was propagated up to 200, 500, or 1000 ps and
up to a distance of 1 μm from the origin. For this distance
convergence was reached. As may be seen, the computed

FIG. 4. Energy evolution of m = 0 (linear laser polarization
parallel to the electric field axis) experimental images for an electric
field F = 1000 ± 10 V/cm, as estimated by fitting the higher-energy
indirect radii to the expression Rc

max(E) = C[E + |Ecl
sp|]1/2 [39].

The corresponding ε = E/|Ecl
sp| values are indicated below each

image. For a number of images near ε = εdir ≈ –0.775, the indirect
contribution is quite faint and hardly observable. All measurements
were performed for an identical number of laser shots. However, the
linear grayscale of each image is individually normalized between
100% (black) and 0% (white).

FIG. 5. As in Fig. 4 but for |m| = 1 images (linear laser polariza-
tion perpendicular to the electric field axis). (a) Recorded images
at some selected reduced energies ε = E/|Ecl

sp| for an estimated
field of F = 1000 ± 10 V/cm. (b) Experimental (continuous line)
radial distributions for three selected values of ε, along with the
corresponding wave-packet calculations (dashed line) at the above
field strength.
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nonresonant curves reproduce well the number of fringes,
but not equally well their relative intensity and contrast, the
latter being of course severely limited by the experimental
resolution.

For ε � εdir, the images begin to show the additional direct
contribution. Its appearance is accompanied by a considerable
(relative) intensity loss of the indirect contribution. The latter is
hardly visible just above εdir, where the spatial size of the direct
contribution is quite small. Nevertheless, a small number of
central fringes of the indirect contribution are observed within
the small region of overlap between the two contributions
(see the central part of the ε = –0.583 image of Fig. 5). This
is a first manifestation of beating effects between the direct
and indirect terms, expected on the basis of the coherent
superposition of Eq. (2), and these fringes gain in intensity
through interference with the much stronger direct signal. As
the energy is increased further, the fringe pattern belonging
to the direct contribution develops, which, as expected, is
characterized by a relatively small number of well-resolved
fringes. The latter become closely spaced and faint at positive
energies ε > 0, but they are visible (Fig. 4, ε = +0.470) if the
ionization signal is sufficiently strong.

Let us now examine the observed energy dependence of
Rc

max and RI. Figure 6 depicts this dependence for an |m| = 1
data set, recorded at a slightly different electric field from
the one corresponding to the data of Fig. 5. Additionally,
the measurements of Fig. 6 are much more closely spaced
in the vicinity of Ecl

sp (steps of 1−2 cm−1). In fact, the
lowest-energy measurement corresponds to the first image
where a quantifiable signal could be obtained. For measuring

FIG. 6. Experimental maximal radii of the indirect contribution
(Rc

max, black circles) and of the direct one (RI, white circles) for an
|m| = 1 series of images, recorded in the presence of an estimated
static field F = 1000 ± 10 V/cm and shown as a function of E and
ε = E/|Ecl

sp|. Encircled are the Rc
max data exhibiting a nonclassical

behavior which signals electron escape via tunneling. Rc
max is fitted to

the expression Rc
max(E) = C[E + |Ecl

sp|]1/2 [39], by retaining either
the full set of data (dashed, black thin line) or the E � –170 cm−1

data [continuous, dark cyan (dark gray) heavy line]. The orange (light
gray) heavy line curve stands for the numerically computed energy
dependence of RI, which is subsequently matched in amplitude and
energy to the experimental points. For the fitted values see the text.

the two radii, the experimental distribution pexpt(�,R) is first
angularly integrated and the radial distribution Pexpt(R) =
∫ pexpt(�,R)d� is obtained. Then, Rc

max and RI are defined
here as the outermost inflection points of RPexpt(R) for the
indirect and direct contributions, respectively. This definition
is chosen because these inflection points should lie very close
to the classical outer turning points.

The graph of Fig. 6 shows that within the (encircled)
low-energy zone, near Ecl

sp, the behavior of Rc
max is irregular,

exhibiting a number of oscillations. Using the analytical
formula provided in [32] [Eqs. (2a) and 2(b) therein] for the
axial voltage variation for our specific VMI geometry, we
estimate the field strength at the center between the repeller
and extractor electrodes for this data set to be ≈ 998 V/cm.
This value corresponds to Ecl

sp = –193.4 cm−1. Fitting of
the full data set of Fig. 6 to an expression of the form
Rc

max(E) = C[E + |Ecl
sp|]1/2 [39] (for E < 0 and with |Ecl

sp|
and the scaling factor C as the fitted parameters) leads to Ecl

sp =
–192 ± 1 cm−1. While this value is fairly consistent with the
above expectation, the fit leads to a poor reproduction of the
behavior of the experimental points. Indeed, the fitted curve
(black dashed line in Fig. 6) describes the aforementioned
low-energy zone just “on the average” and underestimates the
high-energy part of the data by about 2% (somewhat larger
than the experimental uncertainty of the radii). In contrast, if
the oscillating points below E ≈ –170 cm−1 are excluded, we
obtain a quite satisfactory fit for the whole set of data, apart
from that oscillating part. On the other hand, the fitted value,
Ecl

sp = –186 ± 1 cm−1, is now found to be considerably lower.
A number of reasons may be responsible for the discrepancy.
First, as is well known [44], the saddle-point energy is in fact
m dependent and given by (in a.u.)

Esp(|m|; F ) ≈ −2F 1/2

[
1 − |m|

2
F 1/4 − 3

32
m2F 1/2

]
. (9)

Using Eq. (9) we find Esp(|m| = 1; F = 998V/cm) ≈
–189 cm−1, i.e., the saddle-point energy increases by ≈4 cm−1

and gets closer to the value extracted from the high-energy
fit. The remaining difference may thus arise either from the
definitions of Rc

max and RI given above, or from a small
overestimation of the field (due, for example, to a laser-atom
interaction point displaced by 1–2 mm from the center between
the repeller and extractor electrodes), in conjunction perhaps
with a small systematic error in the absolute wavelength
calibration of our laser system. Note in passing that, in
principle, another estimate for Ecl

sp may be provided by the
indirect radius RI, the experimental data of which form
a quite smooth curve with no irregularities. However, no
analytical formula is available for RI. Therefore, the curve
is numerically computed via the expressions given in [39]
and it is subsequently scaled in amplitude and energy in
order to match the experimental points. This “trial-and-error”
procedure leads to Ecl

sp = –187 ± 3 cm−1, but it is found to be
less reliable than the direct fit of Rc

max.
The above findings are in complete agreement with the

expectations presented in Sec. III B. Specifically, the smooth
energy dependence of RI is compatible with the nonresonant
character of the direct contribution. Moreover, the large
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FIG. 7. Experimental radial distributions (a), images (b), outer
radii as defined in the text (c), and total integrated electron signal
(d), in the vicinity of the saddle-point energy for |m| = 1. The
quoted values of ε = E/|Ecl

sp| are computed using the value Ecl
sp =

–186 ± 1 cm−1 determined by a fit to the high-energy points of the
Rc

max(E) curve of Fig. 6 [dashed line in (c)]. In (a) each experimental
distribution is up-shifted proportionally to the energy. Identified
resonances are drawn with white circles and, as compared to (c) and
(d), some distributions and images are omitted for clarity. The small
vertical arrows for the highest three distributions given in (a) denote
the corresponding outer radii. In (c) and (d) experimental points are
connected with a smooth solid line to guide the eye.

number of fringes of the indirect contribution, along with its
signal weakness, makes the experimental search for resonant
manifestations in the ε > εdir range quite demanding. In fact,
Rc

max is usually found to be fairly regular there, signaling the
dominance of the continuum n1 channels over the resonances.
On the contrary, by expressing the energy dependence of
Rc

max and RI in terms of ε [shown in the upper horizontal
axis in Fig. 6 and computed using the Ecl

sp value extracted
from the high energy, E > −170 cm−1, fit of Rc

max(E)], it
becomes obvious that a number of images and outer-radius
measurements appear to be recorded below the saddle-point
energy. Furthermore, the irregular (or, better, nonclassical)
behavior of the outer radius below and slightly above ε ≈ –1
(where the number of continua is small) can be considered
as a first potential manifestation of the electron’s escape
via tunneling and it is fully compatible with the so-called
“resonant radius,” as defined and discussed by Kondratovich
and Ostrovsky [12] (see Fig. 4 therein). This radius is larger
than Rc

max near Ecl
sp and it exhibits appreciable magnitude even

for E < Ecl
sp. Experimentally, this behavior is observed in both

the |m| = 1 and m = 0 data. In the subsequent sections we
present separately these two cases.

B. Resonances: The |m| = 1 case

Let us inspect the |m| = 1 data first, since they are closer to
the hydrogenic case because the relevant wave functions do not
contain any 
 = 0 core-penetrating component. Specifically,
we examine the energy range around ε ∼ –1, which is
encircled in Fig. 6 and characterized by the aforementioned
nonclassical behavior of the outer image radius. Figures 7(a)

and 7(b) show the radial distributions RPexpt(R) and the cor-
responding images, respectively. The evolution of the radius
of the outer inflection point as a function of energy is given
in Fig. 7(c). Finally, Fig. 7(d) shows the integrated electron
signal, proportional to the total excitation cross section. We
observe that each sudden increase of the outer radius is
accompanied by a cross-section maximum. On the other
hand, a comparison between distributions and images reveals
that increased outer radii correspond to images exhibiting an
external low-intensity “halo” (see images at ε = −0.973 and
−0.953; it is not visible in the small lowest-energy image),
i.e., a broadened outer image ring, which is a sign of electron
tunneling through the η-potential barrier [25]. Therefore, the
images with this halo should correspond to resonances. Indeed,
despite the low fringe contrast of the images (due to their small
size and the microscope’s finite spatial resolution) it is fairly
evident that, for example, the ε = –0.993 distribution shows
an additional fringe (nres

1 = 1) with respect to the surrounding
measurements performed at ε = –1.003 and −0.983 (no

1 =
0). Hence, this image corresponds to the superposition of
Eq. (3), where the resonant character dominates or, at least,
manifests itself. Therefore, to a good approximation, it is a
direct macroscopic projection of a quantum standing wave
characterizing the quasibound electronic state (nres

1 = 1, n2,
|m| = 1) with unspecified n2. Interestingly, there is more
than one resonance with the same nres

1 . This is the case
of the ε = –0.973 and ε = –0.953 distributions, for both of
which nres

1 = 2. Obviously n2 should differ for these two
resonances.

The comparison between theory and experiment proved to
be a nontrivial task due to the uncertainty in the knowledge
of the exact field strength, as indicated by the different
values provided by SIMION calculations, by the predictions
based on the analytical axial potential formula given in
[32], and by the value extracted from the fit to the high-
energy points of the Rc

max(E) curve. While the estimations
of the field value based on the first two methods differ
by ∼1%, the largest difference with the fit to the image
radius amounts to about 6%. With these facts in mind, the
present wave packet calculations were performed using a
fixed value of F = 1000 V/cm, i.e., somewhat different from
the 1010 V/cm employed in [23], both being consistent,
however, within the estimated accuracy. The calculation was
performed using the same parameters employed above for
the nonresonant distributions. For the specific choice of F

used here, theory revealed several resonant radial distributions
and abrupt changes of the number of fringes. Some of these
distributions bear similarities with the experimental ones. In
particular, the on-resonance broadening of the outer lobe of the
distribution is well predicted by the theoretical model for all
resonant curves. The energies, however, of the experimental
and theoretical resonant distributions differ. Consequently, it
was difficult to make a resonance-by-resonance matching.
Therefore, we provide in Fig. 8 just an example of a single
theoretical resonant radial distribution, along with nonresonant
ones lying slightly below and above this resonance. The
latter is characterized by nres

1 = 2 and, consequently, it can
be associated with either the ε = –0.973 or the ε = –0.953
experimental resonant distributions. Nevertheless, the shape of
the computed resonant curve resembles more the ε = –0.953
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FIG. 8. Theoretically computed distributions, obtained by the
wave-packet propagation method for |m| = 1 and F = 1000 V/cm.
The middle resonant (nres

1 = 2,n2,|m| = 1) distribution at ε = –0.944
resembles the experimental one recorded at ε = –0.953. For a
discussion of the energy difference see the text.

experimental one. The contrast of the latter is, here as well,
limited by the experimental resolution.

The resonant character is imprinted and evolves over a
number of computed distributions across a resonance. This
could not be observed experimentally due to the successive
recording steps of ∼1 cm−1, which are rather large for the
present purposes. Given also the uncertainty in the field
strength, a more comprehensive comparison between theory
and experiment is not possible at present. The findings of
the He experiment [27] as well as the theoretical work
of Ref. [21] could be useful for explaining the observed
differences. Both works demonstrated the high sensitivity of
resonant manifestations to the value of F . In particular, in
Ref. [21], the author showed that, depending on the field
strength, an additional bright fringe of the resonant image
may either be almost completely merged with the main outer
lobe or be clearly visible.

As expected, it becomes much harder to recognize resonant-
induced fringe number changes at higher energies (while
remaining below εdir), due to the increased number of open
n1 channels and the decreasing spatial spacing between
successive fringes. Therefore, the identification of resonant
character at higher energy needs to be based on the appearance
of resonance-continuum interference patterns (as implied by
Eq. (3)) and the tunneling-induced broadening of the outer ring
[23]. Such an example is given in Fig. 9, where an |m| = 1
resonant image at ε ≈ –0.79 is indeed characterized by a
somewhat broader outer ring as compared to the red and blue
off-resonance images. Moreover, the resonant image exhibits a
pronounced beating pattern while the off-resonance ones show
a fairly smooth fringe intensity variation.

FIG. 9. (a) Measured |m| = 1 photoelectron images obtained in
the presence of an F ≈ 1000 V/cm field below a resonance (ε ≈
–0.815), on resonance (ε ≈ –0.789), and above this resonance (ε ≈
–0.763). (b) Radial distributions of the images of (a). The radius
(whose size on the detector is ∼6 mm) is scaled to Rc

max [39]. Due
to tunneling ionization through the barrier of V2(η), the radius of the
resonant image (black continuous curve) is larger than the radii of
both nonresonant images, at lower [red (light gray) dash-dotted line]
and higher [blue (dark gray) dashed line] photon energies.

C. Resonances: The m = 0 case

Apart from the laser polarization, the m = 0 data were
recorded under supposedly the same experimental conditions
and field strength as the |m| = 1 ones. As opposed, however,
to the latter case, we were able to unambiguously assign the
resonant character to just a single image. Figure 10 shows
the relevant radial distributions, images, outer inflection point
radii, and total electron signal in the vicinity of this resonance.
Despite the low fringe contrast, the resonant radial distribution
at ε = –0.975 [Fig. 9(a)] clearly exhibits an intense central
lobe and, consequently, an additional dark fringe with respect
to the nonresonant distributions having a single dark fringe
(no

1 = 1). Therefore it can be characterized by the (nres
1 =

2, n2, m = 0) set of quantum numbers. The halo at large
radius [Fig. 10(b)], stemming from the tunneling effect, is
also apparent here and is responsible for the observed increase
of the maximum image radius by about 30%. This is evident
in Fig. 10(c) where the measured outer radii are compared to
the classical Rc

max(E) curve, fitted to the high-energy points of
this set. The fit showed that a few images were again recorded
below the value of Ecl

sp extracted from the fit. Apart from their
nonclassical outer radii, however, these images showed no
other sign of resonant character. Note finally that the strong
maximum of the total electron signal shown in Fig. 9(d) at
ε ≈ –0.945 coincides with a weak local maximum of the
outer image radius [see Fig. 10(c)], but there is no apparent
fringe number change in the corresponding image (not shown).
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FIG. 10. As in Fig. 7 but for m = 0. The quoted values of
ε = E/|Ecl

sp| are computed using the value Ecl
sp = 187 ± 1 cm−1,

determined by a fit to the high-energy points of the corresponding
Rc

max(E) curve [dashed line in (c)]. Data drawn with white open circles
denote the identified resonance. Theoretically computed distributions,
obtained by the wave-packet propagation method, are drawn in (a)
with dashed lines. All theoretical curves are redshifted in energy by
�ε ≈ 0.03, and each curve was appropriately scaled in amplitude
in order to match the corresponding experimental maximum. In (c)
and (d) experimental points are connected with a smooth solid line to
guide the eye.

Furthermore, for the weak total electron signal maximum at
ε ≈ –0.88 seen in Fig. 9(d), neither the image nor its outer
inflection point radius is affected. This behavior may stem
from the very low fringe contrast or from the employed field
strength, upon which, as mentioned above, the appearance of
the resonant image critically depends [21]. Another possible
explanation, however, may involve the larger core penetration
exhibited by the m = 0 states as compared to the |m| = 1 ones.
That is, while for non-core-penetrating states a manifestation
of the resonant character in the images and their outer radii is
always accompanied by a maximum in the total electron signal,
the reverse is not always true for core-penetrating states. This
is a noticeable difference between the |m| = 1 and m = 0
data, as revealed by the comparison between Figs. 7 and 10.
Nevertheless, the very fact that core-penetrating quasibound
states may, under certain conditions, manifest themselves in
wave-function imaging is quite encouraging.

Wave packet calculations for m = 0 were also performed
at a fixed value of F = 1000 V/cm and in the energy range
shown in Fig. 10. Although the search for distributions
showing resonant effects was not exhaustive, just two resonant
distributions were found, one of them with nres

1 = 2. However,
the location of this nres

1 = 2 distribution differs by about
�ε = 0.03 (≈6 cm−1) from the experimental one. By red-
shifting all computed (resonant and nonresonant) distributions
by this energy difference we obtain a fairly satisfactory
agreement with the experiment [see Fig. 10(a)], particularly
if we take into account the finite spatial resolution of the
detector.

V. SYNOPSIS AND OUTLOOK

We have presented a photoionization microscopy study on
the lithium atom, which, along with the by now well-known

nonresonant effects, revealed signatures of quasibound states
on the obtained images. The recording of the projections of
quasidiscrete electronic states (n1, n2, m) constitutes the real-
ization of a wave-function microscopy experiment proposed
about 30 years ago [11,12]. The most persistent resonant
manifestation was found to be the nonclassical evolution
of the image radius related to the on-resonance broadening
of the outer image ring [12,19,25]. The latter is associated
with electron tunneling through the barrier of V2(η) and
carries information on its presence near the ionic core.
Indeed, almost every classically unexpected behavior of the
outer image radius discovered in the present work may be
associated with a resonance. On the other hand, although
on-resonance changes of the number of dark fringes have
been also observed, the quasibound states did not dominate
the interference patterns, at least not to the degree that it was
theoretically predicted [12] and experimentally observed [24]
in the hydrogen atom. This lower resonant fringe contrast
with respect to the hydrogenic case is essentially attributed
to the presence of the nonhydrogenic Li+ ionic core. The
core scatters a fraction of the resonant flux to continuum
electron waves and modifies the weights of each wave in the
coherent sum related to the recorded image in favor of these
continuum waves. Nevertheless, a portion of the resonant flux
survives and the resonant contribution to the recorded images
appears to be “superimposed” on the continuum contribution,
the latter being always present. The experience gained so far
on small atoms like Li and He [27] could guide the design of
experiments where these atoms could be photoionized under
more complex conditions, for example, under the simultaneous
presence of electric and magnetic fields [45].

Both experimental data and theoretical calculations based
on the wave-packet propagation approach showed the exis-
tence of resonances exhibiting the above-mentioned specific
characteristics. A fully quantitative comparison between the-
ory and experiment was, however, hindered mainly by a poor
knowledge of the field strength. For the latter, a level of
relative precision far better than ∼1% is evidently required.
On the other hand, matching quantitatively theoretical and
experimental resonant and nonresonant radial distributions
may offer the opportunity in the future to determine the field
strength with much higher precision, comparable perhaps to
that of other proposed methodologies [46]. To this end, it would
probably be preferable to employ different, time-independent,
and less time-consuming theoretical approaches, capable of
predicting resonant images in nonhydrogenic atoms such as the
alkali-metal atoms [20,22,28] and xenon [19]. Nevertheless,
the wave packet propagation approach is highly valuable in
connection with foreseeable time-resolved experiments aimed
at an investigation of tunneling ionization dynamics and the
corresponding buildup of the squared modulus of the wave
function.

Finally, it seems that it is now the time to envision possi-
ble extensions of photoionization microscopy, for obtaining
information on the wave function’s phase, apart from its
modulus. For this purpose, the technique will probably have to
incorporate weak-measurement concepts [6,7], employed so
far solely for photons [8] but not yet for massive particles and
atomic systems. This type of measurement would evidently
require modifications of the photoionization microscope
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design, and, most probably, time-dependent information as
well as novel theoretical developments. Therefore, we may
anticipate with enough confidence that, despite the fact that
photoionization microscopy is already ∼15 years old, the topic
is still in its infancy, and more fruitful advances are yet to
come.

ACKNOWLEDGMENTS

The authors thank CNRS for support through the PICS
Program No. 6954. This work was supported in part by the
US Department of Energy, Office of Science, Basic Energy
Sciences, under Award No. DE-SC0012193.

[1] J. Repp, G. Meyer, S. M. Stojkovic, A. Gourdon, and C. Joachim,
Phys. Rev. Lett. 94, 026803 (2005).

[2] P. Puschnig, S. Berkedile, A. J. Flemming, G. Koller, K. Emtsev,
T. Seyller, J. D. Riley, C. Ambrosch-Draxl, F. P. Netzer, and M.
Ramsey, Science 326, 702 (2009).

[3] M. Feng, J. Zhao, and H. Petek, Science 320, 359 (2008).
[4] D. Shafir, Y. Mairesse, D. M. Villeneuve, P. B. Corkum, and N.

Dudovich, Nat. Phys. 5, 412 (2009).
[5] J. Itatani, J. Levesque, D. Zeidler, H. Niikura, H. Pépin, J. C.
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