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Adiabaticity in a time-dependent trap: A universal limit for the loss by touching the continuum
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We consider a time-dependent trap externally manipulated in such a way that one of its bound states is brought
into an instant contact with the continuum threshold and then down again. It is shown that, in the limit of slow
evolution, the probability to remain in the bound state, P stay tends to a universal limit and is determined only by
the manner in which the adiabatic bound state approaches and leaves the threshold. The task of evaluating P stay

in the adiabatic limit can be reduced to studying the loss from a zero-range well and is performed numerically.
Various types of trapping potentials are considered. Applications of this theory to cold atoms in traps and to
propagation of transversal modes in tapered waveguides are proposed.
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I. INTRODUCTION

Recent progress in laser-based techniques has led to the
creation of various methods for trapping cold atoms. The laser-
induced potentials, used for this purpose, range from extended
optical lattices [1] to individual quasi-one-dimensional traps
[2]. Such single traps, designed specifically in order to achieve
single-site control, can be used, for example, for production
of atomic Fock states [3]. These states, containing a known
number of atoms, find numerous applications in fields as di-
verse as metrology, few-body quantum physics [4,5], quantum
entanglement [6], and quantum computing [3]. Production of
Fock states may be achieved by external manipulation of the
trapping potential [3,7–10], and the question of whether the
adiabatic limit is reached in its evolution plays a central role
here. The presence of continuum states makes the problem
somewhat more complicated [11–13] than the Landau-Zener
case [14] where only two discrete levels are involved.

In a process similar to “laser culling” [3] or “laser
squeezing” [7], the depth or the width of the trap is manipulated
in such a way that its bound states move closer to the continuum
threshold and some of the trapped particles are ejected into
the continuum. For example, in culling, if the trap is made
shallower and then deeper again, an adiabatic bound state
may make a U turn before reaching the threshold. If the
evolution is slow, the adiabatic theorem (see, for example,
Ref. [15]) guarantees that the particle will remain trapped,
and the probability of losing it to the continuum will be
exponentially small [11]. Alternatively, the trap can be made so
shallow that it temporarily ceases to support the original bound
state and only recovers it once its depth begins to increase
again. A slow evolution of this type will almost certainly lose
the particle as almost nothing will be recaptured by deepening
the well. Separating the two regimes is the borderline case
where the adiabatic bound state only touches the continuum
threshold and immediately resumes its downward journey.
Relatively little is known about the probability to retain the
particle within the trap if the threshold is approached slowly,
and the adiabatic limit achieved in such evolution is the main
subject of this paper.

Almost 50 years ago, Devdariani [16] considered the chance
to retain the particle in a three-dimensional zero-range (ZR)

well whose magnitude, quadratic in time, vanished at t = 0.
It was shown that the retention probability in this case is
about 38% and is independent of the speed of the evolution.
More recently, it was demonstrated that this 38% rule holds
in the adiabatic limit for any bound state of an arbitrary
one-dimensional trap, subject to a similar quadratic-in-time
evolution [13]. This result may suggest the existence of
a universal adiabatic limit for the loss of particles caused
by touching the continuum, at least, in a one-dimensional
cullinglike process. It would be reasonable to expect such a
limit to depend only on the manner in which an adiabatic bound
state approaches and touches the threshold and be common
to all shapes of trapping potentials, masses of the particle,
and to the ground and excited states alike [13]. In this paper
we will demonstrate the existence of the limit and evaluate
the retention probabilities P stay for evolutions of different
kinds. Our task is somewhat simpler than the one usually
performed when the adiabatic limit is known beforehand, and
the deviations from it are of interest. In what follows the subject
is the limit itself, rather than the manner in which it may be
reached.

The rest of the paper is organized as follows. In Sec. II we
will formulate the problem in the case of culling. In Sec. III,
in the adiabatic limit, we will reduce it to solving a time-
dependent problem for a ZR potential. Sections IV and V
show the central results of our paper where we demonstrate
the existence of the universal limit for the bound states and
numerically evaluate P stay. Additionally we check the validity
of our conclusions for several realistic potentials and extend
our analysis to evolutions of arbitrary type. In Sec. VI the
case of squeezing is discussed. Finally, Sec. VII contains the
summary of our results.

II. LOSS BY TOUCHING THE CONTINUUM: CULLING

We start by considering the Schrödinger equation (SE) for
a particle of a mass μ in a one-dimensional time-dependent
potential well (� = 1),

i ∂t�(x,t) = −∂2
x�/2μ − W (x,t)�, (1)
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FIG. 1. Evolution of the potential W (x,t) lifts its nth adiabatic
bound state, makes it briefly touch the continuum, and then brings
it down again. We wish to evaluate the probability for a particle to
remain in state P

stay
n in case the evolution is slow.

where

W (x,t) = (ρ(n) + vγ |t |γ )W (x). (2)

The well has a finite range so that W (x), normalized by
the condition

∫ ∞
−∞ W (x)dx = 1, vanishes for |x| > a. It may

support several adiabatic states φn(x,t), n = 0,1,2, . . . , with
the energies En(t), and the constant ρ(n) is chosen in such a way
that En(t = 0) = 0. Thus, the time evolution of the potential
brings the nth adiabatic state up to the continuum threshold
and then brings it down the same way it came up (see Fig. 1).
The type of the evolution depends on the exponent γ , which
can be any positive real number. The speed of the evolution is
controlled by the parameter v.

In the spirit of the adiabatic theorem [15], we wish to know
how many particles, if any, will be lost to the continuum if
the state is approaching the threshold very slowly, i.e., in the
limit v → 0. With this in mind, we will prepare the particle in
a deep-lying nth bound state at some large negative t = −T ,

�(x, −T ) = φn(x, −T ), T → ∞, (3)

and then evaluate the retention probability P
stay
n (v,μ,γ,W ) to

still find it in the same state at t = T . The probability is given
by the square of the modulus of the corresponding amplitude,

P stay
n (v,μ,γ,W )

= |〈φn(T )| exp

[
−i

∫ T

−T

Ĥ (t)dt

]
|φn(−T )〉|2, (4)

where Ĥ is the operator on the right-hand side of Eq. (1)
and the exponential is understood to be the time-ordered
product of noncommuting terms exp[−iĤ (t)dt]. To find the
final Pstay, instead of evolving the initial state until t = T , we
may evolve it to t = 0, thus obtaining �(x,0). We will also
need to evolve the final state backwards in time to the same
t = 0. By time reversal [17], this backward evolution can be
replaced by a forward one, accompanied by the appropriate
complex conjugation. Since φn(x, −T ) = φn(x,T ), Ĥ (t) =
Ĥ (−t), and φn(x,T ) = φ∗

n(x,T ), the result is �∗(x,0), and

we have

P stay
n (v,μ,γ,W ) =

∣∣∣∣
∫

�(x,0)2dx

∣∣∣∣
2

, (5)

which gives the probability P
stay
n in terms of the wave function

at t = 0.

III. REDUCTION TO THE ZERO-RANGE MODEL IN THE
ADIABATIC LIMIT

A scaling transformation [18] t → αt, x → βx, where

α(μ′,v′|μ,v) = (μ′/μ)1/(2γ+1)(v′/v)2γ /(2γ+1),
(6)

β(μ′,v′|μ,v) = (μ′/μ)(γ+1)/(2γ+1)(v′/v)γ /(2γ+1)

converts Eq. (1) conditioned by (3) into

i ∂t�(x,t) = −∂2
x�/2μ′ −

(
α

β
ρ(n) + v′γ |t |γ

)
W̃ (x ′)�, (7)

where W̃ (x ′) = βW (βx ′), with a new initial condition,

�(x, −T ) = β−1/2φn(βx, −T ), T → ∞. (8)

Choosing μ′(v) = μ(v′/v)1+ε with ε > 0 ensures that in the
adiabatic limit v → 0, we have β = v−[1+ε(γ+1)/(2γ+1)] → ∞,
whereas the constant term multiplying W (x) vanishes, α/β =
(v/v′)εγ /2γ+1 → 0.

As a result of the scaling, the well becomes narrower and
deeper, whereas the initial distribution of the particle’s position
also narrows

lim
v→0

W̃ (x ′) = δ(x ′),
(9)

lim
v→0

lim
T →∞

|�(x, −T )|2 → β−1δ(x ′),

where δ(x) is the Dirac δ.
Thus, after scaling, we have to solve the SE for a ZR

potential,

i ∂t ′�(x ′,t ′) = −∂2
x ′�/2μ′ − v′γ |t ′|γ δ(x ′)�, (10)

which no longer depends on the particular shape of W (x). A
scaling transformation cannot alter the value of a dimension-
less quantity, so for the retention probability we should have

P stay
n (v → 0,μ,γ,W ) = P

stay
δ (γ ), (11)

where P
stay
δ (γ ) is the retention probability for a very heavy

particle μ′ → ∞, trapped in a ZR well evolving at a rate v′.
Since v′ was chosen arbitrarily, P stay

δ (γ ) should not depend on
its choice if we expect Eq. (11) to be correct. We just have
to check that the transformations (6) leave the form of the SE
for a ZR well (10) unchanged, except for replacing μ′ → μ′′
and v′ → v′′. For ρ < 0, a ZR well ρ(t)δ(x) supports a single
adiabatic bound state with an energy E0(t) = −μρ(t)2/2 =
−μv2γ |t |2γ /2 (see the inset in Fig. 2),

ϕ0(x,t) =
√

−ik0(t) exp[ik0(t)|x|],
k0(t,μ,v) = −iμρ(t) = iμvγ |t |γ . (12)
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FIG. 2. Probability for a particle to remain in the bound state
of a zero-range well W (x,t) = −vγ |t |γ δ(x), P

stay
δ (γ ), obtained by

numerical integration of Eq. (10). Also shown are the approximations
(20) and (21) as well as the value P

stay
δ (γ = 2) ≈ 0.38, which can be

obtained analytically [13,16]. The inset shows the adiabatic energy
of the state for different kinds of evolution.

Thus, the initial condition (3) also remains unchanged under
the scaling (6), acquiring only an inessential constant factor,

ϕ0(x,T ) → β−1/2ϕ0(x,T ). (13)

Since scaling leaves the values of dimensionless quantities
unaltered, P stay

δ may not depend on the choice of the particle’s
mass μ or the speed of evolution v,

P
stay
δ (v,μ,γ ) = P

stay
δ (γ ), (14)

which is the desired result.
To provide an additional check, we note also that probability

densities, such as the energy distribution of the emitted
particles w(E) must change when transformations (6) are
applied. With t scaling as αt , the energy must scale as
E → E/α, and we should have (for a more detailed proof
see also Appendix A)

w(E|μ′′,v′′) = α(μ′′,v′′|μ′,v′)−1w(E/α(μ′′,v′′|μ′,v′)|μ′,v′),

(15)

which, since P
stay
δ = 1 − ∫

w(E)dE, would confirm the va-
lidity of (14) (cf. Fig. 3).

The limit (11) can now be seen as universal in the following
sense: In a culling process, the loss by touching the continuum
in a slowly evolving well is determined only by the manner in
which the state approaches the threshold, i.e., on the exponent
γ . It is independent of the shape of the well and the particle’s
mass and equals the loss from a ZR well.

It remains to obtain the function P
stay
δ (γ ), preferably in

the most general and transparent way. Unfortunately, both
of the existing analytical techniques, based on expanding
the wave function in the Sturmian [12,13,19–22] or Siegert
[11,23–25] states, fail to provide a simple answer except in the
well-studied cases of γ = 1 [12] and γ = 2 [11,13,16]. (For
details we refer the reader to the Appendices B and C.) The
Siegert-state method does, however, establish the existence of

(a)

(b)

FIG. 3. (a) Energy distribution w(E) (arb. units) of the particles
ejected from a zero-range well v2|t |2δ(x) for various masses μ and
speeds of evolution v, obtained by numerical integration of Eq. (10);
(b) the result of scaling the curves II and III as prescribed by Eq. (15).

a universal adiabatic limit for a broad class of evolutions as
will be discussed in the next section.

IV. UNIVERSALITY OF THE ADIABATIC LIMIT

Even though the Siegert-state approach does not offer an
analytic solution to the problem, it allows us to prove the
validity of Eq. (5) beyond the particular type of the culling
evolution considered so far. Next we will show that, in the
adiabatic limit, the loss by touching the continuum always
depends only on the manner in which an adiabatic eigenstate
approaches the continuum threshold. For the adiabatic energy
En(t) at t ≈ 0, without loss of generality, we can write

En(vt) = kn(vt)2/2μ ≈ −Cv2γ |t |2γ , C > 0 = const.

(16)

It is necessary to demonstrate that it is the power γ alone,
which determines the loss to the continuum as v → 0, and
the proof is as follows. As v → 0, we may neglect all Siegert
states [11], except φn, which is to touch the continuum, and
look for the solution in the form

�(x,t) ≈ an(t,γ,v)φn(x,t). (17)

The coefficient a(t,γ,v) satisfies Eq. (30a) of Ref. [11], which
in the limit v → 0, reduces to (cf. Eqs. (31), (34), and (36) of
Ref. [11]),

λ̂t an(t,v) − ikn(vt,γ )an(t,v) = 0, (18)

with kn(vt) = i
√

2μCvγ |t |γ . For v → 0, the factor
√

μC

determines how rapidly a(t) tends to its limit an(t,γ,v → 0)
but not the limit itself. The limit must, therefore, be the same for
a particle of any mass and for any C in Eq. (16). Finally, since
φn(x,t) is normalized to unity,

∫
φ2

n(x,t) = 1, (cf. Eq. (22) of
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Ref. [25]), insertion of (17) into Eq. (5) yields

P stay
n (v → 0,μ,γ,W ) → |an(t → 0,γ,v → 0)|4. (19)

Since we have shown that the right-hand side of Eq. (19)
depends only on the power γ , Eq. (11) must hold in general
for a particle of any mass and for any state of a finite range well
of any shape. Note that the argument can be extended to the
case of an asymmetric evolution where the state approaches
the continuum and then leaves it in a different manner (see
Appendix D).

The above still does not offer a simple way for calculating
P stay(γ ) as v → 0 analytically, but makes us free to choose
the simple ZR model for the purpose. The corresponding SE
(10) can be easily solved numerically, and we will do it in the
next section.

V. THE UNIVERSAL ADIABATIC LIMIT:
EVALUATION OF Pstay

Equation (1) is solved by the finite difference method [26]
for a particle of μ = 1 in a ZR well W (x,t) = −vγ |t |γ δ(x)
placed between two infinite walls at x = ±L. Since the
solution is symmetric around the origin, it is sufficient to
consider only the right half-space with the boundary conditions
∂x log (�(0,t)) = −vγ |t |γ and �(L) = 0 at x = 0 and x = L,
respectively. The initial condition (3) is imposed at T large
enough to make P

stay
δ (γ ) independent of the choice, and L

is chosen sufficiently large to avoid unphysical reflections.
The calculation is made easier by the freedom of choosing v

without changing the value of P
stay
δ , which is then obtained
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I II III

FIG. 4. Culling: the probability to remain in the nth excited state
P

stay
n vs v (arb. units) for the three potential wells (22) shown in the

inset: (a) μ = 1, γ = 1.3, and n = 0; (b) μ = 1, γ = 2.7, and n = 1;
(c) μ = 1, γ = 3.1, and n = 2. Also shown by horizontal lines are
the corresponding results for the zero-range well.

with the help of Eq. (5). The results are shown in Fig. 2,
which is the central result of this paper. We note that, for
γ � 1, P

stay
δ (γ ) is reasonably well described by a rational

function,

P
stay
δ (γ ) ≈ [0.65 + γ ]−1 (20)

whereas for γ � 1,

P
stay
δ (γ ) ≈ [1 + 0.44γ + 0.28γ 2]−1 (21)

provides a suitable approximation.
Validity of Eq. (11) is also checked numerically for the

particles trapped in the ground and excited states of three
potentials [θ (x) = 1 for x � a and 0 otherwise],

WI(x) = (2a)−1θ (x − a)θ (x + a), square well, (22)

WII(x) = (4a3/3)−1(a2 − x2)θ (x − a)θ (x + a), parabolic,

WIII(x) = (2a2)−1(a − x)θ (x − a)θ (x + a), asymmetric,

and the results are shown in Fig. 4 for different values of γ

and n.

VI. LOSS BY TOUCHING THE CONTINUUM: SQUEEZING

A different type of evolution, called squeezing in Ref. [7],
proceeds by making the trap narrower while leaving its depth
unchanged. Before concluding, we will show that the chance
to remain in a bound state brought to a brief contact with the
continuum by a squeezed potential,

W (x,t) = W (x/L(t)) = W (x/(L(n) + vγ tγ )),
(23)

En(t = 0) = En(L(n)) = 0

is the same as in the case of culling (2). As discussed in Sec. IV,
it is sufficient to demonstrate that in both cases a bound state
approaches the continuum in the same manner. Let En(ρ,L)
be the energy of the bound state in a potential ρW (x/L). In the
case of culling, we have ρ(t) = ρ(n) + vγ |t |γ and L = const
so that

En(t) ≈ −C(ρ − ρ(n))2 = −Cv2γ |t |2γ , (24)

where C = ∂2
ρE(ρ(n),L)/2. Consider the SE describing a

bound state in a potential ρW (x/L), written in some dimen-
sionless variables,[ − ∂2

x /2 − ρW (x/L) − En(ρ,L)
]
φn(x,ρ,L) = 0. (25)

By scaling the x variable x → xL′/L, we can express En for
a squeezed well of a fixed depth ρ in terms of that for a culled
well of a fixed width L′,

En(ρ,L) = η−2En(η2ρ,L′), η ≡ L/L′. (26)

Let ρ(n)(L′) and L(n)(ρ) be the values of the correspond-
ing parameters for which the bound state disappears, i.e.,
En(ρ(n),L′) = 0 and En(ρ,L(n)) = 0. It follows that L(n)(ρ) =
L′√ρ(n)(L′)/ρ, and expanding En(ρ,L) in Eq. (26) around
L = L(n)(ρ) yields

En(ρ,L) ≈ −C ′[L − L(n)(ρ)]2 = −C ′v2γ |t |2γ , (27)

where C ′ = −∂2
LEn(ρ,L(n))/2 = −2ρ2∂2

ρE(ρ(n),L′)/L′2.
Equations (24) and (27) differ only by inessential constant
factors, and the loss by touching the continuum must be the
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stay
0 vs v (arb. units) for the three potentials (22) with μ = 1, γ =

3.4, and n = 0. Also shown by a horizontal line is the corresponding
result for the zero-range well.

same for the potentials in Eqs. (2) and (23). This result is
easily verified numerically as Fig. 5 shows.

VII. SUMMARY AND DISCUSSION

In one dimension, there exists a universal adiabatic limit
for the probability to remain in a bound state of a slowly
evolving trap P stay as the state briefly touches the continuum
threshold. The limiting value of P stay is determined only by
the manner in which the state approaches the continuum and
is independent of the particle’s mass, the particular shape of
the trapping potential, or the details of the trap’s evolution.
More precisely, if the adiabatic energy of the particle near the
threshold changes as En(t) ≈ −(v|t |)2γ , then for v → 0 the
probability P stay(γ ) tends to the adiabatic limit, which depends
only on the exponent γ . In a way, this an expected result. If the
evolution is slow, the particle is exchanged between the bound
state, whereas it is close to the threshold E = 0 and a few
low-lying continuum states. The presence of other bound states
in the well and the overall structure of the continuum should,
therefore, play no role for the outcome of this exchange.

Evaluation of the limiting values of P stay(γ ) is a separate
matter. Given that the result should hold for all potentials,
we may take the simplest case of a zero-range well as a
reference. With the help of either the Sturmian or the Siegert
state’s approach, the problem can be reduced to solving an
ordinary differential equation. However, in the general case
the equation is of fractional order and has an analytic solution
known (at least to us) only for γ = 1 and γ = 2. Although
it is possible that further insight can be gained by using the
methods of fractional calculus [27], we chose to solve the
problem numerically with the results presented in Fig. 2. For
γ � 1, the adiabatic state passes almost no time near the
threshold (cf. the inset in Fig. 2), and P stay(γ ) tends to unity.
As this time increases with an increase in the value of γ , we
have P stay(γ ) ∼ 1/γ as prescribed by Eq. (20). The analysis
is easily extended to asymmetric evolutions as is illustrated in
Fig. 6.

With recent technological developments, it should be
possible to verify our predictions in an experiment. One
straightforward choice would be the use of cold atoms in
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FIG. 6. The probability to remain in the ground state n = 0
for μ = 1 and W (x,t) = [(vt)γ1θ (−t) + (vt)γ2θ (t)]W (x), W (x) =
WI (x) (solid curves). Also shown by dashed lines are the corre-
sponding results for the zero-range wells W (x) = δ(x), independent
of both v and μ.

a laser-induced quasi-one-dimensional trap [2], which is
manipulated as in culling or squeezing in order to bring one
of its states to the continuum threshold. Another possibility
is offered by studying the propagation of transverse modes
in tapered waveguides [28–30]. Since narrowing of the guide
lifts the energies of the quantized transverse motion, a massive
particle or a photon trapped in such a mode would have a
similar chance of being lost to the continuum while passing the
narrow region. A detailed analysis of waveguide propagation
will be given in our forthcoming work.
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APPENDIX A: THE ENERGY DISTRIBUTION
FOR A ZERO-RANGE WELL

Consider a particle of mass μ prepared in the bound state of
a ZR well, evolving at a rate v at t = −T → −∞. At t → ∞,
a deep impenetrable well divides the space at x = 0 so that the
continuum energy eigenstates are given by

φE(x,μ) = (μ/2π2E)1/4 sin(
√

2μE|x|), (A1)

〈φE|φE′ 〉 = δ(E − E′). The deep-lying bound state is de-
coupled from the continuum, and the ejected parti-
cles are described by the wave function ψcont(x,t) =∫ ∞

0 C(E)φ(x,E) exp(−iEt)dE. For the (time- independent)
energy distribution we have

w(E|μ,v) ≡
∣∣∣∣
∫

φE(x,μ)ψcont(x,t)dx

∣∣∣∣
2

. (A2)

Consider next another particle of a mass μ′ in a ZR well
evolving at a different rate v′. We can also describe the
new system by applying the transformations (6) to the old
one. Thus, the ejected particles are described by ψ ′

cont(x,t) =
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β1/2ψcont(βx,αt). Inserting ψ ′
cont(x,t) into Eq. (A2) together

with φ(x,E,μ′) and noting that μ′ = β2μ/α, we obtain

w(E|μ′′,v′′) = α−1w(E/α|μ′,v′), (A3)

where α(μ′,v′′μ,v) is given by Eq. (6).

APPENDIX B: ZERO-RANGE WELL:
THE STURMIAN APPROACH

The main difficulty in solving Eq. (1) analytically is the
presence of the continuum states also affected by the change
in the potential well. One way to simplify the problem is to use
the discrete basis of the Sturmian states satisfying the outgoing
waves’ boundary conditions [12,13,19–22]. For a real energy
E, the method finds the values ρn(E), real or complex valued,
such that the potential ρnW (x) supports a suitable Sturmian
state. The case of a ZR potential W (x) = δ(x) is particularly
simple: There is only one such value ρ0 = i

√
2E, and a single

Sturmian so that the solution of Eq. (1) with v = μ = 1 can
be found in the form

�(x,t) =
∫

dE exp(−iEt)B(E)S0(x,E), (B1)

where S0(x,E) is the Sturmian function,

S0(x,E) = exp(i
√

2E|x|). (B2)

In Eq. (B1) the integration contour runs just above the real axis
on the first sheet of the Riemann surface of

√
E cut along the

positive semiaxis, where as a function of x, S0(x,E) decays
for E < 0 and oscillates for E > 0 [13]. Inserting (B1) into
(10) yields the equation for the unknown function B(E),∫

G(E − E′)B(E′)dE′ + i
√

2EB(E) = 0, (B3)

where the kernel G(E) is formally defined as the Fourier
transform of |t |γ ,

G(E) = (2π )−1
∫

|t |γ exp(iEt)dt. (B4)

Equation (B3) is most useful whenever γ is an integer. For
an odd γ, γ = 1,3,5, . . . , we may replace |t | with −t , follow
the evolution until t = 0, obtain �(x,0), and then evaluate
the integral (5). With this, the kernel (B4) becomes G(E) =
−(−i)γ ∂

γ

Eδ(E), and integration by parts of Eq. (B3) yields

iγ ∂
γ

EB + i
√

2EB = 0. (B5)

In the simplest case of the evolution linear in time γ = 1, the
resulting first-order equation is easily solved, giving �(x,t �
0) by the quadrature (B1) [12].

For an even γ, γ = 2,4,6, . . . , we can replace |t | with t

and again obtain for B(E) Eq. (B5). In the quadratic-in-time
case γ = 2, Eq. (B5) is of second order, has an exact solution
expressed in terms of the Hankel functions, and gives a
retention probability (4) of about 38% [13,16]. For an even
integer γ > 2 one faces a similar but more difficult task
of finding the correct boundary condition for the ordinary
differential equation (ODE) (B5), expressing the solution in
terms of “incoming” and “outgoing” waves for E → −∞
[13]. In the general case of a noninteger γ , the kernel G(E)
is obviously related to a fractional derivative of the δ function

(see, for example, Ref. [27]), which makes the resulting
fractional order ODE satisfied by B(E) even less tractable.

APPENDIX C: ZERO-RANGE WELL:
THE SIEGERT-STATE APPROACH

A different and more general approach, based on the
expansion of the time-dependent state in terms of Siegert
rather than Sturmian states has recently been developed in
Refs. [11,23–25] for a class of finite range potentials which
vanish for |x| � a. Next we will explore its usefulness for
treating the ZR problem at hand. In our case, for a given
(real) potential ρW (x) the method looks for the Siegert
states associated with the poles kn(ρ) of the transmission
and reflection amplitudes T and R on the complex plane
of the momentum k = √

2μE. The technique is based on
imposing an outgoing wave’s boundary condition at x = ±a

and expanding the wave function �I (x,t) in the inner region
|x| < a in terms of the corresponding (Siegert) eigenstates.
Once the wave function in the inner region is known, and the
solution in the outer regions are x > a and x < −a, �O(x,t) is
obtained by solving the free-particle SE with the boundary con-
ditions �O(±a,t) = �I (±a,t). Treatment of the wave vector
k rather than the energy E = k2/2μ as an eigenvalue requires
linearization of the problem [23], doubling the dimension of
the Hilbert space in the inner region, and introducing the
fractional time derivative λ̂t = exp (3πi/4)

√
2∂t .

The transmission amplitude for the ZR potential ρδ(x) is
well known [31] to be T (k,t) = k/(k + iμρ). Associated with
the pole at k = −iμρ is the single Siegert state (12). As the
width of well a tends to zero, the inner region contracts to a
single point x = 0, and the method allows us to find �I (0,t),
which is sought in the form (cf. Eq. (29) of Ref. [11])

�I (0,t) = a0(t)ϕ0(0,t) =
√

−ik0(t)a0(t).

The unknown function a0(t) satisfies Eqs. (30) and (31) of
Ref. [11] (without the factor of 2 in the denominator of Eq.
(31) since our problem is on the whole x axis [25]). In the limit
a → 0 and with m = n = 0, they reduce to a single equation
for �I (0,t),

λ̂t�I (0,t) − ik0�I (0,t) = 0. (C1)

Taking the Fourier transform �I (0,t) =∫
dE exp(−iEt)�I (0,E) and recalling that λ̂t exp(−iEt) =

i
√

2E exp(−iEt) [11], for μ = v = 1, we have

i
√

2E�(0,E) +
∫

G(E − E′)�(0,E′)dE′ = 0, (C2)

where G(E) is defined by Eq. (B4). Comparison with
Eqs. (B1)–(B3) shows that we arrived at the equation for the
value of the wave function at the origin �(x = 0,E) obtained
earlier in the Sturmian approach and, therefore, face the same
problem of solving it. The result is not unexpected. There is
a close relation between the Sturmian eigenvalues ρn and the
Siegert energies En = k2

n/2, similar to the relation between
the Regge and the complex energy poles of a scattering
matrix (see, e.g., Ref. [32]). Whereas the Sturmian approach
of Appendix B uses the analytical function ρ0(E) = i

√
2E,

the Siegert-state method employs its inverse E0(ρ) = −ρ2/2,
and both techniques lead in the end to the same equation.
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APPENDIX D: ASYMMETRIC EVOLUTIONS

Let the trap be manipulated in such a way that the energy of
the adiabatic bound state En(t) changes with time according
to

En(t) = −v2γ |t |2γ , for t < 0,

− v2γ ′ |t |2γ ′
for t > 0. (D1)

Arguing as in Sec. II it is easy to show that the retention
probability P stay(γ,γ ′) is given by

P stay
n (v,μ,γ,γ ′,W ) =

∣∣∣∣
∫

�(x,0,γ )�(x,0,γ ′)dx

∣∣∣∣
2

, (D2)

where �(x,t,γ ) is the result of evolving the initial state in
such a manner that for t < 0 its adiabatic energy changes
according to En(t) = −v2γ |t |2γ . As in Sec. IV as v → 0,

we have �(x,t,γ ) ≈ an(t,γ,v)φn(x,t,γ ) and �(x,t,γ ′) ≈
an(t,γ ′,v)φn(x,t,γ ′), where φn(x,t,γ ) denotes the corre-
sponding adiabatic bound state. The coefficients an(t,γ,v)
and an(t,γ ′,v) satisfy Eq. (18) with kn(vt,γ ) and kn(vt,γ ′),
respectively, and in the limit v → 0 may depend only on γ

and γ ′. Since φn(x,t,γ ) and φn(x,t,γ ′) coincide at t = 0, we
should have

∫
φn(x,0,γ )φn(x,0,γ ′)dx = 1 and

P stay
n (v → 0,μ,γ,γ ′,W ) → |an(t → 0,γ,v → 0)|2

× |an(t → 0,γ ′,v → 0)|2. (D3)

Thus, also in the case of an asymmetric evolution the
probability to remain in the bound state depends only on the
powers γ and γ ′ and not on the particular shape of the potential
or the particle’s mass. Numerical examples are shown in Fig. 6.
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