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Multistart spiral electron vortices in ionization by circularly polarized UV pulses
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Multistart spiral vortex patterns are predicted for the electron momentum distributions in the polarization
plane following ionization of the helium atom by two time-delayed circularly polarized ultrashort laser pulses.
For two ultraviolet (UV) pulses having the same frequency (such that two photons are required for ionization),
single-color two-photon interferometry with corotating or counter-rotating time-delayed pulses is found to lead
respectively to zero-start or four-start spiral vortex patterns in the ionized electron momentum distributions in
the polarization plane. In contrast, two-color one-photon plus two-photon interferometry with time-delayed
corotating or counter-rotating UV pulses is found to lead respectively to one-start or three-start spiral vortex
patterns. These predicted multistart electron vortex patterns are found to be sensitive to the carrier frequencies,
handedness, time delay, and relative phase of the two pulses. Our numerical predictions are obtained by solving
the six-dimensional two-electron time-dependent Schrödinger equation (TDSE). They are explained analytically
using perturbation theory (PT). Comparison of our TDSE and PT results for single-color two-photon processes
probes the role played by the time-delay-dependent ionization cross channels in which one photon is absorbed
from each pulse. Control of these cross channels by means of the parameters of the fields and the ionized electron
detection geometries is discussed.
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I. INTRODUCTION

Wave-particle duality [1] is one of the most fundamental
aspects of quantum mechanics. Whereas the photoelectric
effect [2] introduced firm evidence of the particle nature
of light, the de Broglie hypothesis [1] and the subsequent
electron-diffraction experiments of Davisson and Germer [3]
established the wave nature of the electron. Dramatic evidence
of the wavelike nature of the electron has been provided by
the experimental observation of Ramsey interference [4] of
laser-produced electron wave packets in both Rydberg states
[5,6] and in the continuum [7] using linearly polarized lasers.

Recently an unusual kind of Ramsey interference between
continuum photoelectron wave packets was predicted [8]. It
was found that when the helium atom is ionized by a pair of
time-delayed oppositely circularly polarized attosecond laser
pulses, the photoelectron wave packets produced by each pulse
interfere in such a way that the photoelectron momentum
distribution forms a two-start Fermat spiral vortex pattern.
Moreover the matter-wave (electron) vortices predicted in
Ref. [8] have a counterpart in optics: in Ref. [9] similar
vortex patterns were produced by superposing two optical
vortex beams having opposite helicities and different wave-
front curvatures, with each beam having an orbital angular
momentum of unity (the first-order 01∗ doughnut mode).
In addition, four- and six-start spirals were also observed
by interfering optical beams of opposite helicities having
orbital angular momenta of 2 (the 02∗ mode) and 3 (the
03∗ mode), respectively [9]. While even-start spiral vortices
were thus observed optically [9], odd-start optical vortices
were not reported. We note also that photoelectron momentum
distributions following strong-field ionization of Ar (in the
tunneling regime) [10] and ionization of H (in the multiphoton
regime) [11] by corotating or counter-rotating two-color
circularly polarized fields were found to exhibit single-lobe

or three-lobe structures, respectively. Spiral vortex patterns,
however, were not reported in Refs. [10,11].

In this paper we predict both analytically and numerically
the occurrence of higher order even-start and odd-start spiral
vortices. These vortices occur in the polarization plane
momentum distributions of electrons ionized from the helium
atom by two time-delayed, ultrashort, circularly polarized
laser pulses having either the same or opposite helicities.
The higher order even-start spiral vortices are produced by
single-color two-photon interferometry [cf. Fig. 1(a)] while
the odd-start spiral vortices are produced by two-color one-
photon plus two-photon interferometry [cf. Fig. 1(b)]. The
intensities of our ultraviolet (UV) laser pulses are such that all
processes take place in the perturbative multiphoton regime.
We analyze the cases of both corotating and counter-rotating
circularly polarized time-delayed UV pulses. The ionized
electron momentum distributions are obtained by solving
numerically the six-dimensional two-electron time-dependent
Schrödinger equation (TDSE). Perturbation theory (PT) is
used to analyze the patterns exhibited by the momentum
distributions. Within our PT formalism, a connection between
our electron matter-wave vortices and vortices in a physical
process associated with zeros in the scattering wave function
[12–20] has been established [8]. In contrast to dynamical
vortex patterns, which depend upon the transition amplitudes
of the process considered, the vortex patterns in the ionized
electron momentum distributions we predict here (and in
Ref. [8]) stem from the ionized electron detection geometry.
They are thus kinematical vortex patterns. Moreover, our
predicted four-start electron matter-wave vortices correspond
to the optical ones found in Ref. [9], providing thus another
example of wave-particle duality. Also, our odd-start vortices
are consistent with recent strong-field [10] and multiphoton
[11] results.
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FIG. 1. Schematic energy-level diagrams for the cases of single
ionization of He (with binding energy Eb = 24.6 eV) by two
circularly polarized pulses delayed in time by τ that are considered
in this paper: (a) Two-photon interferometry for a carrier frequency
ω1 = 15 eV, which leads to either zero-start (0-S) or four-start (4-S)
vortex patterns for equal or opposite helicity pulses; and (b) two-color
interferometry for carrier frequencies ω2 = 2ω1 = 30 eV, which leads
to either one-start (1-S) or three-start (3-S) vortex patterns for equal
or opposite helicity pulses. In each case, the ionization pathways �1,
�12 and/or �2 are shown.

Two-photon interferometry has recently been used as a tool
for investigation of various atomic photoionization processes
[21–23]. In Refs. [21,22], double ionization of the helium atom
by a pair of time-delayed extreme UV pulses by means of
several different pathways was investigated. In contrast to the
present case of single ionization of He, the photon energy �ω

in each of Refs. [21,22] was always greater than the He binding
energy, Eb = 24.6 eV. In Ref. [23], two-pathway interference
between a fundamental UV pulse and its second harmonic with
zero time delay between the pulses was recently used to predict
forward-backward asymmetries in the photoelectron angular
distributions for the H atom. In all these interferometry studies
the two pulses were linearly polarized.

The two circularly polarized pulse interferometric cases
we investigate in this paper for single ionization of He are
shown schematically in Fig. 1. The single-color two-photon
interferometric case is shown in Fig. 1(a), which indicates that
there are three pathways: Path �1 indicates single ionization
of He by two-photon absorption from the first pulse; path �2

indicates single ionization by two-photon absorption from the
second pulse; and path �12 indicates the cross path in which
single ionization occurs by absorption of one photon from
each of the two pulses, possibly with different helicities. For
illustrative purposes, Fig. 1(a) shows that the first pulse is
right circularly polarized, while the second pulse (delayed in
time by τ ) can be either right or left circularly polarized. As
explained in Sec. IV below, in the former case the ionized
electron momentum distribution in the polarization plane is
not spiral and is designated as “zero-start” (or “0-S”), while
in the latter case we predict a four-start Fermat spiral vortex
pattern (or “4-S”). The two-color one-photon plus two-photon
interferometric case is shown in Fig. 1(b), which indicates that
there are only two paths: Path �1 indicates in this case single
ionization of He by absorption of a second harmonic photon
from the first pulse, and path �2 indicates single ionization
by absorption of two fundamental photons from the second
pulse. As explained in Sec. V below, if the time-delayed

circularly polarized pulses have the same handedness, the
ionized electron momentum distribution in the polarization
plane exhibits a one-start Fermat spiral pattern (or “1-S”),
while if the pulses have opposite handedness a three-start
Fermat spiral pattern (or “3-S”) is realized.

This paper is organized as followed. In Sec. II, we describe
briefly our computational methods. In Sec. III, we provide
some general considerations governing the requirements for
observing electron matter-wave vortices. In Secs. IV and V
we present our PT analyses and our numerical results for
the processes in Figs. 1(a) and 1(b) respectively. In Sec. VI
we summarize our results and present some conclusions. In
Appendix A, we present a derivation of our PT parametrization
of the second-order amplitude for single ionization of an
s-electron in an atom such as He by a pair of arbitrarily
polarized pulses. In Appendix B we describe our procedure for
determining from our TDSE results a key scalar dynamical pa-
rameter on which our PT formulas depend. Atomic units (a.u.)
are used throughout this paper unless specified otherwise.

II. COMPUTATIONAL METHOD

To demonstrate numerically multistart spiral vortex patterns
in photoelectron momentum distributions for the illustrative
case of He, we solve the six-dimensional two-electron TDSE
for the He atom interacting with a pair of circularly polarized
pulses. Within the length gauge and the dipole approximation,
the TDSE is

i∂t�(r1,r2,t) =
[
−1

2
(�r1 + �r1 ) − 2

r1
− 2

r2
+ 1

|r1 − r2|

+ F(t) · (r1 + r2)

]
�(r1,r2,t), (1)

where r1 and r2 are the spatial coordinates of the two electrons,
and F(t) is the electric field of our pair of pulses delayed in
time by τ ,

F(t) = F1(t) + F2(t − τ )

≡ F
(1)
0 (t) Re [e1e

−i(ω(1)t+φ1)]

+ F
(2)
0 (t − τ ) Re [e2e

−i[ω(2)(t−τ )+φ2]]. (2)

For the j th pulse (j = 1,2) in Eq. (2), ω(j ) is its carrier
frequency [which can take the values ω1 = 15 eV or ω2 =
2ω1 = 30 eV depending on the process considered; see
Figs. 1(a) and 1(b)]; ej is its polarization vector (ej · e∗

j =
1); φj is its carrier envelope phase (CEP); and F

(j )
0 (t) =

F
(j )
0 cos2(πt/Tj ) is its smooth temporal envelope (with F

(j )
0

the electric field amplitude), for which −Tj/2 � t � Tj/2,
where Tj = Nj (2π/ωj ) gives its total pulse duration, with Nj

being the number of optical cycles. It is useful to parametrize
the polarization vector of the j th pulse as

ej ≡ (ε̂ + iηj ζ̂ )/
√

1 + η2
j , (3)

where ηj is the ellipticity (−1 � ηj � +1), ε̂ and ζ̂ ≡ k̂ × ε̂

are respectively the major and minor axes of the polarization
ellipse, and k̂ ‖ ẑ is the pulse propagation direction. For the
j th pulse, the degrees of linear and circular polarization
are respectively �j ≡ (ej · ej ) = (1 − η2

j )/(1 + η2
j ) and ξj ≡
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Im [e∗
j × ej ]z = 2ηj/(1 + η2

j ), where �2
j + ξ 2

j = 1. Finally, the
laser field F(t) in Eq. (2) turns on at t = Ti = −T1/2 and ends
at t = Tf = τ + T2/2.

To obtain the wave packet �(r1,r2,t) solution of the TDSE
(1), we use the methods developed previously for either an
arbitrarily polarized attosecond single pulse [24] or a pair
of pulses [8]. In brief, we adopt the time-dependent close-
coupling expansion [25,26] of the wave packet �(r1,r2,t) onto
the orthonormal basis functions of bipolar spherical harmonics


LML

l1,l2
(r̂1,r̂2), where L is the total angular momentum of the

two-electron system, ML is its azimuthal quantum number,
and l1,l2 are the individual electron orbital angular momenta.
For ionization of the He atom interacting with a linearly
polarized pulse, one has [H,Lz] = 0, so that the magnetic
quantum number ML is conserved. Parity is also a good
quantum number. Thus, for the interaction of the 1Se ground
state (having ML = 0) with linearly polarized photons, ML

is unchanged during the time propagation, reducing thus the
numerical complexity of the problem.

In contrast, for pulses with nonzero ellipticity, [H,Lz] �= 0,
so that ML is not conserved, thus giving rise to the so-called
ML-mixing problem [27,28]. To overcome this problem, we
adopt the basic ideas and principles of the method introduced
in Ref. [27] and developed intensively in Refs. [28–33]. It
consists of the introduction of a rotational transformation
between two frames: (i) the atomic fixed frame in the
laboratory coordinate system and (ii) the rotating frame defined
by the external pulse polarization vector. The latter frame is
rotated with respect to the laboratory frame by the Euler angles
(α,β,γ ) by using the Wigner rotation operator D(α,β,γ ),
whose matrix elements are

〈L′M ′
L′ |D(α,β,γ )|LML〉 = eiM ′

L′ αdL
M ′

L′ ,ML
(−β)eiMLγ δLL′, (4)

which is diagonal in L but not in ML. Thus the matrix
dL

ML,M ′
L′

(β) is block diagonal within the L representation. We

then use the finite-element discrete-variable representation
combined with the real-space-product algorithm (a split-
operator method) [34] as well as Wigner rotation transforma-
tions at each time step from the laboratory frame to the frame of
the instantaneous electric field [27,28]. The key consequence
of this procedure [27,28] is that the electric field seen by an
observer in the rotating frame is always linearly polarized, so
that treating the laser-atom interaction in the rotating frame
simplifies its calculation. Moreover, this procedure is quite
accurate as long as the time step is sufficiently small, which
we ensure in all our numerical TDSE calculations.

At the end of the two pulses, i.e., at t = Tf , we extract the
triply differential probability (TDP) [35] for single ionization
of He to He+(1s) from the wave packet �(r1,r2,t) by
projecting it onto correlated field-free Jacobi matrix wave
functions �

(−)
1s,p(r1,r2) [36]. The TDP, d3W/d3p ≡ Wξ1

ξ2
(p), for

single electron ionization to the continuum with momentum
p ≡ (p,θ,ϕ) is thus

d3W

d3p
≡ ∣∣〈�(−)

1s,p(r1,r2)
∣∣�(

r1,r2,eφ1 ,eφ2 ,Tf

)〉∣∣2
, (5)

where eφj
≡ ej e

−iφj , with j = 1,2. We include four total
angular momenta (L = 0−3), their azimuthal quantum num-
bers |ML| � L, all combinations of individual electron orbital

angular momenta l1,l2 = 0−5, and their azimuthal quantum
numbers |m1| � l1 and |m2| � l2.

III. GENERAL CONSIDERATIONS

As the electron vortices we predict (for single ionization
of He by a pair of circularly polarized pulses, delayed in time
by τ ) are essentially perturbative effects, their observation
requires that the laser pulse parameters are such that PT is
applicable [37]. For the laser frequencies we employ (see
below) and for experimentally accessible intensities below
1014 W/cm2, this is the case. Moreover, for these laser
parameters the rotating wave approximation (RWA) is valid,
i.e., it is legitimate to neglect photon emission processes in our
PT analysis.

Experimental observation of the multistart spiral electron
vortices we predict requires the large bandwidth �ω character-
istic of ultrashort pulses, as the bandwidth must support several
spiral fringes [8], i.e., 2π/τ < �ω. However, the carrier
frequency, peak intensity, and spectral width of each pulse
must be chosen such that single ionization of He by a single
pulse is possible via either only one-photon absorption or only
two-photon absorption. This requires a pulse bandwidth that is
not too large. The binding energy of the He atom in its ground
state is Eb = 24.6 eV.

Choosing a laser pulse with an intensity of 1 TW/cm2 (i.e.,
1012 W/cm2) and a carrier frequency ω2 greater than Eb (e.g.,
ω2 = 30 eV) should thus result in single-photon ionization,
which according to PT must scale linearly with intensity.
Likewise, for such weak peak pulse intensities, a carrier
frequency ω1 smaller than Eb, but with 2ω1 > Eb should result
in two-photon ionization, which according to PT must scale
quadratically with intensity. The latter expectation holds only
when the pulse bandwidth �ω1 does not favor single-photon
single ionization. This is guaranteed when using a pulse having
more than N = 5 optical cycles within its cosine squared
envelope. Throughout this work, for a carrier frequency ω1 =
15 eV we choose N = 6 optical cycles (to avoid populating
singly excited states by one-photon transitions), which gives
a pulse bandwidth of �ω1 = 1.44ω1/N = 3.6 eV. For all
these processes, our pulse intensities are too weak to induce
higher-order nonlinear effects. Our focus is thus on the
photoelectron energy spectrum (0 � E � 15 eV) around the
first above threshold ionization peak.

The TDP for ionization of He leading to an electron in the
continuum with momentum p with the residual ion being in
its ground state He+(1s) is

d3W

d3p
≡ Wξ1

ξ2
(p) = C

∣∣Aξ1
ξ2

(p)
∣∣2

, (6)

where A
ξ1
ξ2

(p) is the PT ionization amplitude for our pair
of pulses, and C is a normalization factor independent of
the electron momentum p. In Secs. IV and V below, we
parametrize the transition amplitudes A

ξ1
ξ2

(p) for the (2ω1 +
2ω1) and the (ω2 + 2ω1) ionization processes in Figs. 1(a) and
1(b) respectively. For each process, we present our analytic
PT and numerical TDSE results for the cases in which the
two pulses are circularly polarized in the same direction,
e1 = e2 (i.e., ξ1 = ξ2 = ξ ), or in opposite directions, e1 =
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e∗
2, (i.e., ξ1 = −ξ2 = ±1). For the single-color two-photon

process [Fig. 1(a)], electric dipole selection rules for the final
state (i.e., L = 0,2 and ML = ±2,0) produced by oppositely
circularly polarized pulses differ from those [i.e., L = 2, ML =
+2 (−2)] produced respectively by two identical right (left)
circularly polarized pulses. For the two-color one-photon plus
two-photon process [Fig. 1(b)], the electric dipole selection
rules for the final state give L = 1,2 with ML = ±1,±2,
where the sign + (−) corresponds respectively to a right (left)
circularly polarized pulse.

IV. SINGLE-COLOR TWO-PHOTON SINGLE
IONIZATION OF HELIUM BY A PAIR OF

CIRCULARLY POLARIZED PULSES

The second-order amplitude for single ionization of an s

electron in the ground state of an atom (with energy Ei) by two-
photon absorption from a pair of arbitrarily polarized pulses,
delayed in time by τ , can be parametrized as follows (see
Appendix A for the derivation):

A
ξ1
ξ2

(p) = e−2iφ1
{[
M(1)

d (p)(p̂ · e1)2 + �1M(1)
ds (p)

]
+ e2iψ

[
M(2)

d (p)(p̂ · e2)2 + �2M(2)
ds (p)

]
+ eiψ

[
M(12)

d (p,τ )(p̂ · e1)(p̂ · e2)

+M(12)
ds (p,τ )(e1 · e2)

]}
, (7)

where �j , the linear polarization degree for the j th pulse, j =
1,2, is defined below Eq. (3). In accord with our PT assumption
in Sec. III, we have ignored photon emission terms. In Eq. (7),
the τ -dependent phase ψ is

ψ = ωτ + φ12, (8)

where φ12 ≡ φ1 − φ2 is the relative CEP and ω ≡ ω1 through-
out this section. The τ -independent dynamical radial parame-
ter M(1)

d (p) ≡ M(1)
d in Eq. (7) corresponds to a transition to a

final D state:

M(1)
d =

√
2i

4(2π )3/2

eiδ2

p

∫ ∞

−∞
F̂0(ε) F̂0(ωf i − 2ω − ε)

×〈p2|dg1(Ef − ω − ε)d ′|ni0〉 dε, (9)

where d is the electric dipole moment operator of the two
electrons, and ωf i ≡ Ef − Ei , where Ef is the final-state
energy of the two-electron system. For single electron ioniza-
tion of the He ground state, ωf i = E + Eb, where E = p2/2
is the photoelectron kinetic energy and Eb ≡ E1s − Ei =
0.9037 a.u. is the ground-state binding energy. In Eq. (9)
(and in equations below), we employ a simplified notation for
the antisymmetrized two-electron states in which we indicate
explicitly only the state of the active electron and suppress that
of the spectator electron in the He 1s state; see Appendix A for
a more detailed discussion of our notation. Thus, |nl〉 and |pl′〉
define the bound and continuum states of the active electron
respectively (with n indicating the principal quantum number
of the intermediate state, p indicating the ionized electron’s
momentum, and l and l′ indicating the orbital angular mo-
menta); |ni0〉 is the initial state of the active electron. The con-
tinuum states have momentum normalization, i.e., 〈pl′|p′l′〉 =
δ(p − p′). In Eq. (9), the superscript (1) indicates that both
photons are absorbed from the first pulse; δl is the lth partial

phase shift; gl(ε) is the two-electron radial Green function,

gl(ε) =
∑
n�=ni

|nl〉〈nl|
Enl − ε + i0

, (10)

where Enl is the energy associated with the intermediate state
|nlm〉; and F̂0 is the Fourier transform of the envelope function

F̂0(ε) =
∫ ∞

−∞
F0(t) eiεtdt. (11)

Likewise, the τ -independent dynamical radial parameter
M(1)

s (p) ≡ M(1)
s corresponds to a transition to a final S state:

M(1)
s = −

√
2i

6(4π )3/2

eiδ0

p

∫ ∞

−∞
F̂0(ε) F̂0(ωf i − 2ω − ε)

× 〈p0|dg1(Ef − ω − ε)d ′|ni0〉 dε. (12)

The parameter M(1)
ds (p) in Eq. (7) is defined by

M(1)
ds (p) = M(1)

s (p) − 1
3M

(1)
d (p). (13)

Note that the entire contribution ofM(1)
s to Eq. (7) is contained

in the dynamical parameter M(1)
ds (p) ≡ M(1)

ds .
The corresponding τ -independent dynamical parameters

M(2)
d and M(2)

ds for the second pulse differ from M(1)
d and

M(1)
ds for the first pulse by only a time-delay dependent phase

factor [see Eq. (A12)],

M(2)
d,ds = ei(ωf i−2ω)τM(1)

d,ds ≡ ei(ωf i−2ω)τMd,ds . (14)

The τ -dependent parameters M(12)
d,ds(p,τ ) ≡ M(12)

d,ds in
Eq. (7) correspond to the two cross channels in which photons
are absorbed from different pulses. The dynamical parameters
M(12)

d (p,τ ) leading to final D states are

M(12)
d (p,τ ) =

√
2i

4(2π )3/2

eiδ2

p

∫ ∞

−∞
F(ε,τ )

× 〈p2|dg1(Ef − ω − ε)d ′|ni0〉dε (15)

and the dynamical parameters M(12)
s (p,τ ) leading to final S

states are

M(12)
s (p,τ ) = −

√
2i

6(4π )3/2

eiδ0

p

∫ ∞

−∞
F(ε,τ )

× 〈p0|dg1(Ef − ω − ε)d ′|ni0〉dε. (16)

Finally, the parameters M(12)
ds (p,τ ) are defined by

M(12)
ds (p,τ ) = M(12)

s (p,τ ) − 1
3M

(12)
d (p,τ ). (17)

The τ dependence of the cross channel parameters in
Eqs. (15)–(17) enters explicitly through the function

F(ε,τ ) = 2ei(ωf i/2−ω)τ F̂0(ε)F̂0(ωf i − 2ω − ε)

× cos[(ε + ω − ωf i/2)τ ], (18)

which oscillates rapidly as τ increases. This behavior of the
function F(ε,τ ) kills the contribution of the ionization cross
channel parameters (15) and (17), i.e., they only contribute in
cases of short pulse delays.
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Using Eq. (14), the second-order PT amplitude (7) takes
the form

A
ξ1
ξ2

(p) = e−2iφ1
{
Md (p)

[
(p̂ · e1)2 + ei�(p̂ · e2)2

]
+Mds(p)(�1 + ei��2)

+ eiψ
[
M(12)

d (p,τ )(p̂ · e1)(p̂ · e2)

+M(12)
ds (p,τ )(e1 · e2)

]}
, (19)

where the relative phase

� = (E + Eb)τ + 2(φ1 − φ2) ≡ (p2/2 + Eb)τ + 2φ12 (20)

is comprised of two terms: (E + Eb)τ , the difference in the
phase accumulation during the temporal evolution of the two
electronic wave packets produced by the pathways �1 and �2

[cf. Fig. 1(a)], and 2φ12, twice the relative CEP. Clearly all
these dynamical parameters [in Eqs. (9), (13), and (14)–(17)]
scale linearly with the peak pulse intensity. In what follows,
we investigate, first, the case of a pair of identical circularly
polarized pulses and, second, the case of oppositely circularly
polarized pulses.

A. Two-photon single ionization by two identical, time-delayed
circularly polarized pulses, including pulse overlap effects

For two identical circularly polarized pulses, e1 = e2 = e,
�1 = �2 = � = 0, and ξ1 = ξ2 = ξ = ±1. Thus, from Eq. (3)
and PT formula (19) the second-order PT amplitude A

ξ
ξ (p) for

single ionization by our two identical pulses is

A
ξ
ξ (p) =e−2iφ1 (e · p̂)2

[
Md (1 + ei�) + eiψM(12)

d

]
, (21)

where the geometric factor (e · p̂)2 is

(e · p̂)2 = 1
2 sin2 θe±2iϕ ≡

√
8π/15Y2,ML

(θ,ϕ), (22)

with the azimuthal quantum number ML = +2 (−2) for right
(left) circular polarization; M(1)

d (p) ≡ Md (p) corresponds to
the path �1 [cf. Fig. 1(a)] that describes two-photon absorption
from the first pulse; M(2)

d (p) � M(1)
d (p) corresponds to the

path �2 [cf. Fig. 1(a)] that describes two-photon absorption
from the second pulse, which is delayed by a time τ relative to
the first pulse; and M(12)

d (p,τ ) ≡ M(12)
d corresponds to the

two pathways �12 [cf. Fig. 1(a)] that describe one-photon
absorption from each pulse (in the case that the pulses
overlap). Clearly, the geometric factor (22) shows that all
four pathways lead to the same final state, defined by L = 2
with ML = +2 (ML = −2) for right (left) circularly polarized
pulses respectively.

Substituting Eqs. (21) and (22) into Eq. (6), the TDP for
single ionization by two identical circularly polarized pulses
becomes explicitly

Wξ
ξ (p) = C

2

{
2|Md (p)|2 cos2(�/2) + 1

2

∣∣M(12)
d (p,τ )

∣∣2

+ Re
[
M∗

d (p)M(12)
d (p,τ )

]
[cos ψ + cos(ψ − �)]

+ Im
[
M∗

d (p)M(12)
d (p,τ )

]
× [sin ψ + sin(ψ − �)]

}
sin4 θ. (23)
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FIG. 2. Triply differential probability (TDP) d3W/d3p [see
Eqs. (5), (23), (8), and (20)] in the polarization plane for single
ionization of He by two right circularly polarized pulses delayed
in time by (a) τ = 0, and (b) τ = 1.65 fs. Each cosine-squared
pulse has a carrier frequency ω1 = 15 eV, N = 6 optical cycles,
total duration T = 1.65 fs, and peak intensity I = 1012 W/cm2. The
CEPs are φ1 = 0 and φ2 = 0. The magnitudes of the TDPs (in units of
10−7 a.u.) are indicated by the color scales in (a) and (b).

Note that only the dynamical parameter M(12)
d (p,τ ) (15) de-

pends on the time delay. Also, while all dynamical parameters
in Eq. (23) depend upon the electron energy, E = p2/2, they
are independent of the momentum direction, p̂, and the pulse
parameters e1, e2, and φ12. Consequently, the TDP (23) is
independent of ϕ and its polar angle plots in the polarization
plane (θ = π/2) have circularly symmetric patterns, as shown
in Fig. 2 for momentum distributions (obtained by ab initio
TDSE calculations) produced by two right circularly polarized
six-cycle pulses with zero CEPs for two time delays: τ = 0
and τ = 1.65 fs. Owing to the τ and p dependence of the
relative phase � [cf. Eq. (20)] and the τ dependence of
the phase ψ [cf. Eq. (8)], for τ = 0 there is no structure in the
momentum distribution [cf. Fig. 2(a)]. For τ = T = 1.65 fs,
however, the contributions of the ionization cross channels �12

are already negligible according to our discussion following
PT formula (18). Hence, Ramsey interference of the electronic
wave packets produced by transitions �1 and �2 has a form
similar to Newton’s rings, i.e., bright and dark fringes along
the radial direction in momentum space. The interference
pattern in Fig. 2(b) is similar to that found in interference
of two identical optical beams [9]. The zero-start circularly
symmetric patterns, or Newton’s rings, in Figs. 2(a) and 2(b)
are also similar to the photoelectron momentum distributions
produced by single-photon ionization of He by two identical
circularly polarized attosecond pulses [8].

For a quantitative comparison, numerical results using PT
formula (23) can also be obtained. This requires accurate dy-
namical parameters Md (p) [see Eq. (9)] and M(12)

d (p,τ ) [see
Eq. (15)]. Analytical calculations of Md (p) and M(12)

d (p,τ )
are nontrivial as they involve Green’s functions and summa-
tions over the energies of intermediate states. The parameter
Md (p) can be extracted numerically by means of ab initio
TDSE calculations for a single right circularly polarized
pulse that includes only the L = 2,ML = +2 amplitude (see
Appendix B). The dynamical parameter M(12)

d (p,τ ) cannot
be obtained that way as its calculation requires two pulses.
However, for zero time delay between the two pulses, the
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FIG. 3. Energy distributions in the polarization plane for elec-
trons ejected at the angle ϕ = 0 following two-photon single
ionization of He by two right circularly polarized pulses delayed
in time by (a) τ = 0, (b) τ = 500 as, (c) τ = 800 as, (d) τ = 1.102
fs, (e) τ = 1.378 fs, and (f) τ = 1.654 fs. Results are obtained by
ab initio TDSE calculations using Eq. (5). For comparison, we also
show results using PT formula (24) [see panel (a)] or (25) [see
panels (b)–(f)], in which the dynamical parameterMd (p) is extracted
numerically from ab initio TDSE calculations for a single pulse
including only the L = 2,ML = +2 amplitude; see Appendix B. The
pulse parameters are the same as in Fig. 2.

dynamical parameter M(12)
d (p,0) [see Eqs. (15) and (18)] is

twice that of the dynamical parameter Md (p). Hence, for
τ = 0 and φ12 = 0 as in Figs. 2(a) and 3(a), the TDP using PT
formula (23) reduces to

Wξ
ξ (p,θ,ϕ) = 4C|Md (p)|2 sin4 θ. (24)

Thus, when the two pulses have zero time delay, the mo-
mentum distributions [see Fig. 2(a)], the energy distributions
[see Fig. 3(a)], and the angular distributions (not shown) from
either a TDSE calculation or by using the PT formula (24) are
in excellent quantitative agreement.

According to our discussion following PT formula (18), for
time delays τ equal to or longer than the total pulse duration
T , the TDP reduces to the following form:

Wξ
ξ (p,θ,ϕ) = C|Md (p)|2 sin4 θ cos2(�/2). (25)

Equation (25) excludes contributions from the ionization cross
channels �12. It should nevertheless provide accurate results
for the TDP because when the two pulses do not overlap, the
cross channel transitions cannot take place. This PT prediction

is confirmed in Fig. 3(f) in which results for the ionized
electron energy distributions calculated by solving the TDSE
or by using PT formula (25) are shown to coincide.

For time delays τ < T in which the two pulses overlap in
time, the ionization cross channels can play a significant role.
However, owing to the cosine term in Eq. (18), PT predicts
that their contribution to the TDP decreases as the time delay
increases. It is useful to define a critical time delay τc beyond
which the cross channels do not contribute to TDP. For the
case of N = 6 optical cycles, Figs. 3(b)–3(e) show energy
distributions for four time delays τ shorter than the total pulse
duration T = 1.65 fs. One sees that results obtained by solving
the TDSE and by using PT formula (25) coincide for 1.1 fs
� τ < T [see Figs. 3(d) and 3(e)] but differ for 0 < τ < 1.1
fs [see Figs. 3(b) and 3(c)]. The discrepancies for shorter time
delays are due to the ionization cross channels that are taken
into account in the TDSE results. Thus, for this case, τc =
1.1 fs.

The τ -dependent ionization cross channels are also sensi-
tive to the bandwidth of the pulses. For N = 5 optical cycles,
which corresponds to a pulse bandwidth of �ω1 = 4.3 eV
and a total pulse duration of T = 1.378 fs, the critical time
delay beyond which the ionization cross channels �12 do not
contribute significantly to the TDP is once again τc � 1.1 fs,
as found in Fig. 3 for N = 6 optical cycles. However, for
N = 7 optical cycles, which corresponds to a smaller pulse
bandwidth of �ω1 = 3.08 eV and a total pulse duration of
T = 1.93 fs, the critical time delay is τc = 1.378 fs. Moreover,
the critical time delay τc appears to be insensitive to the relative
CEP φ12 = φ1 − φ2 of the two pulses. Specifically, for our
six-cycle pair of pulses, we carried out numerical calculations
for φ12 = 0 and φ12 = π/2 (not shown) and found that the
critical time delay τc was the same for both cases. These results
indicate that the CEP-invariant effect of the ionization cross
channels on the TDP can provide precise information on the
overlap of the two pulses.

For longer time delays τ � τc, the energy spectra displayed
in Figs. 3(d)–3(f) permit one to directly measure the time delay
between the two pulses by measuring the energy separation
between two consecutive dark (interference minimum) or
bright (interference maximum) fringes. According to the PT
analysis, this difference equals 2π/τ owing to the dependence
of the TDP (25) on the phase � (20).

B. Single-color two-photon single ionization by two oppositely
circularly polarized pulses, including pulse overlap effects

For two oppositely circularly polarized pulses, e∗
1 = e2,

�1 = �2 = 0, and ξ1 = −ξ2 = ±1. The PT amplitude A
ξ1
ξ2

(p)
in Eq. (19) for single ionization by two oppositely circularly
polarized pulses delayed in time by τ is

A
ξ1
ξ2

(p) = e−2iφ1
{
Md (p)[(p̂ · e1)2 + ei�(p̂ · e2)2]

+ eiψ
[
M(12)

d (p,τ )|p̂ · e1|2 + M(12)
ds (p,τ )

]}
, (26)

where the geometric factor |p̂ · e1|2 is

|e1 · p̂|2 = 1
2 sin2 θ = 1

6 [2 −
√

16π/5Y2,0(θ,ϕ)]. (27)

From the geometric factor (e · p̂)2 (22), where e = e1,e2, one
sees that the ionization channel �1(�2) for the first (second)
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pulse is described by the parameter Md (p) [M(2)
d (p) �

Md (p)]. These channels lead to final states defined by
L = 2 with M

�1
L = −M

�2
L = ±2, where + (−) indicates right

(left) circular polarization. According to the geometric factor
|e1 · p̂|2 (27), the cross channels M(12)

d (p,τ ) correspond
to transitions to final states with L = 2, ML = 0. Finally,
M(12)

ds (p,τ ) in Eq. (26) describes transitions to final states
with L = 0,2, ML = 0.

Using Eqs. (6) and (26) together with the geometric factors
(22) and (27), the TDP for a pair of oppositely circularly
polarized pulses takes the form

Wξ1
ξ2

(p) = C{|Md (p)|2 sin4 θ cos2(�/2 − 2ξ1ϕ)

+ |�(12)(p,θ,τ )|2 + |M∗
d (p)�(12)(p,θ,τ )| sin2 θ

× [cos(� + ψ − 2ξ1ϕ)

+ cos(� + ψ + 2ξ1ϕ + �)]}, (28)

where ξ1 = −ξ2 = ±1 corresponds to a right and left (+) or
a left and right (−) circularly polarized pair of pulses. Note
that the first term in Eq. (28) results from the squared modulus
of the sum of the first term (path �1) and the second term
(path �2) in Eq. (26). In the TDP (28), the newly introduced
dynamical parameter �(12)(p,θ,τ ) associated with the paths
�12 is defined as

�(12)(p,θ,τ ) ≡ M(12)
d (p,τ )|p̂ · e1|2 + M(12)

ds (p,τ ), (29)

and the φ12-independent dynamical angle �(p,θ,τ ) (which
depends upon the photoelectron energy E = p2/2, its polar
angle θ , and the time delay τ ) is defined as

tan �(p,θ,τ ) = Im [M∗
d (p)�(12)(p,θ,τ )]

Re [M∗
d (p)�(12)(p,θ,τ )]

. (30)

Perturbatively, the TDP (28) is expected to be dominated
by the amplitudes for the paths �1 and �2. This contribution,
denoted by Wξ1(�1,�2)

ξ2
(p), is given by the first term in the TDP

(28):

Wξ1(�1,�2)
ξ2

(p) = C|Md (p)|2 sin4 θ cos2(�/2 − 2ξ1ϕ). (31)

In the polarization plane (θ = π/2), the leading term (31) of
the TDP (28) has the form of a four-start spiral structure,
as can be seen from the following considerations. The leading
term, Wξ1(�1,�2)

ξ2
(p) (31), is maximal for �/2 − 2ξ1ϕ = �/2 +

2ξ2ϕ = πn and zero for �/2 − 2ξ1ϕ = �/2 + 2ξ2ϕ = (2n +
1)π/2, where n = 0, ± 1, ± 2 . . ., and 0 � ϕ � 2π . Using
Eq. (20), the p dependencies of the polar angles ϕ at these
maximum and zero values of Wξ1(�1,�2)

ξ2
(p) are

ϕmax
n (p) = ξ2[πn − (τEb + 2φ12)/2 − τp2/4]/2,

ϕzero
n (p) = ξ2[π/2 + πn − (τEb + 2φ12)/2 − τp2/4]/2. (32)

Equations (32) define Fermat (or Archimedean) spirals (or
helixes) in the (p,ϕ) plane. As ϕmax

n (p) and ϕzero
n (p), shifted by

the angle π/4 with respect to each other, vary with energy p2/2
(through possibly many 2π cycles, depending upon τ ), they
trace out the maxima and the zeros of the TDPWξ1(�1,�2)

ξ2
. Since

|ξ2| = 1, the pattern is a four-arm helical spiral, corresponding
to n = 0,1,2,3, as other values of n replicate the same lines.
However, depending on the relative strength of interferences

between the pathways �12 and the pathways �1 and �2 [see
the last term in the TDP (28)], the four-start vortices may be
modified by such interferences.

Our numerical results for these PT predictions for two
oppositely circularly polarized six-cycle pulses are shown
in Fig. 4, where we plot the ionized-electron momentum
distributions in the polarization plane (θ = π/2) for an
intensity of 1 TW/cm2 and various CEPs and time delays.
Regardless of the time delay between the two pulses, the four
spots or arms seen in Figs. 4(a)–4(f) indicate that the leading
term in the ionized electron momentum distributions stems
from the amplitudes for the paths �1 and �2. The formula (31)
for the TDP, which excludes the cross channel amplitudes,
does capture the essential physics. Our numerical results for
the formula (31) (in which only L = 2,ML = ±2 amplitudes
are included) are shown in Fig. 5. In Eq. (31) the assumed
equal dynamical parameters M(1)

d (p) � M(2)
d (p) ≡ Md (p)

are extracted numerically from an ab initio TDSE calculation
for a single pulse (as described in Appendix B). Thus,
comparing Figs. 4 and 5 probes qualitatively the contribution
of the pathways �12 relative to the direct pathways �1

and �2.
Results shown in Figs. 4(a) and 4(b) or in Figs. 5(a) and 5(b)

are for zero time delay between the two pulses and two values
of the relative CEP φ12. For τ = 0, superposing two oppositely
circularly polarized pulses gives a linearly polarized pulse.
We observe in Fig. 5(a) the expected symmetric quadrupole
pattern [∝ cos2(2ξ1ϕ), see Eq. (31)] of the ionized electron
momenta along both the linear polarization axis, which for
φ12 = 0 is the px axis (ϕ = 0,π ), and the perpendicular py

axis (ϕ = −π/2,π/2). A similar result is shown in Fig. 5(b)
except that here φ12 = −π/2 so that the linear polarization axis
is rotated clockwise by ϕ = π/4, giving an angular distribution
∝ cos2(φ12/2 − 2ξ1ϕ) from Eq. (31). For φ12 �= 0, a change
in sign of ξ1 will change the angular distribution, unlike when
φ12 = 0. This sensitivity to the helicity of ξ1 is essential for
producing vortices when the time delay is nonzero.

For zero time delay and any relative phase φ12 the four peaks
in the quadrupole patterns have the same intensity in Figs. 5(a)
and 5(b), as expected by formula (31). However, in Figs. 4(a)
and 4(b), whereas the two spots along the linear polarization
axis have the same brightness, those along its perpendicular
axis are less bright. This difference in the brightness of the
quadrupole pattern is due to the interferences between the
paths �12 with the paths �1 and �2, as the last term in the TDP
(28) for ϕ = 0,π and that for ϕ = −π/2,π/2 have opposite
signs.

For nonzero time delay between the two pulses, we obtain
the vortex patterns shown in Figs. 4(c)–4(f) and Figs. 5(c)–5(f)
for right and left circularly polarized pulses. As discussed
above, these are four-start Fermat spiral patterns with a
counterclockwise handedness. As predicted by Eqs. (32), the
number and locations of the maxima and minima of the TDP
in the polarization plane depend on the time delay, as shown in
Figs. 4(c)–4(f) and Figs. 5(c)–5(f). For our pair of pulses, each
having six optical cycles, the pulse duration is about 1.65 fs.
Figures 4(c)–4(f) show that several hundred attoseconds are
necessary to observe well-defined vortex patterns. The matter-
wave vortex patterns in the electron momentum distributions
shown in Figs. 4(c)–4(f) for four time delays are similar to
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FIG. 4. Four-start spiral vortex patterns in the photoelectron
momentum distributions d3W/d3p [see Eq. (5)] in the polarization
plane following ionization of helium by right and left circularly
polarized pulses delayed in time by (a) and (b) τ = 0, (c) τ = 500 as,
(d) τ = 800 as, (e) τ = 1.1 fs, and (f) τ = 1.65 fs. In (a) and (c)–(f),
φ1 = φ2 = 0; in (b), φ1 = 0, φ2 = π/2. Each pulse has ω1 = 15 eV,
N = 6 cycles, and I = 1012 W/cm2. The magnitudes of the TDPs
(in units of 10−7 a.u.) are indicated by the color scales. In all panels,
the numerical projections (5) include L = 0,2 with ML = 0,±2.

the interference fringes of optical beams of opposite helicities
carrying orbital angular momentum of two [9]. In both cases
the interference patterns are four-start Fermat spirals whose
orientation is determined by the relative phase difference. In
our case, this phase difference � is determined by the energy
(p2/2 + Eb), the time delay τ , and φ12, while in the optical case
the relative phase is determined by the wave-front curvature
difference [9]. In neither case is the appearance of helical
fringes caused by the polarization of either the optical or
electronic waves. Indeed, in the optical case both light beams
were linearly polarized [9], and in our electronic case, the
electron states with Lz = ±2 are dominant and populated
equally upon ionization by the pair of oppositely circularly
polarized pulses.

Note that for nonzero time delays τ shorter than about
800 as, the above-mentioned difference in the brightness in
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FIG. 5. Same as Fig. 4 but the numerical results are obtained using
the PT formulas (31) and (20) with the dynamical parameter Md (p)
extracted numerically from ab initio TDSE calculations for a single
pulse including only L = 2,ML = ±2 amplitudes (see Appendix B).
Note that Eq. (31) excludes cross channel contributions.

the quadrupole pattern persists [see Figs. 4(c) and 4(d) and
Figs. 5(c) and 5(d)], which is a signature of the cross channels
�12. However, for time delays τ greater than 1.1 fs, both the
ab initio TDSE results in Figs. 4(e) and 4(f) and the PT results
in Figs. 5(e) and 5(f) are in very good agreement.

To better understand the sensitivity of the τ -dependent
ionization cross channels to the handedness of the two pulses,
we present in Figs. 6 and 7 respectively the ionized-electron
energy and angular distributions in the polarization plane
for four values of the time delay. In Fig. 6 the ionized
electrons are detected at the angles θ = π/2,ϕ = 0, whereas
in Fig. 7 the final electron kinetic energy is E = 2ω1 − Eb.
Plotted in these two figures are (i) TDSE results for final
states L = 0,2; ML = 0,±2, (ii) TDSE results for final states
L = 2; ML = ±2, and (iii) numerical results using formula
(31) for final states L = 2; ML = ±2. For shorter time delays
0 � τ < 1.1 fs [see Figs. 7(a)–7(c)], the angular distributions
obtained from the results (ii) and (iii) exhibit a fourfold
symmetric quadrupolelike shape, while those from the results
(i) exhibit a twofold symmetric quadrupolelike shape. All these
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FIG. 6. Energy distributions in the polarization plane for elec-
trons detected at the angle ϕ = 0 following two-photon single
ionization of He by two oppositely circularly polarized pulses delayed
in time by (a) τ = 0 as, (b) τ = 500 as, (c) τ = 800 as, and (d)
τ = 1.1 fs. Parameters of the two pulses are the same as in Fig. 4.
Results are obtained from TDSE calculations for the following final
states: (i) L = 0,2 with ML = 0,±2 (solid black lines), (ii) L = 2
with ML = ±2 (dashed red lines); and from the formula (31), in
which the dynamical parameter Md (p) is extracted numerically (as
described in Appendix B) from an ab initio TDSE calculation for a
single pulse including only L = 2,ML = ±2 amplitudes (dash-dotted
blue lines).

angular distribution shapes are consistent with those of the
spherical harmonic YL,ML

(p̂). Both Figs. 6 and 7 show that the
TDSE results (ii) and the results using Eq. (31) are in good
agreement regardless of the time delay. Moreover, whereas
these two results and the TDSE results (i) differ significantly
for zero time delay and for time delays shorter than 1.1 fs [see
Figs. 6(a)–6(c) and Figs. 7(a)–7(c)] owing to the role played by
the path �12, they coincide for a time delay equal to τc = 1.1
fs [see Figs. 6(d) and 7(d)] or longer (not shown). Since the
τc found for two identical circularly polarized six-cycle pulses
is also 1.1 fs, one can conclude that this critical time delay
τc is at most only weakly sensitive to the handedness of the
two circularly polarized pulses. Remarkably, for time delays
longer than τc, the formula (31) (in which the ionization cross
channels are omitted) becomes fully valid for reproducing the
rather challenging six-dimensional TDSE results.

A substantial consequence of the validity of the formula
(31) is that the time-delay periodicity of the angular dis-
tributions in the polarization plane is valid only for longer
time delays (i.e., for τ � τc). Figure 8 shows the time-delay
periodicity of the ionized-electron angular distributions in
the polarization plane produced by our pair of oppositely
circularly polarized six-cycle pulses for time delays longer
than τc = 1.1 fs. Results of our numerical solutions of the
TDSE in Fig. 8(a) are compared with the results using
Eq. (31) in Fig. 8(b) for a fixed electron kinetic energy,
E = 2ω1 − Eb. For fixed relative CEP φ12 between the two
pulses, the angular distribution is unchanged for time delays
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FIG. 7. Angular distributions d3W/d3p (in units of 10−7 a.u.)
in the polarization plane for a fixed ionized electron energy of
E = 2ω1 − Eb following two-photon single ionization of He by two
oppositely circularly polarized pulses delayed in time by (a) τ = 0
as, (b) τ = 500 as, (c) τ = 800 as, and (d) τ = 1.1 fs. Parameters of
the two pulses are the same as in Fig. 4. Results are obtained from
TDSE calculations for the following final states: (i) L = 0,2 with
ML = 0,±2 (solid black lines), (ii) L = 2 with ML = ±2 (dashed
red lines); and from the formula (31) as described in the caption of
Fig. 6 (dash-dotted blue lines).

of τn = 2nπ/(E + Eb) with n an integer, as expected from the
PT Eqs. (31) and (20). Figure 8(b) shows that Eq. (31) is valid:
the angular distributions for τ8 = 1.1 fs and τ12 = 1.65 fs are
identical. Our numerical results in Fig. 8(a) for these two time
delays are exactly the same, indicating that for longer τ and for
intensities ∼1 TW/cm2 the second pulse sees the same initial
state as the first pulse (i.e., the He ground state instead of the
state resulting from interaction of the He ground state with
the first attosecond pulse). For longer time delays τn with half
odd integer n, the PT Eqs. (31) and (20) predict the angular
distributions to be shifted by π/4 with respect to those for
integer n, as shown in Figs. 8(a) and 8(b). This sensitivity of
the angular distributions to the time delay implies the ability
to control the ionized electron direction by adjusting the time
delay between the two UV pulses.

For τ < τc, the ionization cross channels �12 (in which one
photon is absorbed from each pulse) destroy the time-delay
periodicity of the angular distributions (28) for two oppositely
circularly polarized pulses. However, the parametrization (19)
allows one to predict cases for which the τ periodicity of
the TDP should be preserved even for τ < τc. Namely, let us
consider the situation when one photon, say e2, is linearly
polarized (i.e., �2 = 1) in a direction perpendicular to the
polarization plane of the first photon e1. In such cases,
e1 · e2 = 0. Further, suppose that the electrons are detected
in the polarization plane of the first photon, so that one has
p̂ · e2 = 0. Consequently, Eq. (19) for the amplitude A

ξ1
ξ2

(p)
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FIG. 8. Time-delay periodicity of electron angular distributions
d3W/d3p (in units of 10−7 a.u.) in the polarization plane produced by
two-photon single ionization of the He ground state by two oppositely
circularly polarized UV pulses. The ionized-electron energy is fixed
to be E = 2ω1 − Eb. Parameters of the two pulses are the same as in
Fig. 4. Results in panel (a) are obtained by ab initio TDSE calculations
for L = 0,2 with ML = 0,±2 final states; results in panel (b) are
obtained using PT formula (31) calculated as described in the caption
of Fig. 6. In each panel, results are shown for three time delays: τ8,
τ12, and τ14.5, where τn = nπ/ω1.

becomes

A
ξ1
ξ2

(p) = e−2iφ1 [Md (p̂ · e1)2 + Mds(�1 + ei�)]. (33)

The time delay τ enters this equation only through the phase
� [see Eq. (20)], which means that the corresponding TDP
should be periodic in τ as long as PT is valid. To demonstrate
numerically this PT prediction for any time delay, we consider
the case of two time-delayed orthogonal pulses that are linearly
polarized along the x and y axes, respectively. Figure 9(a)
shows the numerically calculated angular distributions for
electrons detected in the (pz,px) plane. One sees that results for
the time delays τ = 0 and τ6 = T/2 = 827 as (where τ6 < τc)
do coincide. The same observation holds for any time delays
τn = nπ/ω1, where n is an integer.

Concerning the sensitivity to the pulse ellipticity of the
ionization cross channels, we note that the formula (18)
predicts a decreasing contribution of the cross channels as the
time delay τ increases not only for circularly polarized pulses,
but also for any two ellipticities of the two pulses. A numerical
confirmation of this PT prediction is shown in Fig. 9(b) for the
case of two pulses linearly polarized along the x axis with
electrons detected in the (px,py) plane. Results shown are
for four time delays: τ0, τ6 = T/2, τ8 = 2T/3, and τ12 = T ,
where τn = nπ/ω1. Once again, one sees in Fig. 9(b) that the
TDP is maximal for τ = 0 and then decreases as τ increases
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FIG. 9. Cross channel path (�12) effects for two time-delayed
linearly polarized pulses. (a) Angular distributions d3W/d3p (in units
of 10−3 a.u.) in the (pz,px) plane for two-photon single ionization
of the He ground state by two time-delayed orthogonal pulses
linearly polarized along the x and y axes, respectively. Results for
time delays τ0 and τ6 are shown, where τn = nπ/ω1. (b) Angular
distributions d3W/d3p (in units of 10−2 a.u.) in the (px,py) plane
for two-photon single ionization of the He ground state by two
time-delayed pulses linearly polarized along the x axis. Results for
four time delays are shown, namely, τ0, τ6, τ8, and τ12. In both (a) and
(b), the ionized electron energy is E = 2ω1 − Eb; each cos2 pulse
has a carrier frequency ω1 = 15 eV, N = 6 cycles, an intensity of
I = 5 × 1013 W/cm2, and a zero CEP.

(as shown by the results for τ6 = 827 as and τ8 = τc = 1.1 fs).
However, the angular distributions for τ8 and τ12 coincide,
which confirms the time-delay periodicity prescribed by PT
for τ � τc.

So far, the contributions of the ionization cross channels
�12, which are difficult to calculate, have been investigated
by comparing results obtained by solving the TDSE to those
obtained from PT formulas that include contributions from
only the pathways �1 and �2. The question thus arises
whether relevant information on the dynamical parameters
describing the cross channels can be obtained by other means.
First, we note that in contrast to corotating fields, a virtue
of counter-rotating circularly polarized fields is that electric
dipole selection rules naturally separate the three ionization
pathways. Thus, counter-rotating circularly polarized fields
seems to be the most suitable scheme for extracting the dy-
namical parameters �(12)(p,θ,τ ) describing the cross channel
contributions to the TDP. Second, although calculating the
dynamical parameters M(12)

d (p,τ ) and M(12)
ds (p,τ ) on which

�(12)(p,τ ) depends [see Eq. (29)] is not an easy task, by
choosing a special detection geometry one can isolate the effect
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of the dynamical parameters M(12)
ds (p,τ ), which correspond

to transitions to final states L = 0,2 with ML = 0. This can
be done by using counter-rotating fields and by detecting
electrons along the pulse propagation direction (i.e., θ = 0).
In this case, p̂ · e1 = p̂ · e2 = 0, so that the TDP in Eq. (26)
only depends upon M(12)

ds (p,τ ).

V. SINGLE IONIZATION BY TWO-COLOR CIRCULARLY
POLARIZED PULSES

In this section we consider the (ω2 + 2ω1) process, i.e., the
process of single ionization of He by interfering one-photon
and two-photon ionization amplitudes in which the He atom
can either absorb one ω2 photon from the first pulse or
two ω1 photons from the second pulse [cf. Fig. 1(b)]. By
focusing on the near-threshold ionized-electron energy range,
0 � E � 15 eV, we only consider the ionization pathways �1

and �2 [Fig. 1(b)]. We thus neglect the contributions of the
�12 pathways [not shown in Fig. 1(b)], which produce ionized
electrons in the continuum with higher kinetic energies.

Within the dipole approximation [37], the PT amplitude
A

ξ1
ξ2

(p) for one-photon or two-photon ionization by a pair of
arbitrarily polarized pulses is

A
ξ1
ξ2

(p) = e−iφ1 [α(p)(e1 · p̂) + Md (p)(e2 · p̂)2ei�̃], (34)

where �̃ ≡ � − φ1, with the relative phase � given by
Eq. (20), and the p-dependent dynamical parameter α(p)
[8] is the product of the dipole moment of the target and
F̂0(E + Eb − ω2), the Fourier transform of the pulse envelope
[cf. Eq. (11)]. According to electric dipole selection rules,
the dynamical parameter α(p) corresponding to the path �1

describes a one-photon absorption transition from the initial S

state to final P states. Likewise, the p-dependent dynamical
parameter Md (p) [cf. Eq. (9)] corresponding to the path �2

describes a two-photon absorption transition to final D states.
Since the final states reached by these two interfering pathways
have opposite parities, the photoelectron angular distributions
are expected to be asymmetric.

For two circularly polarized pulses with the same handed-
ness, e1 = e2 = e, �1 = �2 = � = 0, and ξ1 = ξ2 = ξ = ±1,
so that the PT amplitude (34) takes the form

A
ξ
ξ (p) = e−iφ1 (e · p̂)[α(p) + Md (e · p̂)ei(�−φ1)], (35)

where the geometric factor (e · p̂) is

(e · p̂) = (1/
√

2) sin θe±iϕ ∝ Y1,M1 (θ,ϕ). (36)

According to the geometric factors (36) and (22), such a
pair of pulses produces final states defined by L = 1,2, with
M1 = +1,M2 = +2 (M1 = −1,M2 = −2) for two right (left)
circularly polarized pulses.

Likewise, for two oppositely circularly polarized two-color
pulses, e1 = e∗

2, �1 = �2 = 0, and ξ1 = −ξ2 = ±1. Thus, the
PT amplitude (34) in this case takes the form

A
ξ1
ξ2

(p) = e−iφ1 [α(p)(e1 · p̂) + Md (p)(e∗
1 · p̂)2ei�̃], (37)

where the final states defined by L = 1,2, with M1 =
+1,M2 = −2 (M1 = −1,M2 = +2) are produced by right and
left (left and right) circularly polarized pulses.

Substituting the geometric factors (22) and (36) into the
PT amplitudes in Eqs. (35) and (37), the TDP (6) for single
ionization by our two-color pulses circularly polarized in the
same or opposite directions is

Wξ1
ξ2

(p,θ,ϕ) = C
2

sin2 θ

{
|α(p)|2 + 1

2
sin2 θ |Md (p)|2

+
√

2 sin θ |K12|

× (
2 cos2[(� − φ1 + �12 + ξ12ϕ)/2] − 1

)}
,

(38)

where � is defined in Eq. (20), ξ12 = +1(−1) for two right
(left) circularly polarized pulses, and ξ12 = −3(+3) for right
and left (left and right) circularly polarized pulses; the modulus
of the dynamical parameter K12(p) ≡ |K12(p)|ei�12(p) is

|K12(p)| =
√

{ Re [α∗(p)Md (p)]}2 + { Im [α∗(p)Md (p)]}2,

(39)

and its argument is defined by

tan �12(p) = Im [α∗(p)Md (p)]

Re [α∗(p)Md (p)]
. (40)

The ionized-electron angular distribution (38) in the po-
larization plane (θ = π/2) has the form of a one-start or
three-start spiral structure depending upon the handedness
of each of the two pulses, as may be seen from the
following considerations. From Eq. (38), the TDP Wξ1

ξ2
is

maximal for (� − φ1 + �12)/2 + ξ12ϕ/2 = πn and is min-
imal for (� − φ1 + �12)/2 + ξ12ϕ/2 = (2n + 1)π/2, where
n = 0,±1,±2 . . . , and 0 � ϕ � 2π . Using Eq. (20), the p

dependencies of the polar angles ϕ at these maximum and
minimum values of Wξ1

ξ2
(p,θ,ϕ) are

ϕmax
n (p) = [2πn − (τEb + �̃12) − τp2/2]/ξ12,

ϕmin
n (p) = [π + 2πn − (τEb + �̃12) − τp2/2]/ξ12,

(41)

where �̃12(p,φ1,φ2) is given by

�̃12(p,φ1,φ2) = φ1 − 2φ2 + �12(p). (42)

Equations (41) define Fermat (or Archimedean) spirals (or
helixes) in the (p,ϕ) plane, which are modified by the
CEP and p dependencies of the phase �̃12(p,φ1,φ2). As
ϕmax

n (p) and ϕmin
n (p), shifted by the angle π or π/3 with

respect to each other, vary with energy p2/2 (through
possibly many 2π cycles, depending upon τ ), they trace
out the maxima and the minima of the TDP. When |ξ12| =
1 (|ξ12| = 3), the pattern is a one-arm (three-arm) helical
spiral, corresponding to n = 0 (n = 0,1,2), as other values
of n replicate the same lines. Pulses with ξ12 = ±1 (ξ12 =
±3) correspond to counterclockwise (+) or clockwise (−)
spirals. The Fermat spirals become wound more densely as τ

increases.
For our calculations of the odd-start electron vortices,

we consider that the first (second) six-cycle pulse has a
carrier frequency ω2 = 30 eV (ω1 = 15 eV), an intensity
I2 = 1013 W/cm2 (I1 = 1014 W/cm2), and a total duration
of 827 as (1.65 fs). The intensity of each pulse is chosen such
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FIG. 10. One-start spiral vortex patterns in the electron momen-
tum distribution d3W/d3p [see Eq. (5)] in the polarization plane
following one-photon or two-photon single ionization of He by two
identical circularly polarized pulses for three time delays: (a) τ = 0,
(b),(d) τ = 500 as, and (c) τ = 1 fs. In (a)–(c), the two pulses are
both right circularly polarized, whereas in (d) they are both left
circularly polarized. The carrier frequency and intensity of the earlier
(later) pulse is ω2 = 30 eV (ω1 = 15 eV) and I2 = 10 TW cm−2

(I1 = 100 TW cm−2). The magnitudes of the TDPs (in units of
10−3 a.u.) are indicated by the color scales.

that one-photon absorption from the first pulse and two-photon
absorption from the second pulse photoionize the He atom with
comparable magnitudes and produce photoelectrons with the
same kinetic energy.

For our two-color circularly polarized pulses having the
same or opposite handedness and zero CEPs, our numerical
results for these PT predictions of one-start and three-start
electron vortices [cf. Eqs. (38) and (41)] are shown in Figs. 10
and 11, respectively, for several time delays. We consider
first the case of zero time delay. For co-rotating pulses, the
calculated momentum distribution in the polarization plane
(θ = π/2) is shown in Fig. 10(a). The TDP exhibits a broad
single crescent-shaped lobe along the px axis but shifted
counterclockwise by a certain angle. For counter-rotating
pulses, the corresponding momentum distribution is shown
in Fig. 11(a). The TDP exhibits three lobes separated by 2π/3.
These two findings are consistent with our PT formula (38) as
the TDP is ∝ cos2{[�12(p) + ξ12ϕ]/2}, in which ξ12 = +1
for two right circularly polarized pulses and ξ12 = −3 for
right and left circularly polarized pulses. A change in sign of
ξ12 will change the angular distribution, unlike when φ12 = 0
for the case of single-color two-photon interferometry. This
unusual sensitivity to the helicity of ξ12, which leads to a
circular dichroic effect, is caused by the dynamical phase
�12(p) [cf. Eq. (40)] involving interference between the
one-photon path �1 and the two-photon path �2. To reproduce
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FIG. 11. Three-start spiral vortex patterns in the electron mo-
mentum distribution d3W/d3p [see Eq. (5)] in the polarization plane
following one-photon or two-photon single ionization of He by two
oppositely circularly polarized pulses for three time delays: (a) τ = 0,
(b),(d) τ = 500 as, and (c) τ = 1 fs. In (a)–(c), pulses are right and left
circularly polarized, whereas in (d) they are left and right circularly
polarized. The pulse parameters are the same as in Fig. 10. The
magnitudes of the TDPs (in units of 10−3 a.u.) are indicated by the
color scales.

numerically these TDSE results, using the PT Eq. (38), requires
an accurate calculation of both the phase and the modulus of
the dynamical parameter K12(p), which includes pulse overlap
effects.

For nonzero time delay between the two corotating pulses,
one obtains the vortex patterns in the ionized electron momen-
tum distributions shown in Figs. 10(b) and 10(c) for two-color
right circularly polarized pulses, and in Fig. 10(d) for two-color
left circularly polarized pulses. For counter-rotating pulses,
we obtain the vortex patterns shown in Figs. 11(b) and 11(c)
for two-color right and left circularly polarized pulses, and
in Fig. 11(d) for two-color left and right circularly polarized
pulses. As discussed above, for corotating pulses these are
one-start Fermat spiral patterns with opposite handedness, i.e.,
clockwise in Figs. 10(b) and 10(c) and counterclockwise in
Fig. 10(d). Likewise, for counter-rotating pulses, these are
three-start Fermat spiral patterns with opposite handedness,
i.e., counterclockwise in Figs. 11(b) and 11(c) and clockwise
in Fig. 11(d). As predicted by the helix equation (41), for
both corotating and counter-rotating pulses the numbers and
locations of the maxima and minima of the TDP in the
polarization plane depend on the time delay, as shown in
Figs. 10(b)–10(d) and 11(b)–11(d). For our two-color (ω and
2ω) pulses with durations of 827 as and 1.65 fs, we show that
time delays of several hundred attoseconds are necessary to
produce a complete revolution of the odd-start spirals.
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VI. SUMMARY AND CONCLUSIONS

By both an analytic PT analysis and numerical solutions
of the six-dimensional TDSE for single ionization of the He
atom by a pair of time-delayed circularly polarized ultrashort
laser pulses, we have investigated the conditions under which
the photoelectron momentum distributions in the laser pulse
polarization plane have the form of multistart electron vortices.
For single-color two-photon interferometry, we have shown
that the ionized-electron momentum distributions in the
polarization plane exhibit zero-start or four-start spiral vortex
patterns for the cases respectively of corotating or counter-
rotating pulses. Regardless of the ellipticity or handedness
of the two pulses, the contributions of the ionization cross
channels �12 were found to decrease as the time delay τ

increases, in agreement with PT. For short time delays τ

such that there is strong overlap between the two pulses,
these cross channels were found to be as important as the
leading ionization channels, �1 and �2. However, for longer
time delays the cross channel contributions are very small
and, consequently, Eq. (31) (in which their contributions are
excluded) becomes an excellent tool for describing accurately
the ultrafast process of two-photon single ionization of helium.
For the two-color process we investigated, we have shown that
corotating or counter-rotating time-delayed fields produce one-
start or three-start spiral vortex patterns in the photoelectron
momentum distributions in the polarization plane. We empha-
size that in this case even corotating time-delayed circularly
polarized pulses lead to vortices in the ionized electron
momentum distribution. For both fundamental ultrafast atomic
processes considered in this paper, our analytic PT analysis
provided an invaluable means of interpreting our numerical
TDSE results.

Experimental observation of these multiarm spiral vortex
patterns in the ionized-electron momentum distributions re-
quires single-color and two-color circularly polarized pulses
with low intensity but with full control of the relative CEP
and the time delay between the two pulses. The production
of chiral attosecond pulses is a very active field of research
[38–41]. Existing velocity-map-imaging or reaction micro-
scope techniques provide the means for measuring ionized-
electron momentum distributions.

Note that the analysis presented in this paper can be applied
also for other atoms in which the ionized electron is initially
in an s state, including, e.g., the H atom. We have presented
our results for the He atom because it is the simplest atom to
investigate experimentally and because we are able to treat all
electron correlation effects essentially exactly by solving the
six-dimensional, two-electron TDSE. Our predictions should
hold also for theoretical calculations employing a single active
electron (SAE) approximation, although in that case agreement
with experimental results will depend upon the strength of
electron correlation effects for the particular atom chosen for
study. More generally, as noted in the Introduction as well as
in Ref. [8] (including its Supplemental Material), the vortices
we predict stem from zeros in a kinematical factor of the TDP
that is determined by the detection geometry. The form of
this kinematical factor is invariant to any specific initial state
of the active electron in a target atom (or molecule); it only
depends on the binding energy. Hence, vortex patterns in the

ionized electron momentum distributions should be observed
quite generally for any initial angular momentum of the active
electron. However, if the bandwidth of the laser pulses allows
ionization from multiple atomic subshells, then the observation
of the vortices will depend upon the relative magnitudes of the
subshell cross sections (as the vortex pattern for one subshell
may be obscured by the momentum distributions of the other
subshells).

Note added in proof. Very recently K.-J. Yuan et al. [45]
demonstrated spiral vortex patterns in the electron momentum
distributions resulting from ionization of the H+

2 molecule
by time-delayed bichromatic circularly polarized fields. As
noted in Secs. I and VI above, the spiral vortex patterns in the
ionized momentum distributions stem from kinematic factors,
which are independent of the dynamical transition amplitudes
that depend on the target species. Thus, as Ref. [45] nicely
illustrates, these spiral vortex patterns appear also in molecular
photoionization processes.
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APPENDIX A: DERIVATION OF THE SECOND-ORDER
PT AMPLITUDE IN EQ. (7)

The second-order amplitude for single ionization of He by
a pair of arbitrarily polarized pulses [see Fig. 1(a)] is given by
[42]

A2 = −
∑
q �=i

∫ ∞

−∞
〈νp|d · F(t)|q〉 eiωf q t

×
∫ t

−∞
〈q|d · F(t ′)|i〉 eiωqi t

′
dt ′dt, (A1)

where we have set the upper limit of the time variable to infinity
since the pulse is short. In Eq. (A1) |i〉 is the two-electron initial
state with energy Ei ; |νp〉 is the two-electron final state (sat-
isfying incoming wave boundary conditions and comprising
the bound state |ν〉 of the residual ion, with energy Eν , and
the continuum state |p〉 of the electron, with momentum p and
energy E = p2/2 [43,44]); |q〉 is a two-electron intermediate
state with energy Eq ; ωf q ≡ E + Eν − Eq ; ωqi ≡ Eq − Ei ; d
is the electric dipole moment operator of the two electrons; and
F(t) is the electric field (2), where ω(1,2) ≡ ω for the process
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in Fig. 1(a). Equation (A1) involves integrals over time and
space that are evaluated below.

The structure of the integrals over time in Eq. (A1) is

I =
∫ ∞

−∞
[a1 · F(t)]eiωf q t

∫ t

−∞
[a2 · F(t ′)]eiωqi t

′
dt ′dt, (A2)

where a1 = 〈νp|d|q〉, a2 = 〈q|d|i〉. Inserting Eq. (2) into
Eq. (A1) we obtain four integrals over time,

I = I11 + I12(τ ) + I21(τ ) + I22(τ ), (A3)

where the subscripts indicate the pulses that contribute to the
two-photon transition (e.g., I11 indicates that both photons
originate from the first pulse, while I12 indicates that one
photon originates from the first pulse and the other originates
from the second pulse, etc.). Let us consider first the integral
I11:

I11 =
∫ ∞

−∞
F0(t)

(
a1 · Re [e1e

−i(ωt+φ1)]
)
eiωf q t dt

×
∫ t

−∞
F0(t ′)(a2 · Re [e1e

−i(ωt ′+φ1)])eiωqi t
′
dt ′. (A4)

By extracting the vector dependence of Eq. (A4), one has

I11 = e−2iφ1 (a1 · e1)(a2 · e1) J++
11 + (a1 · e1)(a2 · e∗

1)J+−
11

+ (a1 · e∗
1)(a2 · e1)J−+

11 + e2iφ1 (a1 · e∗
1)(a2 · e∗

1) J−−
11 ,

(A5)

where the parameters J±±
11 describing two-photon absorption

(++) and two-photon emission (−−) are

J±±
11 = 1

4

∫ ∞

−∞
F0(t) ei(ωf q∓ω)t

∫ t

−∞
F0(t ′) ei(ωqi∓ω)t ′dt ′dt,

(A6)

whereas the parameters J±∓
11 describing one-photon absorption

or one-photon emission (+−) and one-photon emission or
one-photon absorption (−+) are

J±∓
11 = 1

4

∫ ∞

−∞
F0(t) ei(ωf q∓ω)t

∫ t

−∞
F0(t ′) ei(ωqi±ω)t ′dt ′dt.

(A7)

Based on our PT assumption (cf. Sec. III), the terms involving
photon emission, i.e., J−−

11 and J±∓
11 , in Eq. (A5) are negligible.

Thus, Eq. (A5) becomes

I11 = e−2iφ1 (a1 · e1)(a2 · e1) J++
11 . (A8)

To evaluate the two-photon absorption term J++
11 [cf. Eq. (A6)]

in Eq. (A8), we express the envelope function F0(t) as the
inverse of its Fourier transform [Eq. (11)]:

F0(t) = 1

2π

∫ ∞

−∞
F̂0(ε) e−iεt dε. (A9)

Inserting this equation into Eq. (A6), the two time integrals
reduce to a single integral over ε:

J++
11 = − i

8π

∫ ∞

−∞

F̂0(ε)F̂0(ωf i − 2ω − ε)

Eq + ε − (Ef − ω) + i0
dε. (A10)

One obtains similar analytical forms for I12(τ ), I21(τ ), and
I22(τ ) by using the procedure employed [i.e., Eqs. (A4)–(A10)]

for evaluating I11. The time integral (A3) thus becomes

I = e−2iφ1 (a1 · e1)(a2 · e1)J++
11 + e−iχ (a1 · e1)(a2 · e2)

× J++
12 (τ ) + e−iχ (a1 · e2)(a2 · e1)J++

21 (τ )

+ e−2i(φ2−ωτ )(a1 · e2)(a2 · e2)J++
22 (τ ), (A11)

where χ = φ1 + φ2 − ωτ . Note that

J++
22 (τ ) = ei(ωf i−2ω)τ J++

11 , (A12)

i.e., the last term in Eq. (A11) describing two-photon absorp-
tion from the second pulse acquires an additional phase eiωf iτ .
The τ -dependent parameter J++

12 in Eq. (A11) describing
one-photon absorption from the first pulse and one-photon
absorption from the second pulse is

J++
12 (τ ) = − i

8π
ei(ωf i−2ω)τ

×
∫ ∞

−∞

F̂0(ε) F̂0(ωf i − 2ω − ε)

Eq + ε − (Ef − ω) + i0
e−iετ dε,

(A13)

whereas the τ -dependent parameter J++
21 describing one-

photon absorption from the second pulse and one-photon
absorption from the first pulse is

J++
21 (τ ) = − i

8π

∫ ∞

−∞

F̂0(ε) F̂0(ωf i − 2ω − ε)

Eq + ε − (Ef − ω) + i0
eiετ dε.

(A14)

We focus now on the integration over angular variables of
the second-order amplitude (A1). Within the PT approach, the
first-order amplitude for one-photon absorption from a single
pulse is defined by the matrix element

T (1) = 〈νp|e · d|i〉, (A15)

where e is the polarization vector of the pulse, d is the dipole
moment of the two electrons, |i〉 is the initial 1Se state with
zero total orbital momentum, and the final singlet state |νp〉 is
an antisymmetrized product of the unrelaxed 1s-bound state
of the He+ ion, |ν〉, and the photoelectron Coulomb state, |p〉,
satisfying asymptotically incoming spherical wave boundary
conditions [43,44]. Its multipole expansion is [see Eq. (44b)
of Ref. [37]],

〈νp| = A
[

1

p

∑
l′m′

(−i)l
′
eiδl′ Yl′m′(p̂)Y ∗

l′m′ (r̂2)〈νpl′|r1,r2〉
]
,

(A16)

where δl′ is the l′th partial phase shift; |νpl′〉 is the radial part
of the final-state wave function normalized on the momentum
scale, so that 〈νpl′|νp′l′〉 = δ(p − p′); A = (1 + P12)/

√
2

is the normalized antisymmetrization operator, where the
operator P12 exchanges the electron coordinates r1 and r2 in
order to satisfy the Pauli exclusion principle. For simplicity of
notation, both below and in the main text, we use a notation
for the two-electron states that denotes the quantum numbers
of the active electron and suppresses those of the spectator 1s

electron, i.e., |νpl′〉 ≡ |pl′〉 and |i〉 ≡ |ni0〉.
The second-order amplitude (A1) is defined as a sum over

intermediate states |q〉 ≡ |nlm〉 of the product of dipole matrix
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elements,

T (2)
q = 〈νp|(e1 · d)|nlm〉 〈nlm|(e2 · d′)|ni0〉. (A17)

The angular part of the matrix elements in Eq. (A17) can be
easily evaluated using Eq. (A16) to obtain

T (2)
q =

√
2

p

∑
l′

(−i)l
′
eiδl′

√
2l′ + 1

Cl′0
10 10 (Yl′(p̂) · {e1 ⊗ e2}l′)

× 〈pl′|d|n1〉〈n1|d ′|ni0〉. (A18)

From the properties of the Clebsch-Gordan coefficients, it
follows that l′ = 0,2 in Eq. (A18). As a result we have

T (2)
q = (e1 · e2)

1

3
√

2π

eiδ0

p
〈p0|d|n1〉〈n1|d ′|ni0〉

− 1√
π

eiδ2

p

(
(p̂ · e1)(p̂ · e2) − 1

3
(e1 · e2)

)
×〈p2|d|n1〉〈n1|d ′|ni0〉. (A19)

The first term on the right-hand side of Eq. (A19) corresponds
to a transition to a final s state of the ionized electron, while
the second term corresponds to a transition to a final d state.

Thus, for the case when both photons are absorbed from
the first pulse, e2 = e1, using Eqs. (A1) and (A19) we obtain
the following structure for this term in A2:

A2(e1,e1) = e−2iφ1
[
M(1)

d (p̂ · e1)2 + M(1)
ds (e1 · e1)

]
, (A20)

where (e1 · e1) ≡ �1 and the dynamical radial parameters M(1)
s

and M(1)
d , obtained after integration over both time and

angular variables, are given respectively by Eqs. (12) and (9).
Note that A2(e1,e1) in Eq. (A20) corresponds to Eq. (46) in
Ref. [37] when emission terms are neglected. Other terms in
the second-order PT amplitude [namely, A2(e2,e2), A2(e1,e2),
and A2(e2,e1)] can be written in a similar form. Using results

similar to Eq. (A19) for the other three pathways in Eq. (A11),
one arrives at the expression (7) for the second-order PT
amplitude, where the parameters M(12)

d (p,τ ) and M(12)
ds (p,τ )

are given by Eqs. (15)–(17) and the parameter M(2)
d by

Eq. (14).

APPENDIX B: PROCEDURE FOR EXTRACTION
OF THE DYNAMICAL PARAMETER |Md( p)|2

FROM TDSE RESULTS

The PT results for the TDPs shown in Figs. 3 and
5–8 are obtained using Eqs. (24), (25), and (31), each of
which depends on the squared modulus of the second-order
dynamical parameterMd (p). The calculation of the dynamical
parameter Md (p) [cf. Eq. (9)] can be carried out analytically;
however, it is nontrivial as it involves Green’s functions (10)
and summations over the energies of intermediate states.

Instead of calculating |Md (p)|2 analytically, we have
determined this parameter numerically by means of ab initio
TDSE calculations, as follows. We first solve (in the dipole
approximation) the six-dimensional, two-electron TDSE for
a single pulse that is right circularly polarized. After the
end of the pulse, we project the wave packet solution of the
TDSE (produced by this single pulse) onto field-free correlated
multichannel scattering wave functions. The latter functions
[describing the e− + He+(1s) singly ionized continuum] can
be generated accurately using the so-called Jacobi- or J-matrix
method [36]. In this projection, only the L = 2,M = +2
amplitude is included, in accord with dipole selection rules.
The squared modulus of this projection equals the TDP given
in Eq. (6) in which the amplitude for a single right circularly
polarized pulse is given by the first term in Eq. (A20), where
the geometric factor (p̂ · e1)2 is given by Eq. (22). Thus, the
absolute square of this projection equals (C/4) sin4 θ |Md (p)|2,
where C is a normalization factor and θ = π/2 for electrons
detected in the polarization plane.
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