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van der Waals interactions between excited atoms in generic environments
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We consider the van der Waals force involving excited atoms in general environments, constituted by
magnetodielectric bodies. We develop a dynamical approach studying the dynamics of the atoms and the field,
mutually coupled. When only one atom is excited, our dynamical theory suggests that for large distances the
van der Waals force acting on the ground-state atom is monotonic, while the force acting in the excited atom is
spatially oscillating. We show how this latter force can be related to the known oscillating Casimir-Polder force
on an excited atom near a (ground-state) body. Our force also reveals a population-induced dynamics: for times
much larger that the atomic lifetime the atoms will decay to their ground states leading to the van der Waals
interaction between ground-state atoms.
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I. INTRODUCTION

Casimir and van der Waals (vdW) forces are interactions
between neutral macroscopic bodies or atoms arising from
the quantum fluctuations of both the electromagnetic field
and the atomic charges [1,2]. They are responsible for many
characteristic phenomena in physics, chemistry, and biology:
the deviation from ideal-gas behavior in nonpolar gases [3],
latent heat of liquids, capillary attraction, physical absorption,
and cell adhesion [4]. Dispersion interactions have even played
an important role during the early stages of planet formation
[5], and they are also supposed to have a fundamental role in
selective long-distance biomolecular recognition [6]. Due to
their strong distance dependence, they become more and more
important on the ever-decreasing scales of nanotechnology,
where they lead to the unwanted stiction of small mobile
components [7]. In a series of ground-breaking experiments,
the vdW force between an excited barium ion and a mirror
has been measured to high precision [8,9]. Such experiments
show an oscillating dependence of the vdW force on the ion.

We will focus on the vdW force between two atoms, in
excited states |n〉 and |l〉. The interaction in this case is different
from the interaction between two ground-state atoms due to
the possible exchange of a real photon between the atoms. In
the well-understood nonretarded regime, that is, for distances
r much smaller than the wavelength of atomic electronic
transitions, one finds [10,11]

Fnr(r) = − er

4π2ε2
0r

7

∑
k,p
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where er = r/r, dA
nm are the matrix elements of the dipole op-

erator, and Ek the energy relative to the state |k〉. For downward
transitions, EA

k − EA
n + EB

p − EB
l can be negative, yielding

a repulsive interaction. Hence nonequilibrium situations can
provide repulsive vdW interactions.

The interaction at larger separations has been the object of
controversies. In a first group of works, it was predicted that the
magnitude of the retarded potential oscillates as a function of
interatomic distance [12–14]. In a later group of publications
it was claimed that the retarded potential is nonoscillatory and
proportional to 1/r2 [11,15–17]. The conflicting results are due
to subtle differences in treating divergent energy denominators
in the photon propagators: the poles in the real axis can
be avoided using the principal value prescription or adding
infinitesimal factors in the energy denominators and this
leads to different results. Both procedures are mathematically
correct, but they yield different physical results: a spatially
oscillatory behavior of the interaction in the first case and a
monotonically decreasing behavior in the second.

A group of recent works have used dynamical approaches
to address the problem. By an appropriate time-averaging
procedure [18] or in the limit of vanishing atomic linewidths
[19], a third result, for the vdW interaction on the excited atom,
was found that oscillates in magnitude and sign. Note that an
earlier approach based on time-dependent perturbation theory
yields a nonoscillatory result for the force on the ground-state
atom that is however valid only for times shorter than the
lifetime of the excited state [20]. Similar considerations
about time scales hold for the diagrammatic nonequilibrium
description used in Ref. [21].

A very recent work claims that both results, the monotonic
and the oscillating, are valid, but they describe different
physical processes [22]: the oscillating result is related to a
coherent exchange of excitation between the atoms, while
the monotonic result is associated to a fast loss of excitation
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acquired from the initially excited atom. Another recent work
finds that both forces can simultaneously arise in a single
setup: the vdW interaction on the excited atom oscillates, in
agreement with Refs. [18,19,22], but the vdW force acting on
the ground-state atom is monotonic [23]. This result would
imply an apparent violation of the action-reaction principle
in excited systems in free space. However, it was shown that
the momentum balance is restored when taking the photon
emitted by the excited atom into account [24]. This emission
being asymmetric due to the presence of the ground-state
atom, the emitted photon carries some average momentum,
so that the difference between forces on the excited versus
ground-state atoms can be interpreted as a photon recoil force.
The situation is somewhat similar to the lateral Casimir-Polder
force on an atom near a nanofiber, which is also associated with
asymmetric emission [25].

In this paper, we study the van der Waals interaction
involving excited atoms by means of a dynamical approach
on the basis of the Markov approximation. We show that
the damped internal atomic dynamics uniquely determines the
oscillatory or monotonic behavior of the retarded interaction
for excited atoms. In our dynamical model, the poles in the
real axis are automatically shifted to the upper or lower part
of the complex plane, and no ad hoc choice for the imaginary
shifts in the denominators is required. We will show that,
when one atom is excited, the vdW force acting on the
ground-state atom is monotonic and the vdW interaction of
the excited atom is oscillating, in agreement with the most
recent results in literature [22–24,26]. Our dynamical approach
is an alternative to the time-dependent perturbation theory
[23], where the behavior of the force is determined via a time
average over rapid oscillations on time scales of the order of
atomic transition frequencies. Instead, our model allows us
to study the decay-induced dynamics on larger time scales
of the order of the excited-state lifetimes. It reveals that the
force is governed by population-induced dynamics on these
scales, where for times much larger than the lifetime of the
initial atomic state the vdW force converges to that between
ground-state atoms. In addition, we are able to account for a
general environment for the two atoms, via the classical Green
tensor.

The article is organized as follows. In Sec. II, we present the
basic formalism describing the coupled atom-field dynamics.
It is used in Sec. III for calculating the force between two
atoms in arbitrary excited initial states. In Sec. IV, we make
the connection of our result with the Casimir-Polder force
between an excited atom and a body of arbitrary shape. Some
conclusions are given in Sec. V, while in the Appendix, we
present some of the more cumbersome details of our general
approach and our calculation.

II. ATOM-FIELD DYNAMICS

We consider the mutually coupled evolution of two atoms
and the medium-assisted field. The field is prepared at zero
temperature, and the atoms in generic internal states. The
dynamics of the atoms can be described with time-dependent
flip operators, defined by Âmn = |mA〉〈nA|, where |nA〉 is an
energy eigenstate, and similarly B̂pq = |pB〉〈qB |.

A

(a)

A

(b)

A B

(c)

FIG. 1. Case (a) is the zero-order approximation: free field and
free atom. Case (b) is the next-order approximation: the Lamb shift
of an atom due to the emission and reabsorption of a photon. Case (c)
is the dispersion interaction between two atoms due to the exchange
of two photons.

In order to evaluate the force between the two atoms we
must first solve the atom-field dynamics to obtain the flip
operators and the field operators in the Heisenberg picture. The
total Hamiltonian is the sum of three terms, the atomic and the
field Hamiltonian and the interaction term in the multipolar
coupling scheme within dipole approximation:

Ĥ =ĤA + ĤF + ĤAF ,

ĤA =
∑

n

EA
n Ânn +

∑
n

EB
n B̂nn,

ĤF =
∑

λ=e,m

∫
d3r

∫ ∞

0
dω �ωf̂†λ(r,ω) · f̂λ(r,ω),

ĤAF =−d̂A · Ê(rA) − d̂B · Ê(rB), (2)

where f̂λ(r,ω) is the annihilation operator for the elementary
electric and magnetic excitations of the system [27].

Since the evolution of the whole system is unitary the
commutator between two electric fields coincides with the
commutator between free fields [28,29]

[Ê(r,ω),Ê†(r′,ω′)] = �μ0

π
ImG(r,r′,ω)ω2δ(ω − ω′), (3)

where G is the Green’s tensor of the electromagnetic field and
Ê(r,ω) is the Fourier component of the electric field Ê(r) =∫ ∞

0 dω Ê(r,ω) + H.c., Heisenberg equations for the coupled
atom-field dynamics read

∂t Âmn = iωA
mnÂmn + i

�
K̂A

mn · Ê(rA),

∂t Ê(r,ω) =−iωÊ(r,ω) + iμ0

π
ω2

× [ImG(r,rA,ω) · d̂A + ImG(r,rB,ω) · d̂B],

(4)

where K̂A
mn = [Âmn,d̂A].

The electric field at the position of atom A consists of two
terms: the radiation reaction and the field due to the other atom
B. As shown in the literature [28,30], the radiation reaction
field gives rise to frequency shifts and spontaneous decay for
atom A; see Figs. 1(a) and 1(b). We thus renormalize the field
by splitting off the radiation reaction

〈∂t Âmn〉 = [
iω̃A

mn − (
�A

n + �A
m

)
/2

]〈Âmn〉

+ i

�

〈
K̂A

mn · ÊA/(rA)
〉
, (5)

where m �= n and the expectation value 〈· · · 〉 is taken over
atomic state and the field thermal state. ÊA/(rA,t) is the sum of

012705-2



VAN DER WAALS INTERACTIONS BETWEEN EXCITED . . . PHYSICAL REVIEW A 94, 012705 (2016)

the free electric field and the source field of the atom B, ω̃A
mn

the (second-order) Lamb-shifted atomic frequencies, and �A
n

the decay rates.

III. VAN DER WAALS INTERACTION BETWEEN
TWO EXCITED ATOMS

We consider two atoms A and B that are initially prepared
in excited energy eigenstates |iA〉,|iB〉 of the free atomic
Hamiltonian [pA

n (0) = δniA,pB
l (0) = δliB ]. These initial states

are not eigenstates of the total Hamiltonian and thus the atomic
states evolve in time yielding a time-dependent vdW force
(population-induced dynamics). As time progresses, the lower
lying levels n � iA, l � iB will become populated.

To find the vdW force on, say, atom A, we calculate the
Lorentz force in electric-dipole approximation acting on A

which is due to the field EA/(rA,t) emitted by the other atom
B:

FA(rA,rB,t) = ∇A〈d̂A · ÊA/(rA,t)〉, (6)

where expectation value is taken over atomic and field states.
For weak atom-field coupling, corresponding in an expan-

sion of the Hamiltonian in powers of the coupling strengths
d, we can apply the Markov approximation to find (see the
Appendix):

FA(rA,rB,t) = μ2
0

2π2�

∑
n�iA

∑
l�iB

pA
n (t)pB

l (t)
∑
k,p

∫ ∞

0
dω

×
∫ ∞

0
dω′ω2ω′2∇A

{
dA

nk · ImG(rA,rB,ω) · dB
pl

× dB
lp · ImG(rB,rA,ω′) · dA

kn

} 16∑
i=1

1

Di

+ H.c.,

(7)

where pA
n (t) = 〈Ânn(t)〉 and pB

l (t) = 〈B̂ll(t)〉 represent the
atomic populations of states |n〉 and |l〉.

The energy denominators Di are listed in Table I. Due to
our dynamical treatment of the atom-field coupling, the result
explicitly depends on atomic damping constants or linewidths,
and also an infinitesimal damping for the photon of frequency
ω. These factors uniquely ensure the convergence of time
integrals.

For excited atoms the energy denominators can exhibit
poles, for photon frequencies being resonant to the atomic
ones. According to time-independent perturbation theory these
poles would be situated on the real-frequency axis with the
mentioned resulting ambiguities. In our dynamical approach,
with the inclusion of the atomic linewidths, the poles are
automatically shifted to the lower or upper part of the complex
plane leading to unique resonant contributions.

The total vdW force acting on A consists in two terms,
a nonresonant contribution arising from virtual photons ex-
change and a resonant contribution which corresponds to a
possible emission of real photons by the excited atoms:

FA(rA,rB,t) = Fnr
A (rA,rB,t) + Fr

A(rA,rB,t). (8)

In the limit of vanishing linewidths, the nonresonant contri-
bution in an arbitrary magnetoelectric environment reads (see

TABLE I. Energy denominators. In this table, ωA
kn represents

the transition frequency between the virtual state |k〉 and the
excited state |n〉, while ωB

pl represents the transition frequency

between the virtual state |p〉 and |l〉. Furthermore, ω
A(±)
kn = ωA

kn ±
i(�A

k + �A
n )/2, ω

B(±)
pl = ωB

pl ± i(�B
p + �B

l )/2, and ω(±) = ω ± iε

with ε infinitesimal factor. � is the atomic linewidth.

Energy denominators

D1

(
ω(−) + ω

A(−)
kn

)(
ω′ + ω

B(−)
pl

)(
ω

A(−)
kn + ω

B(−)
pl

)
D2

(
ω(−) + ω

A(−)
kn

)(
ω′ + ω

B(+)
pl

)(
ω

A(−)
kn − ω

B(+)
pl

)
D3

(
ω(−) − ω

A(+)
kn

)(
ω′ + ω

B(−)
pl

)(
ω

A(+)
kn − ω

B(−)
pl

)
D4

(
ω(−) − ω

A(+)
kn

)(
ω′ + ω

B(+)
pl

)(
ω

A(+)
kn + ω

B(+)
pl

)
D5

(
ω(−) + ω

A(−)
kn

)(
ω′ + ω

A(−)
kn

)(
ω

A(−)
kn + ω

B(−)
pl

)
D6 −(

ω(−) − ω
A(+)
kn

)(
ω′ + ω

A(+)
kn

)(
ω

A(+)
kn − ω

B(−)
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)
D7 −(

ω(−) + ω
A(−)
kn

)(
ω′ + ω

A(−)
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)(
ω

A(−)
kn − ω

B(+)
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)
D8

(
ω(−) − ω

A(+)
kn

)(
ω′ + ω

A(+)
kn

)(
ω

A(+)
kn + ω

B(+)
pl

)
D9 (ω(−) + ω′)

(
ω(−) + ω

A(−)
kn

)(
ω′ + ω

B(−)
pl

)
D10 (ω(−) − ω′)

(
ω(−) + ω

A(−)
kn

)
(ω′ + ω

B(+)
pl )

D11 −(ω(−) + ω′)
(
ω(−) − ω

A(+)
kn

)(
ω′ + ω

B(−)
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)
D12 −(ω(−) − ω′)

(
ω(−) − ω

A(+)
kn

)(
ω′ + ω

B(+)
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)
D13 (ω(−) + ω′)

(
ω(−) + ω

A(−)
kn

)(
ω(−) + ω

B(−)
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)
D14 −(ω(−) − ω′)

(
ω(−) + ω

A(−)
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)
(ω(−) + ω

B(−)
pl )

D15 −(ω(−) + ω′)
(
ω(−) − ω

A(+)
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)(
ω(−) + ω

B(−)
pl

)
D16 (ω(−) − ω′)

(
ω(−) − ω

A(+)
kn

)(
ω(−) + ω

B(−)
pl

)

the Appendix)

Fnr
A (rA,rB,t) = �μ2

0

2π

∫ ∞

0
dξ ξ 4∇ATr{αA(iξ )

· G(rA,rB,iξ ) · αB(iξ ) · G(rB,rA,iξ )},
(9)

where we have defined the following polarizabilities of the
initially excited atoms:

αA(ω) = 1

�

∑
n�iA

pA
n (t)

∑
k

(
dA

kndA
nk

ωA
kn + ω

+ dA
nkdA

kn

ωA
kn − ω

)
,

αB(ω) = 1

�

∑
l�iB

pB
l (t)

∑
p

( dB
pld

B
lp

ωB
pl + ω

+ dB
lpdB

pl

ωB
pl − ω

)
. (10)

The resonant contribution reads

Fr
A(rA,rB,t)

= μ2
0

∑
n�iA

pA
n (t)

∑
k<n

∇A Re
{(

ωA
nk

)4

× dA
nk · G

(
rA,rB,ωA

nk

) · αB

(
ωA

nk

) · G
(
rB,rA,ωA

nk

) · dA
kn

}
+μ2

0

∑
l�iB

pB
l (t)

∑
p<l

∇A

{(
ωB

lp

)4

× dB
lp · G

(
rB,rA,ωB

lp

) · αA

(
ωB

lp

) · G∗(rA,rB,ωB
lp

) · dB
pl

}
.

(11)

For large distances the resonant contribution dominates over
the nonresonant one. Two terms, one oscillating and one
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FIG. 2. vdW interaction between one cesium atom in the ground
state (5 2S1/2) and an excited rubidium atom (5 2P1/2). The thick line
represents the force on rubidium and the dashed one that on cesium.

monotonic, are involved in the resonant contribution. Their
behavior can be seen explicitly for isotropic atoms in free
space:

Fr
A(r,t) = − 1

12π2ε2
0r

7
er

∑
n�iA

pA
n (t)

∑
k<n

∣∣dA
nk

∣∣2

×αB

(
ωA

nk

)[(
9 − 16x2

nk + 3x4
nk

)
cos(2xnk)

+ (
18xnk − 8x3

nk + x5
nk

)
sin(2xnk)

]

− 1

12π2ε2
0r

7
er

∑
l�iB

pB
l (t)

∑
p<l

∣∣dB
lp

∣∣2

×αA

(
ωB

lp

)(
9 + 2y2

lp + y4
lp

)
, (12)

where xnk = rωA
nk/c and ylp = rωB

lp/c, er = r/r . When both
atoms are excited, the monotonic and oscillating results both
contribute and can be attributed to different physical processes
[22]: the oscillating result is related to a reversible exchange
of excitation (“pendulation”) and the monotonic form with an
effectively irreversible (Forster) excitation transfer.

When only one atom is excited, the force acting on the
excited atom is oscillating; on the other hand, the force acting
on the ground-state atom is monotonic, consistent with the
perturbative result in [20]. This implies a violation of the
action-reaction principle in excited systems in free space.
The interaction is accompanied by the transfer of linear
momentum to the electromagnetic vacuum; this momentum is
ultimately released through directional spontaneous emission
of the excited atom [24].

In Fig. 2, we show the vdW force acting on a rubidium
atom and on a cesium atom in free space, the rubidium atom
being in the excited state 5 2P1/2 and the cesium atom in the
ground-state 5 2S1/2 (see [31]); the force is represented for
times much shorter than the atomic lifetime and much larger
than the inverse of the atomic frequency, so that the populations
of the states may be considered constant and the atomic
dynamical self-dressing is not present. At large distances the
resonant term dominates and the force on the excited atom
shows Drexhage-type oscillations with an amplitude r−2. The
force acting on the ground-state atom is monotonic. At small
distances, we find a nonoscillating repulsive force for both
atoms.

FIG. 3. Body-assisted vdW interaction: the exchanged photons
can be reflected by the body’s surface.

However our theory is more general because it includes
the presence of general environments for the two atoms, like
magnetodielectric bodies. Many differences arise in this more
general case. First the interaction can be described as a two-
photon process, where the photons can be reflected by the
body’s surface (see Fig. 3); this reflection is mathematically
described in our formalism by the scattering Green tensor,
which is known for many geometries and magnetodielectric
properties. Secondly due to the presence of the additional body
the action-reaction principle is also violated for ground-state
atoms, with the interaction being accompanied by the transfer
of linear momentum to the body. Lastly the total force acting
on one molecule is not parallel to the interparticle separation
vector.

We see that the resonant contribution vanishes for times
much larger than the atomic lifetimes (Fr

A ∝ pA
n (t) = e−�A

n t ),
when the atoms have decayed to the ground state. Figure 4
represents this population-induced dynamics for the force
acting on the excited rubidium at a given distance. We see
that for time much larger than the atomic lifetime the force
converges to the ground-state force, which is attractive. For
times much smaller than the atomic lifetime the force is

0.02 0.04 0.06 0.08 0.10 0.12 0.14
t[µs]

−0.2

0.0

0.2

0.4

0.6

0.8

1.0
F(t)/F(0)

FIG. 4. Population-induced dynamics for the vdW force acting
on the excited rubidium atom (thick line). The rubidium atom is in
the 5 2P1/2 state, while the cesium is in the ground state. The distance
between the atoms is r = 10 nm.
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repulsive and roughly one order of magnitude larger than the
ground-state force.

As stated above, the resonant force on the excited atom may
be associated with photon recoil due to spontaneous emission.
The fact that this force is stronger at small times can be
understood from its ensemble-average nature: the probability
of photon emission (and hence recoil) is highest for small times
where a large fraction of the ensemble atoms are still in their
excited state.

IV. COMPARISON TO CASIMIR-POLDER FORCE

Let us compare our result with the experimentally observed
single-atom Casimir-Polder force. If an initially excited atom
A is placed near a magnetodielectric body, the resonant
contribution, associated with a possible emission of a real
photon, reads [28]

Fr
A(rA,t) = μ0

∑
n�iA

pA
n (t)

∑
k<n

(
ωA

nk

)2

×∇ARe
{
dA

nk · G1(rA,rA,ωA
nk

) · dA
kn

}
, (13)

where G1 is the body’s scattering Green’s tensor. If the body is
made up of ground-state atoms with polarizability αB(ω) and
positions rB and number density η(r), it can be expressed in
terms of a leading-order Born expansion [32]:

G1(rA,rA,ω) = μ0ω
2
∫

d3rB η(rB)G0(rA,rB,ω) · αB(ω)

· G0(rB,rA,ω) + · · · , (14)

where G0 is the free-space Green’s tensor. The substitution of
this expansion into the single-atom Casimir-Polder force leads
to a resonant force

Fr
A(rA,t) =

∫
d3rB η(rB)Fr

A(rA,rB )

=
∫

d3rB η(rB)μ2
0

∑
n�iA

pA
n (t)

∑
k<n

∇A Re
{(

ωA
nk

)4
dA

nk

· G0(rA,rB,ωA
nk

) · αB

(
ωA

nk

)· G0(rB,rA,ωA
nk

)· dA
kn

}
(15)

on the excited atom which is simply the sum over the
(oscillating) resonant forces (11) on the excited atom due
to the ground-state atoms constituting the body. Note that a
monotonous force contribution is absent from the single-atom
Casimir-Polder force (15), as the atoms in the body are
not excited. In the present combination of an excited atom
interacting with a ground-state atom, we would expect the
force on the body to contain a monotonous Casimir-Polder
force component. However, the force on the body is usually
not considered in the context of Casimir-Polder physics due to
the strongly asymmetric mass ratio.

V. CONCLUSIONS AND OUTLOOK

Our dynamical theory has allowed us to study the vdW force
involving excited atoms in generic environments. It is able to
give a unique answer to the old puzzle whether the respective

interaction is oscillating or monotonic, without recourse to ad
hoc assumptions or prescriptions.

When one atom is excited we have shown that the
van der Waals force acting on the excited atom indeed
shows Drexhage-type oscillations, while the force acting
on the ground-state atom is monotonic. We have explicitly
demonstrated that the oscillating force is consistent with the
respective Casimir-Polder force between an excited atom and
a ground-state body. On the contrary, the monotonic forces
components cannot be deduced from the atom-body force
in this way, because they act on the atoms inside the body,
whereas Casimir-Polder calculations are usually restricted to
calculating the force on the single atom in front of the body.

The oscillating force on the excited atom could have pro-
found implications on the spatial correlations of excited atomic
ensembles, in particular for Rydberg systems. In addition, both
the oscillating and monotonous force components are expected
to arise in waveguides as recently studied in Refs. [33–36]. It
could be also interesting to generalize our model to include
finite temperature, by changing the fluctuation relations of the
electromagnetic field, and to consider many-body vdW forces.
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APPENDIX

1. Perturbative expansion of the force operator

We consider the dynamics of an operator ρ̂(t), which is
a superposition of operators Ôn(t) with complex coefficients
fn(t):

ρ̂(t) =
∑

n

fn(t)Ôn(t) (A1)

and we introduce a time limit which acts only on the operators:

ρ̂(t)|t→t1
=

∑
n

fn(t)Ôn(t1). (A2)

The operators Ôn(t) evolve dynamically according to the
Heisenberg equations:

∂t Ôn(t) = 1

i�
[Ôn(t),Ĥ (t)], (A3)

where Ĥ is the total Hamiltonian. This equation can be
integrated from the initial time t0 to a given time t :

Ôn(t) = Ôn(t0) + 1

i�

∫ t

t0

dt1[Ôn(t1),Ĥ (t1)]. (A4)

This equation shows that the dynamical evolution of the
operators ρ̂ is

ρ̂(t) = ρ̂(t)
∣∣
t→t0

+ 1

i�

∫ t

t0

dt1
[
ρ̂(t)

∣∣
t→t1

,Ĥ (t1)
]
. (A5)
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The vdW force operator acting on the atom A, due to the
presence of other atoms, is

F̂A(t) = ∇[d̂A · ÊA/(r,t)]r=rA
, (A6)

where the field ÊA/(rA,t) represents the total electric field,
excluding the radiation reaction of atom A. Using Eq. (A5) we
find the dynamical equation for the force:

F̂A(t) = F̂A(t)
∣∣
t→t0

+ 1

i�

∫ t

t0

dt1
[
F̂A(t)

∣∣
t→t1

,Ĥ (t1)
]
. (A7)

This equation can be reiterated considering now the dynamics
of the commutator [F̂A(t)|t→t1

,Ĥ (t1)], which is a superposition
of operators at the time t1. Therefore, for weak coupling,
we can construct a perturbative expansion F̂A(t) in terms of
operators at the initial time t0:

F̂A(t) = F̂A(t)
∣∣
t→t0

+ 1

i�

∫ t

t0

dt1
[
F̂A(t)

∣∣
t→t1

,Ĥ (t1)
]
t1→t0

+
(

1

i�

)2 ∫ t

t0

dt1

∫ t1

t0

dt2

× [[
F̂A(t)

∣∣
t→t1

,Ĥ (t1)
]
t1→t2

,Ĥ (t2)
]
t2→t0

+ · · · .

(A8)

In our model the electric field and the flip operators of the
two atoms are the dynamical variables of the system. Two
different time scales are observed for the dynamical variables;
there is a fast free dynamics and a much slower dynamics due to
the interaction between the atoms and the field. For example,
the free evolution of the flip operators is on time scales of
ω−1

0 ≈ 10−15 s, while the dynamics due to the interaction is
on time scales of �−1 ≈ 10−9 s. We define new dynamical
variables according the formulas:

Ê′(r,ω,t) = eiωt Ê(r,ω,t),

Â′
mn(t) = f A

mn(−t)Âmn(t), (A9)

where

f A
mn(t) = e[iωA

mn−(�A
n +�A

m)/2]t . (A10)

The new dynamical variables change on the time scale of the
interaction and have the following commutator with the total
Hamiltonian [see Eqs. (4) and (5)]:

[Ê′
A/(r,ω,t),Ĥ (t)] = −�μ0

π
eiωt

×
∑
m,n

f B
mn(t)ω2ImG(r,rB,ω) · dB

mnB̂
′
mn(t),

[Â′
mn(t),Ĥ (t)] = −

∫ ∞

0
dω f A

mn(−t)
[
e−iωtK̂A

mn(t)

· Ê′
A/(rA,ω,t) + eiωt Ê′†

A/(rA,ω,t)

· K̂A
mn(t)

]
, (A11)

where

K̂A
mn(t) =

∑
k

[
Â′

mk(t)f A
mk(t)dA

nk − Â′
kn(t)f A

kn(t)dA
km

]
(A12)

and a normal ordering prescription is used.
From Eqs. (A11) we see that the commutator between the

Hamiltonian and a dynamical variable increases the number of
electric dipole moments by one. Hence Eq. (A8) represents a
perturbative expansion of the force with the dipole element as
perturbative parameter. In particular, the electric vdW N -body
force FA(rA,r1, . . . ,rN−1) acting on A due to the other atoms,
with positions r1, . . . ,rN−1, contains 2N electric dipole matrix
elements; this force results from the application of 2N − 1
commutators:

FA(rA,r1, . . . ,rN−1,t)

=
(

1

i�

)2N−1 ∫ t

t0

dt1

∫ t1

t0

dt2 · · ·
∫ t2N−2

t0

dt2N−1

×〈I |[[ · · · [[F̂A(t)
∣∣
t→t1

,Ĥ (t1)
]
t1→t2

,Ĥ (t2)
]
t2→t3

,

. . . ,Ĥ (t2N−2)
]
t2N−2→t2N−1

,Ĥ (t2N−1)
]
t2N−1→t0

|I 〉,
(A13)

where the expectation value is taken over the atomic+ field free
state |I 〉. This approximate solution to the coupled dynamics
is equivalent to an iterative use of the atom-field equations,
and it is valid for weak coupling between atoms and field.

The expectation value on free atomic and field states can be
easily performed, since after the limit t2N−1 → t0 the resulting
operators are evaluated at the same initial time t0, which
represents the time at which the electric field and the atoms
are uncoupled.

2. van der Waals interaction between two atoms

We consider now the vdW interaction between two atoms.
We suppose that the atomic states are incoherent superposi-
tions of energy eigenstates |nA〉 and |lB〉 and the state of the
field is the ground state.

In normal ordering, the force operator [see Eq. (A6)] can
be expressed in terms of the new dynamical variables:

F̂A(t) =
∑
m,n

∫ ∞

0
dωf A

mn(t)e−iωt∇{
Â′

mn(t)dA
mn · Ê′

A/(r,ω,t)
}

r=rA
+ H.c. (A14)

The two-body vdW interaction, which contains four electric dipole moments, involves three commutators:

FA(rA,rB,t) =
(

1

i�

)3 ∫ t

t0

dt1

∫ t1

t0

dt2

∫ t2

t0

dt3
〈[[[

F̂A(t)
∣∣
t→t1

,Ĥ (t1)
]
t1→t2

,Ĥ (t2)
]
t2→t3

,Ĥ (t3)
]
t3→t0

〉
. (A15)
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With the help of Eqs. (A11), the commutators can be evaluated. For example, the application of one and two commutators
gives

1

i�

[
F̂A(t)

∣∣
t→t1

,Ĥ (t1)
] = i

�

∑
m,n

∫ ∞

0
dω

∫ ∞

0
dω′e−iωtf A

mn(t − t1)∇{[
e−iω′t1 K̂A

mn(t1) · Ê′
A/(rA,ω′,t1)

+ eiω′t1 Ê′†
A/(rA,ω′,t1) · K̂A

mn(t1)
]
dA

mn · Ê′
A/(r,ω,t1)

}
r=rA

+ iμ0

π

∑
m,n,r,s

∫ ∞

0
dω ω2

× e−iω(t−t1)f A
mn(t)f B

rs (t1)∇{
Â′

mn(t1)B̂ ′
rs(t1)dA

mn · Im G(r,rB,ω) · dB
rs

}
r=rA

+ H.c.,
(

1

i�

)2[[
F̂A(t)

∣∣
t→t1

,Ĥ (t1)
]
t1→t2

,Ĥ (t2)
] = − μ0

π�

∑
m,n,r,s

∫ ∞

0
dω

∫ ∞

0
dω′f A

mn(t − t1)f B
rs (t2)

×∇{
ω′2e−iωt

[
e−iω′(t1−t2)K̂A

mn(t1)
∣∣
t1→t2

· Im G(rA,rB,ω′) · dB
rsB̂

′
rs(t2)

− eiω′(t1−t2)B̂ ′
rs(t2)dB

rs · Im G(rB,rA,ω′) · K̂A
mn(t1)

∣∣
t1→t2

]
dA

mn · Ê′
A/(r,ω,t2)

+ω2e−iω(t−t2)
[
e−iω′t1 K̂A

mn(t1)
∣∣
t1→t2

· Ê′
A/(rA,ω′,t2)

+ eiω′t1 Ê′†
A/(rA,ω′,t2) · K̂A

mn(t1)
∣∣
t1→t2

]
dA

mn · Im G(r,rB,ω) · dB
rsB̂

′
rs(t2)

}
r=rA

− μ0

π�

∑
m,n,r,s

∫ ∞

0
dω

∫ ∞

0
dω′e−iω(t−t1)ω2∇({

f A
mn(t − t2)f B

rs (t1)
[
e−iω′t2 K̂A

mn(t2)

· Ê′
A/(rA,ω′,t2) + eiω′t2 Ê′†

A/(rA,ω′,t2) · K̂A
mn(t2)

]
B̂ ′

rs(t2) + f A
mn(t)f B

rs (t1 − t2)Â′
mn(t2)

× [
e−iω′t2 K̂B

rs(t2) · Ê′
B/(rB,ω′,t2) + eiω′t2 Ê′†

B/(rB,ω′,t2) · K̂B
rs(t2)

]}
× dA

mn · Im G(r,rB,ω) · dB
rs

)
r=rA

+ H.c. (A16)

The commutators between K̂mn and the Hamiltonian have not been considered since they lead to higher-order corrections in the
electric dipole dA and dB .

We then evaluate the last commutator and take the expectation value on the atomic and field states. The thermal expectation
value over the free-field variables can be performed with the help of the following fluctuation relations for zero temperature
[10,28]:

〈Ê(0)(r,ω,t)Ê(0)†(r′,ω′,t)〉 = �μ0

π
ImG(r,r′,ω)ω2δ(ω − ω′). (A17)

After some algebra we obtain

F(rA,rB,t) = − iμ2
0

2π2�

∑
n,l

pA
n (t)pB

l (t)
∑
k,p

∫ ∞

0
dω

∫ ∞

0
dω′ω2ω′2∇AdA

nk · ImG(rA,rB,ω) · dB
pl

× dB
lp · ImG(rB,rA,ω′) · dA

kn

∫ t

t0

dt1

∫ t1

t0

dt2

∫ t2

t0

dt3

× {
e−iω(t−t1)[f A

nk(t − t2) − f A
kn(t − t2)

][
e−iω′(t2−t3)f B

lp (t1 − t3) − eiω′(t2−t3)f B
pl(t1 − t3)

]
+ e−iω(t−t1)

[
e−iω′(t2−t3)f A

nk(t − t3) − eiω′(t2−t3)f A
kn(t − t3)

][
f B

lp (t1 − t2) − f B
pl(t1 − t2)

]
+ e−iω(t−t2)[f A

nk(t − t1) − f A
kn(t − t1)

][
e−iω′(t1−t3)f B

lp (t2 − t3) − eiω′(t1−t3)f B
pl(t2 − t3)

]
+ e−iω(t−t3)[e−iω′(t1−t2) − eiω′(t1−t2)]

[
f A

nk(t − t1) − f A
kn(t − t1)

]
f B

lp (t2 − t3)
} + c.c., (A18)

where ∇A is now applied to both Green’s tensors (after exploiting their symmetry and introducing a factor 1/2). The function f was
defined in Eq. (A10) and pA

n (t) = 〈Ânn(t)〉 and pB
l (t) = 〈B̂ll(t)〉 represent the atomic populations of the states |n〉 and |l〉. We have

considered time-reversal symmetric systems, where dmn is real (dmn = dnm), and reciprocal media [GT(rA,rB,ω) = G(rB,rA,ω)].
With the exception of resonant cavity-QED scenarios, we can assume the quantity ω2ImG(rB,rA,ω) to be sufficiently flat

and to not exhibit any narrow peaks in the vicinity of any atomic frequency (weak coupling). For weak coupling, we may
evaluate the time integral by means of the Markov approximation, extending the lower limit of the time integral to t0 = −∞.
The resulting integrals are not converging. In order to force the convergence we add an infinitesimal factor to the frequency ω,
ω → ω − iε, where ε > 0. Note that the opposite sign convention for this infinitesimal factor would lead to divergent integrals.
Time integration leads to the energy denominators in Table I in the main text.
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The frequency denominators can be combined:

1/D2 + 1/D7 + 1/D10 = 1/(ω(−) − ω′)
(
ω′ + ω

A(−)
kn

)(
ω′ + ω

B(+)
pl

)
,

1/D3 + 1/D6 + 1/D11 = 1/(ω(−) + ω′)
(
ω′ + ω

A(+)
kn

)(
ω′ + ω

B(−)
pl

)
,

1/D1 + 1/D9 = 1

(ω(−) + ω′)
(
ω

A(−)
kn + ω

B(−)
pl

)
(

1

ω(−) + ω
A(−)
kn

+ 1

ω′ + ω
B(−)
pl

)
,

(A19)

1/D4 + 1/D12 = 1

(ω′ − ω(−))
(
ω

A(+)
kn + ω

B(+)
pl

)
(

1

ω(−) − ω
A(+)
kn

− 1

ω′ + ω
B(+)
pl

)
,

1/D5 = 1

(ω(−) − ω′)
(
ω

A(−)
kn + ω

B(−)
pl

)
(

1

ω′ + ω
A(−)
kn

− 1

ω(−) + ω
A(−)
kn

)
,

1/D8 = 1

(ω(−) + ω′)
(
ω

A(+)
kn + ω

B(+)
pl

)
(

1

ω′ + ω
A(+)
kn

+ 1

ω(−) − ω
A(+)
kn

)
,

which implies

16∑
i=1

1

Di

+ c.c. = f1(ω′)
(

1

ω(−) + ω′ + 1

ω(+) − ω′

)
+ f2(ω(−))

(
1

ω′ + ω(−)
+ 1

ω′ − ω(−)

)
+ c.c., (A20)

where we have defined the following functions:

f1(ξ ) = 1(
ω

A(+)
kn + ω

B(+)
pl

)(
ξ + ω

A(+)
kn

) + 1(
ω

A(−)
kn + ω

B(−)
pl

)(
ξ + ω

B(−)
pl

) + 1(
ξ + ω

A(+)
kn

)(
ξ + ω

B(−)
pl

) ,

f2(ξ ) = 1(
ω

A(+)
kn + ω

B(+)
pl

)(
ξ − ω

A(+)
kn

) + 1(
ω

A(−)
kn + ω

B(−)
pl

)(
ξ + ω

A(−)
kn

) +
(

1

ξ + ω
A(−)
kn

− 1

ξ − ω
A(+)
kn

)
1

ξ + ω
B(−)
pl

(A21)

and ω
A(±)
kn = ωA

kn ± i(�A
k + �A

n )/2, ω
B(±)
pl = ωB

pl ± i(�B
p + �B

l )/2, and ω(±) = ω ± iε.
For the first term in Eq. (A20) we integrate over ω and for the second term we integrate over ω′. We use the identity

ImG = (G − G∗)/2i and the Schwarz reflection principle for the Green tensor:
∫ ∞

0
dω′ω′2

(
1

ω′ + ω(−)
+ 1

ω′ − ω(−)

)
ImG(rA,rB,ω′) = 1

2i

∫ ∞

−∞
dω′ω′2

(
1

ω′ + ω(−)
+ 1

ω′ − ω(−)

)
G(rA,rB,ω′). (A22)

The Green’s tensor is analytic in the upper half of the complex plane, including the real axis, and it is also finite at the origin.
We close the path with an infinitely large half-circle in the upper complex half-plane and take the residuum inside the path. The
integral along the infinite semicircle vanishes for rA �= rB because

lim
|ω|→+∞

ω2 G(rA,rB,ω)
∣∣
rA �=rB

= 0. (A23)

We thus find ∫ ∞

0
dω′ω′2

(
1

ω′ + ω(−)
+ 1

ω′ − ω(−)

)
ImG(rA,rB,ω′) = πω2G(rA,rB,−ω). (A24)

The total force can be expressed as the sum of two terms:

FA(rA,rB,t) = F1
A(rA,rB,t) + F2

A(rA,rB,t),

F1
A(rA,rB,t) = μ2

0

2π�

∑
n,l

pA
n (t)pB

l (t)
∑
k,p

∫ ∞

0
dω ω4∇AIm

{[
dA

nk · G(rA,rB,ω) · dB
pl

]2
g1(ω)

}
,

(A25)

F2
A(rA,rB,t) = μ2

0

2π�

∑
n,l

pA
n (t)pB

l (t)
∑
k,p

∫ ∞

0
dω ω4∇A

{∣∣dA
nk · G(rA,rB,ω) · dB

pl

∣∣2
g2(ω)

}
,

012705-8
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where

g1(ω) = f ∗
1 (ω) + f ∗

2 (ω) = 1

ω + ω
B(+)
pl

(
1

ω + ω
A(+)
kn

+ 1

ω + ω
A(−)
kn

− 1

ω − ω
A(−)
kn

)

+ 1

ω
A(+)
kn + ω

B(+)
pl

(
1

ω + ω
A(+)
kn

+ 1

ω + ω
B(+)
pl

)
+ 1

ω
A(−)
kn + ω

B(−)
pl

(
1

ω + ω
A(−)
kn

+ 1

ω − ω
A(−)
kn

)
(A26)

and

g2(ω) = Im[f1(ω) + f2(ω)] = 2 Re

[
1

ω
A(+)
kn + ω

+ 1

ω
A(+)
kn − ω

]
Im

1

ω + ω
B(−)
pl

. (A27)

We consider then the limiting case of vanishing linewidths:

εA = (
�A

n + �A
k

)
/2 → 0+, εB = (

�A
l + �B

p

)
/2 → 0+. (A28)

In this limit the function g1 can be simplified:

lim
εA,B→0+

g1(ω) = 4
(
ω − ωA

kn

)(
ω + ωA

kn

)
[(

ω + ωA
kn

)2 + ε2
A

](
ω − ωA

kn + iεA

)
(
ω + ωA

kn + ωB
pl

)
(
ω + ωB

pl + iεB

)(
ωA

kn + ωB
pl

) . (A29)

Using the property 1
x±iε

= P 1
x

∓ iπδ(x), where P is the principal value, we can also simplify g2:

g2(ω) = 2π Re

[
1

ω
A(+)
kn + ω

+ 1

ω
A(+)
kn − ω

]
δ
(
ω − ωB

lp

)
. (A30)

With these results, after performing a Wick rotation on the imaginary axis we find the following nonresonant and resonant
contributions to the F1

A:

F1
A(rA,rB,t) = μ2

0

2π�

∑
n,l

pA
n (t)pB

l (t)
∑
k,p

∫ ∞

0
dξ ξ 4 g1(iξ ) + g∗

1 (−iξ )

2
∇A

{[
dA

nk · G(rA,rB,iξ ) · dB
pl

]2}

+ μ2
0

2�

∑
n,l

pA
n (t)pB

l (t)
∑
k,p

∇A

(
Res1

{
g1(ω)ω4[dA

nk · G(rA,rB,ω) · dB
pl

]2}

− Res2
{
g∗

1 (−ω)ω4
[
dA

nk · G(rA,rB,ω) · dB
pl

]2})
, (A31)

where Res1 indicates the sum of the residues in the first quadrant and Res2 the sum of the residues in the second quadrant.
Similarly, F2

A reduces to

F2
A(rA,rB,t) = μ2

0

∑
l

pB
l (t)

∑
p<l

(
ωB

lp

)4∇A

{
dB

lp · G
(
rB,rA,ωB

lp

) · αA

(
ωB

lp

) · G∗(rA,rB,ωB
lp

) · dB
pl

}
, (A32)

where αA is the polarizability of the excited atom A. The sum of F1
A and F2

A gives the nonresonant and resonant contributions of
the total vdW force; see Eqs. (9) and (11).

[1] H. B. G. Casimir, Proc. K. Ned. Akad. Wet. 51, 793 (1948).
[2] H. B. G. Casimir and D. Polder, Phys. Rev. 73, 360

(1948).
[3] T. Kihara, Intermolecular Forces (John Wiley & Sons, New

York, 1977).
[4] S. Nir, Prog. Surf. Sci. 8, 1 (1976).
[5] J. de Pater and J. J. Lissauer, Planetary Sciences (Cambridge

University Press, Cambridge, UK, 2010).
[6] J. Preto, M. Pettini, and J. A. Tuszynski, Phys. Rev. E 91, 052710

(2015).
[7] F. M. Serry, D. Walliser, and G. J. Maclay, J. Appl. Phys. 84,

2501 (1998).
[8] M. A. Wilson, P. Bushev, J. Eschner, F. Schmidt-Kaler, C.

Becher, R. Blatt, and U. Dorner, Phys. Rev. Lett. 91, 213602
(2003).

[9] P. Bushev, A. Wilson, J. Eschner, C. Raab, F. Schmidt-Kaler, C.
Becher, and R. Blatt, Phys. Rev. Lett. 92, 223602 (2004).

[10] S. Y. Buhmann, Dispersion Forces I (Springer, Heidelberg,
2012).

[11] E. A. Power and T. Thirunamachandran, Phys. Rev. A 47, 2539
(1993).

[12] L. Gomberoff, R. R. McLone, and E. A. Power, J. Chem. Phys.
44, 4148 (1966).

[13] R. R. McLone and E. A. Power, Proc. R. Soc. London A 286,
573 (1965).

[14] M. R. Philpott, Proc. Phys. Soc. London 87, 619 (1966).
[15] E. A. Power and T. Thirunamachandran, Phys. Rev. A 51, 3660

(1995).
[16] E. A. Power and T. Thirunamachandran, Chem. Phys. 171, 1

(1993).

012705-9

http://dx.doi.org/10.1103/PhysRev.73.360
http://dx.doi.org/10.1103/PhysRev.73.360
http://dx.doi.org/10.1103/PhysRev.73.360
http://dx.doi.org/10.1103/PhysRev.73.360
http://dx.doi.org/10.1016/0079-6816(77)90007-7
http://dx.doi.org/10.1016/0079-6816(77)90007-7
http://dx.doi.org/10.1016/0079-6816(77)90007-7
http://dx.doi.org/10.1016/0079-6816(77)90007-7
http://dx.doi.org/10.1103/PhysRevE.91.052710
http://dx.doi.org/10.1103/PhysRevE.91.052710
http://dx.doi.org/10.1103/PhysRevE.91.052710
http://dx.doi.org/10.1103/PhysRevE.91.052710
http://dx.doi.org/10.1063/1.368410
http://dx.doi.org/10.1063/1.368410
http://dx.doi.org/10.1063/1.368410
http://dx.doi.org/10.1063/1.368410
http://dx.doi.org/10.1103/PhysRevLett.91.213602
http://dx.doi.org/10.1103/PhysRevLett.91.213602
http://dx.doi.org/10.1103/PhysRevLett.91.213602
http://dx.doi.org/10.1103/PhysRevLett.91.213602
http://dx.doi.org/10.1103/PhysRevLett.92.223602
http://dx.doi.org/10.1103/PhysRevLett.92.223602
http://dx.doi.org/10.1103/PhysRevLett.92.223602
http://dx.doi.org/10.1103/PhysRevLett.92.223602
http://dx.doi.org/10.1103/PhysRevA.47.2539
http://dx.doi.org/10.1103/PhysRevA.47.2539
http://dx.doi.org/10.1103/PhysRevA.47.2539
http://dx.doi.org/10.1103/PhysRevA.47.2539
http://dx.doi.org/10.1063/1.1726597
http://dx.doi.org/10.1063/1.1726597
http://dx.doi.org/10.1063/1.1726597
http://dx.doi.org/10.1063/1.1726597
http://dx.doi.org/10.1098/rspa.1965.0165
http://dx.doi.org/10.1098/rspa.1965.0165
http://dx.doi.org/10.1098/rspa.1965.0165
http://dx.doi.org/10.1098/rspa.1965.0165
http://dx.doi.org/10.1088/0370-1328/87/3/302
http://dx.doi.org/10.1088/0370-1328/87/3/302
http://dx.doi.org/10.1088/0370-1328/87/3/302
http://dx.doi.org/10.1088/0370-1328/87/3/302
http://dx.doi.org/10.1103/PhysRevA.51.3660
http://dx.doi.org/10.1103/PhysRevA.51.3660
http://dx.doi.org/10.1103/PhysRevA.51.3660
http://dx.doi.org/10.1103/PhysRevA.51.3660
http://dx.doi.org/10.1016/0301-0104(93)85127-T
http://dx.doi.org/10.1016/0301-0104(93)85127-T
http://dx.doi.org/10.1016/0301-0104(93)85127-T
http://dx.doi.org/10.1016/0301-0104(93)85127-T


BARCELLONA, PASSANTE, RIZZUTO, AND BUHMANN PHYSICAL REVIEW A 94, 012705 (2016)

[17] Y. Sherkunov, Phys. Rev. A 75, 012705 (2007).
[18] M. Donaire, R. Guérout, and A. Lambrecht, Phys. Rev. Lett.

115, 033201 (2015).
[19] P. R. Berman, Phys. Rev. A 91, 042127 (2015).
[20] L. Rizzuto, R. Passante, and F. Persico, Phys. Rev. A 70, 012107

(2004).
[21] H. R. Haakh, J. Schiefele, and C. Henkel, Int. J. Mod. Phys.:

Conf. Ser. 14, 347 (2012).
[22] P. W. Milonni and S. M. H. Rafsanjani, Phys. Rev. A 92, 062711

(2015).
[23] M. Donaire, Phys. Rev. A 93, 052706 (2016).
[24] M. Donaire, arXiv:1604.07071.
[25] S. Scheel, S. Y. Buhmann, C. Clausen, and P. Schneeweiss, Phys.

Rev. A 92, 043819 (2015).
[26] H. Safari and M. R. Karimpour, Phys. Rev. Lett. 114, 013201

(2015).
[27] S. Y. Buhmann and D. G. Welsch, Prog. Quantum Electron. 31,

51 (2007).

[28] S. Y. Buhmann, Dispersion Forces II (Springer, Heidelberg,
2013).
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