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Observing random walks of atoms in buffer gas through resonant light absorption
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Using resonant light absorption, random-walk motions of rubidium atoms in nitrogen buffer gas are observed
directly. The transmitted light intensity through atomic vapor is measured, and its spectrum is obtained, down to
orders of magnitude below the shot-noise level to detect fluctuations caused by atomic motions. To understand the
measured spectra, the spectrum for atoms performing random walks in a Gaussian light beam is computed, and its
analytical form is obtained. The spectrum has 1/f 2 (f is frequency) behavior at higher frequencies, crossing over
to a different, but well-defined, behavior at lower frequencies. The properties of this theoretical spectrum agree
excellently with the measured spectrum. This understanding also enables us to obtain the diffusion constant, the
photon cross section of atoms in buffer gas, and the atomic number density from a single spectral measurement.
We further discuss other possible applications of our experimental method and analysis.
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I. INTRODUCTION

Thermal motion is inevitable for any object at finite
temperatures. On the microscopic scale, perhaps the most well
known example is the Brownian motion of particles, which is
optically visible [1–3]. Even on a smaller scale, the thermal
motions of the atoms are visible through surface fluctuations
of liquids [4–6], high-power interferometry measurements on
mirrors [7], and complex materials [8]. In gases, the ballistic
thermal motion of atoms and molecules leads to the transit
time broadening of the resonant widths [9], and the free
streaming of atoms can be observed through their transit noise
in light [10]. When atoms have relatively shorter mean free
paths, such as when buffer gas is present, we expect the
atoms to perform random-walk behavior caused by collisions
with other atoms and molecules. This has been seen only
indirectly through spin-relaxation methods [12–15] and from
the resulting diffusion [16]. Our main objective is to observe
the random-walk behavior of the atoms themselves directly.

Perhaps the most direct way to see objects is just to shine
light on the object and observe its absorption or scattering.
This is precisely what is performed in this experiment. We
measure light absorption of atoms transiting a beam of light.
There are, however, a number of theoretical and technical
obstacles that need to be overcome. First, any observation
affects the observed, and it is difficult to directly observe each
collision and the free motion of an atom between collisions
without qualitatively changing their motion since the particles
performing the measurement have momenta ∼h/λ, where λ

is the mean free path or smaller. While this is a fundamental
quantum-mechanical principle, we can still use photons with
smaller momenta, which have longer wavelengths, to directly
observe atoms undergoing random-walk behavior, through
their absorption spectra. The fluctuations in these spectra
clearly reflect the motions of the atoms. Such a direct measure-
ment has not been performed previously to our knowledge, and
this is what we accomplish in this work.
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Experimentally, light was shone on rubidium atoms in
nitrogen buffer gas. The light frequency was tuned to a
resonance of the rubidium atoms; the transmitted power
of light was measured, and its fluctuations were analyzed
[Fig. 1(a)]. While this is, in principle, simple, the fluctuations
need to be measured down to orders of magnitude below the
shot-noise level, or the standard quantum limit, to uncover
the spectra. Shot noise is the quantum statistical noise in
the number of detected photons of the light beam transmitted
through the cell, which contributes to the photocurrent power
spectrum as 2eI (e is the electron charge, I is the photocurrent).
To obtain the spectrum to the desired precision, the experiment
is configured so that statistical analysis involving correlation
analysis is applicable. To understand the observed behavior,
we compute the spectrum of atoms performing random walks
in a light beam theoretically and derive its form analytically.
The theoretical spectra are compared to the experimentally
observed spectra, and their properties are found to be in
excellent agreement.

We describe the concept and the setup of the experiment
briefly in Sec. II, explain the theory behind the power spectrum
of atoms performing random walks in a Gaussian light beam
in Sec. III, and analyze the experimentally measured spectra
in view of the theory in Sec. IV. We end with conclusions and
discussions in Sec. V.

II. DESIGN AND SETUP OF THE EXPERIMENT

The basic concept underlying our experiment, shown in
Fig. 1(a), is to just measure the fluctuations in the light
transmitted through atoms and molecules in a cell. In our
experiment, the cells contain rubidium atoms and nitrogen
molecules which serve as the buffer gas. The obtained
fluctuation spectrum is

S(f ) = 1

Tmeas
|P̃(f )|2, P̃(f ) =

∫ Tmeas

0
dte−i2πf tP(t),

(1)

where P is the power of the transmitted light and the tilde
denotes its Fourier transform [17]. f is the frequency, and
Tmeas is the measurement time. In practice, however, the setup
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FIG. 1. Configuration of the experiment: a resonant laser light
beam is shone through a rubidium cell, its transmitted power is
measured by the photodetectors (PD), and the power fluctuation
spectrum is computed. (a) The conceptual design of the experiment.
(b) The setup used in the measurements. Differential measurement
from the two beams is used to remove the correlated noise (+−), and
the correlations of the transmitted power from the same beam D1,D2

are used to extract the signal (see text). The photodetector outputs are
converted to a digital signal by the analog to digital converters (ADC),
Fourier transforms are performed (FFT), and then correlations are
computed and averaged. FFT and averagings are performed on a
computer.

in Fig. 1(a) by itself is not sufficient to extract the spectrum.
This spectrum will be almost completely buried under other
unwanted noise, in particular the shot noise. Often referred to
as the “standard quantum limit,” shot noise is usually a limiting
factor in the precision of photometric measurements [18].
Therefore, to achieve the desired results, sophisticated noise-
reduction methods need to be performed to remove the shot
noise, along with laser noise and the other extraneous noise,
to levels which allows us to recover the fluctuation spectrum.
This full experimental design is shown in Fig. 1(b). Resonant
light is shone through a cell (depth dz = 44 mm, diameter of
44 mm) containing rubidium atoms in nitrogen buffer gas. The
rubidium atoms are at saturation density, and the nitrogen gas
has a pressure of 200 Torr. To reduce the unwanted noise,
we compute the correlations of the measurements from two
independent photodetector measurements D1,D2 of the same
atomic vapor. The shot noises in D1,2 are independent, so that

〈D̃1D̃2〉 −→ |S̃|2 (N → ∞), (2)

where 〈· · · 〉 denotes averaging and the relative statistical error
here is 1/

√
N , with N being the number of averagings [8].

This statistical reduction can reduce any uncorrelated noise,
including shot noise, to any desired level, in principle. There
is another technical complication in that unwanted correlated
noise, such as laser noise, also appears. This was removed
through differential measurement, using the measurements
from two light beams, as seen in Fig. 1(b). The light beams
were separated by 15 mm in this experiment. The averagings
of correlations of Fourier-transformed transmitted power
measurements, combined with the differential measurements,
allowed us to extract the desired spectra, Eq. (1). The incoming
light was tuned to the 85Rb -D2 transition from the hyperfine
levels 5 2S1/2 to 5 3

P3/2 [19] and was circularly polarized
using a quarter-wave plate. The beam radius w was measured
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FIG. 2. An observed spectrum with and without correlation
measurements (solid red and dashed blue lines, respectively). Without
the correlation measurement, the spectrum reduces to the shot-noise
level at higher frequencies. Shot-noise level is also shown (grey
dots). Some extraneous noise still remains at higher frequencies.
P = 58 μW, w = 0.34 mm, and temperature was 46.4 ◦C in this
measurement. For comparison, the transit-noise spectrum of the
rubidium gas without buffer gas with the same w and similar P
is also shown for f > 1.6 kHz (P = 68 μW, short-dashed magenta
line).

with a linear image sensor (Hamamatsu Photonics S9227),
and transmitted power was measured using photodiodes (PD,
Hamamatsu Photonics S5973), as in Fig. 1. Light beams
with powers P of 0.1–1 mW and radius w = 0.3–1 mm
were used, and the typical measurement times were around
2000 s. A similar experimental setup was used to measure the
transit noise, Rabi noise, and Zeeman noise of rubidium atoms
without the buffer gas [10], and its principle of noise reduction
is explained in more detail in [11].

In our experiment, S is generated by atoms transversing
the beam and will be referred to as the transit noise below.
The transit-noise spectra are calibrated using the shot-noise
spectra measured by the photodetector. An example of the
obtained spectrum is shown in Fig. 2, in which the transit
noise was acquired down to four orders of magnitude below
the shot-noise level. This spectrum qualitatively differs from
that of atoms freely streaming across the beam, which is also
shown.

III. SPECTRUM OF ATOMS PERFORMING
RANDOM WALKS

Let us now compute the spectrum of atoms performing
random walks in a Gaussian beam of light. The form of
the fluctuation spectrum is determined by the movement of
the individual atoms in a light beam with inhomogeneous
intensity. The electric field strength E(x,y) and the intensity of
a monochromatic Gaussian light beam I (x,y) with the angular
frequency ω = 2πf are

E(x,y) = Eoe
ikz−iωt , I (x,y) = Ioe

−2(x2+y2)/w2
,

I0 = 1
2cε0E2

0 , (3)

where the light-beam direction was taken to be along the z axis,
w is the beam radius, and ck = ω. ε0 and c are the permittivity
and the speed of light in vacuum. When resonant light is shone
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on it, an atom radiates as a dipole with the power,

℘(t) = μ2
Rbω

4�
|E(x,y)|2 �

(�ω + kvz)2 + �2/4
. (4)

Here, x,y is the location of the atom in the x,y plane, vz is the
velocity of the atom in the beam direction, μRb is the dipole
moment of the atom, �ω is the amount of detuning, and �

is the linewidth. In our experiments, the light is tuned to the
resonance, and due to the effect of the buffer gas, the linewidth
is larger than the Doppler shift effect kvz, so that the dipole
radiation power can be well described by

℘(t) 	 σI (x,y), σ = 2μ2
Rbω

�cε0�
. (5)

The expression for σ is the standard formula for the photon
absorption cross section [20], except for the natural width
being replaced by �. In this picture, we are treating the elec-
tromagnetic fields semiclassically, which ignores saturation
effects. Under the conditions of our experiments, the lifetime
of atoms in the excited states is short due to collisions with
buffer-gas molecules, making this treatment appropriate.

Since atoms radiate the absorbed light in all directions
independently, they reduce the forward light transmission.
The power spectrum, Eq. (1), for the fluctuations in the
transmission of a Gaussian light beam that has passed through
atomic vapor can be obtained by summing over the power
radiated by the atoms, Eq. (5), as

S(f ) = 1

Tmeas

∣∣∣∣∣∣
∑

j

∫ Tmeas

0
dte−iωtσ I (xj (t),yj (t))

∣∣∣∣∣∣
2

= 1

Tmeas
(σI0)2

∑
j

∫ Tmeas

0
dt

∫ Tmeas

0
dt ′ e−iω(t−t ′)

× e−2[xj (t)2+yj (t)2]/w2
e−2[xj (t ′)2+yj (t ′)2]/w2

. (6)

Here, the sum is over the atoms, which are labeled by j .
The atoms are performing the random walks in the buffer gas
independently, so their motions are uncorrelated. This property
was used here. From here on, we drop the cumbersome index
j . An atom performing a random walk travels as

x(t) = x0 + �x(t), �x(t) ≡
∫ t

t0

dt ′ ξ (t ′), x0 = x(t0).

(7)

Here, ξ (t) satisfies

〈ξ (t)ξ (t ′)〉 = 2Dδ(t − t ′), (8)

where D is the diffusion constant and 〈· · · 〉 denotes statistical
averaging. Similar relations exist also for y. The sum of the
contributions of atoms can be computed by first averaging
over the random walks, �x = �x(t),�x ′ = �x(t ′), using
their probability distribution P (�x,�x ′). Since random walks
in each dimension are independent, we may treat spatial
dimensions x,y separately in the averaging. For the x direction,

〈e−2(x2(t)+x2(t ′))/w2〉 =
∫

d�x d�x ′ P (�x,�x ′)

× e−2[(x0+�x)2+(x0+�x ′)2]/w2
. (9)

The distribution is Gaussian in these two variables, with the
probability distribution

P (�x,�x ′) = 1

2π |R|1/2
exp

[
− 1

2|R| (R22�x2 + R11�x ′2

− 2R12�x�x ′)
]
, (10)

where |R| = R11R22 − R2
12. Using the properties of random

walks, Eq. (8), we derive

〈(�x)2〉 = 2D|t−t0|=R11, 〈(�x ′)2〉 = 2D|t ′−t0| = R22,

〈�x�x ′〉 = 2D min(|t − t0|,|t ′ − t0|) = R12. (11)

The integration, Eq. (9), is Gaussian, and a straightforward but
cumbersome calculation yields

〈e−2[x2(t)+x2(t ′)]/w2〉

=
(

1 + 4
(R11 + R22)

w2
+ 16

|R|
w4

)−1/2

× exp

(
−4

x2
0

w4

w2 + 2(R11 + R22) − 4R12

1 + 4(R11 + R22)/w2 + 16|R|/w4

)
.

(12)

By combining the x and y directions and replacing the sum
over the atoms in the spectrum, Eq. (6), by ndz

∫
dx0

∫
dy0,

where n is the number density of atoms, we arrive at the
following final compact form for the spectrum:

S(f ) = π

4
ndzσ

2I 2
0 w2

∫ ∞

−∞
dτ

e−iωτ

1 + 4D|τ |/w2

= πndzσ
2I 2

0 w4

8D
Re[−eiω′

Ei(−iω′)]. (13)

Here, we let t −→ −∞, Ei(x) is the exponential integral
function [21], and ω′ = ωw2/(4D). The 1/Tmeas factor cancels
one of the integrals in the formula for the spectrum, Eq. (6),
since the integrand depends only on the time difference t ′ − t .
Formula (13) is the transmission power spectrum of atoms
individually performing random walks in a Gaussian light
beam. Since

Re[−eiω′
Ei(−iω′)] = 1

ω′2 − 6

ω′4 + O

(
1

ω′6

)
, (14)

we obtain the high-frequency behavior of the spectrum as

S(f ) = C(w,n,P)

f 2
+ · · · , C(w,n,P) = 2nσ 2dzP2D

π3w4
.

(15)

The theoretical spectrum, Eq. (13), is uniquely determined
from the properties of atoms and the experimental parameters.
It should be noted that the diffusion constant D appears in
the spectrum, directly reflecting the motion of atoms. The
shape of the spectrum is governed by D and w, while the
overall coefficient further depends onP,n. While the spectrum
was derived with atoms in mind, it should be evident that
the spectrum is applicable to any light-absorbing particles
performing random walks in a Gaussian beam.
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IV. OBSERVED SPECTRA OF ATOMS IN BUFFER GAS

We shall now compare the properties of the spectrum
derived in the previous section with the spectra observed
experimentally, as explained in Sec. II. We first analyze the
properties of the system in our experimental situation, partly to
understand concretely the background for the approximations
made in the previous section. Rubidium atoms are in nitrogen
buffer gas at 200 Torr at temperatures of 40 ◦C to 50 ◦C. The
average velocity of a rubidium atom is 300 m/s, the Doppler
width is 320 MHz, and the width of the rubidium atoms in
nitrogen buffer gas is �/(2π ) = 3.7 GHz [22], which is about
600 times larger than the natural width [19]. In the buffer
gas, the width of the rubidium resonance is larger than the
hyperfine level splittings, thereby reducing the system to a
two-level system to a good approximation. Due to collisional
broadening, kvz/(2�) ∼ 0.04, so Doppler effects are small in
Eq. (4), as mentioned above. The ratio of photon momentum
to the average rubidium atom momentum is about 3 × 10−5,
making the measurement essentially passive. Light beams with
powers P � 2 mW and beam radii w of 0.2 to 1 mm were
used. The diffusion constant for the rubidium atoms in nitrogen
buffer gas at 200 Torr is D = 1.59(4) × 10−5 m2/s [15]. Then,
the transit time for an atom across a light beam with w = 1 mm
is around 4 ms. The average number of photons absorbed by an
atom during this transit is Pσ/(2hνD), which is interestingly
independent of the beam size. This number is around 2 × 103

for P = 1 mW under our experimental conditions. Due to the
short excited-state lifetime, the ratio of atoms in the excited
state is (μRbE/��)2 ∼ 2 × 10−5 for P = 1 mW, w = 1 mm,
so saturation effects should be negligible in our measurements.

There are several distinct properties of the theoretical
spectrum, Eq. (13):

(1) The shape of the spectrum is independent of P .
(2) S(f ) ∼ 1/f 2 for f � D/w2 but has different behavior

at lower frequencies, so D can be extracted from the spectrum.
(3) S(f ) is proportional to P2 and w−4.
(4) S(f ) is proportional to nσ 2, from which nσ 2 can be

measured.
We shall now investigate these properties in the exper-

imental results: While some physical properties of atoms
were provided above as a background, we shall use only
the quantities measured in our experiments, P,w,dz, and the
experimental spectra in this analysis, unless noted otherwise.
The transit-noise spectra for the buffered rubidium gas is
shown in Fig. 3 for powers P varying more than over an order
of magnitude. One overall coefficient, C(w,n,P), has been
extracted from each experimental spectrum by fitting to 1/f 2

at higher frequencies. From the shape of the measured spectra,
D = 6.0 × 10−5 m2/s was obtained. The theoretical spectra
are compared to the experimentally measured ones in Fig. 3,
and they are all seen to agree quite well. D obtained here is
quite consistent with the previously measured values [15]. The
measured spectra divided by the overall coefficient C(w,n,P)
are shown in Fig. 3 (inset). Theoretically, the rescaled spectra
should be identical, which they are to a high degree.

The dependence of C(w,n,P) on P is shown in Fig. 4.
The P2 behavior is shown and clearly fits the experimental
results quite well. This behavior, which shows no saturation
effects, is consistent with the short lifetime of the excited state,
as mentioned above. The spectrum, Eq. (13), is proportional
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FIG. 3. Power spectra of rubidium atoms in nitrogen gas
(200 Torr) and the corresponding theoretical spectra (thin gray lines),
Eq. (13). The spectra have larger magnitudes for larger light power
P . The theoretical and experimental spectra agree well. Inset: the
experimental spectra rescaled by their overall coefficient, which show
that the shapes of the spectra are the same to a high degree. The vertical
scale is denoted as “S(f ) Resc.,” and the units on the vertical scale are
arbitrary. P = 58.0 (red), 92.8 (green), 197 (blue), 429 (magenta),
and 912 (cyan) μW. w = 0.96 mm, and the temperature of the gas
is 46.4 ◦C. Larger P leads to a larger signal.

to n/w4, so that if values of C(w,n,P) are rescaled by the
inverse values of n/w4, they should all agree. It can be seen
that this is indeed the case in Fig. 4 (inset). For this rescaling,
the number densities ntheory from the literature [19] were used.
These properties agree with those of the theoretical spectrum,
Eq. (13), and show that the coefficient C(w,n,P) is a function
of E0 for a Gaussian beam. It should be recalled, however, that
the shape of the spectrum is rather governed by w and D.

Since the spectrum, Eq. (13), is uniquely determined from
the properties of the atoms and the experimental conditions,
both n and σ can be extracted from the results as follows. By
applying Beer’s law [20] for the transmission rate exp(−nσdz),
we can extract nσ for each experiment using the measured
transmission rate. Then, nσ 2 can be obtained from C(w,n,P)
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FIG. 4. Power P dependence of C(w,n,P): C(w,n,P) and fits
to them proportional to P2 (gray dashed lines) are plotted for
measurements at the following temperatures and w values: 44.6 ◦C,
0.96 mm (�), 46.4 ◦C, 0.34 mm (◦), and 50.0 ◦C, 0.34 mm (). Inset:
P dependence of C(w,n,P)w4/ntheory for the same spectra and its fit
to P2 (gray dashed line). The data can be seen to fall on a single line.
The vertical scale is labeled as “C(w,n,P) Resc.,” and arbitrary units
are used.
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FIG. 5. Cross section σ and the rubidium number density n

extracted from the spectra used in Fig. 4 (the same symbols are
used). Top: measured σ . The theoretical cross section, Eq. (5), is
shown (gray solid line). Bottom: measured rubidium number density
n relative to the number density in the literature ntheory.

from experimentally measured physical parameters. Combin-
ing these data, we arrive at σ,n values extracted from each
set of spectrum and transmission rate measurements, which
we show in Fig. 5. The measured cross section is compared
to the theoretical formula in Eq. (5), using the linewidths in
[22], and the density n is compared to the theoretical rubidium
vapor saturation density [19]. P , w, and the temperature were
measured independently of the spectra, and the theoretical
and experimental results agree reasonably. Compared to the
relative properties analyzed above, the absolute values of the
spectra are much more sensitive to various uncertainties, both
experimental and theoretical.

Here, n and σ are both seen to be independent of E0 within
experimental uncertainties, as would be expected for nonsat-
urated vapor. The photon absorption cross section of atoms in
buffer gas has not been directly measured to our knowledge,
and the simple formula (5) seems to be a good approximation.
While the system should be effectively a two-level system
due to collisional broadening, more detailed analysis may be
necessary to establish the numerical factors precisely. Some
of the more significant experimental uncertainties also should
be mentioned: The power of the light beam entering the
cell and transmitted light can differ by up to 60%, and the
intensity of the beam changes along the beam itself. In this
work, we have consistently used the transmitted power of light
measured by the photodetectors [Fig. 1(b)] when referring to
the power of the light beam P . Furthermore, the incoming
and the transmitted light beams are not perfectly Gaussian,
and the temperature of the gas inside the cell, which affects
the number density of atoms, can have uncertainties of a few
degrees throughout the whole measurement.

V. DISCUSSION

In this work, the time-dependent fluctuations of the light
transmission power of atoms in buffer gas were experimentally
measured, down to four orders of magnitude below the
shot-noise level in their spectra. On the theoretical side, the
spectrum of atoms performing random walks in buffer gas was
investigated, and an analytic form of the spectrum was derived.
The theoretical spectrum was found to describe the observed
spectra quite well.

From a measured spectrum and the transmission rate, the
diffusion constant D, the number density of the rubidium
atoms n, and the photon absorption cross section of the atom
in buffer gas σ can all be obtained. Namely, we can obtain D

from the shape of the spectrum, nσ from the absorption rate,
and then nσ 2 from the overall size of the spectrum. In typical
experimental situations, the combination nσ can be measured
from absorption but not n and σ separately. This is a distinct
feature of the fluctuation measurement, and we believe that
it is interesting and practical to be able to measure these
quantities at the same time, so that the same experimental
conditions are guaranteed.

In the theory of the spectrum of atoms performing random
walks, we used a semiclassical picture. This seems to us to be
the simplest approach and one that should be applied first. It
also seems to describe the observed spectra remarkably well.
Since the Doppler width is much smaller than the linewidth
and the monochromatic light is tuned to the resonance, the
assumption that atoms are in resonance is reasonable. It was
tacitly assumed that σ 2 in the spectrum, Eq. (13), is the square
of σ found in the average transmission rate. However, the
time scale for deexcitation is 3 × 10−10 s, and the decay time
is probabilistic for individual atoms. The cross sections used
in the absorption rate and in the spectrum, Eq. (13), should
therefore be regarded as averaged values. Furthermore, this
time scale is a factor of 15 smaller than the time scale obtained
from the diffusion constant in [15], 6D/v2 ∼ 4 × 10−9 s (v2 is
the average velocity squared of rubidium atoms in three spatial
dimensions). While the deexcitation time scale needs not be
identical to the diffusion time scale, they both come from atoms
colliding with buffer-gas molecules. It is possible that there are
corrections, perhaps including quantum electrodynamics con-
tributions, to the semiclassical picture presented above which
would be of considerable interest. We believe that the transit-
noise measurements could provide a way to address these
questions in more detail. We also find it fascinating that we can
make direct observations of atoms performing random walks.

Since the method we use to measure the transit noise of
atoms has not been used previously, it allows us to investigate
the validity of the standard basic physics principles, which
we feel is important and was also done here. Furthermore, a
new method of measurement can open up new approaches
to understanding atom-photon interactions. We expect this
conceptually simple method to bring about further insight into
their properties. Our approach of measuring transit noise is
applicable to any atoms or molecules, regardless of the density,
pure or mixed, as long as a resonant light source is used. In
particular, the properties of atoms in buffer gas and rubidium
atoms have played an important role in various active areas of
fundamental fields of study in physics, such as atomic clocks
[23,24] and Bose-Einstein condensation of cold atoms [25],
as well as some applications in other fields [26]. Methods
to analyze the properties of atom-photon interactions are of
interest also from such considerations.
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