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Induced dipole-dipole interactions in light diffusion from point dipoles
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We develop a perturbative treatment of induced dipole-dipole interactions in the diffusive transport of
electromagnetic waves through disordered atomic clouds. The approach is exact at order 2 in the atomic density
and accounts for the vector character of light. It is applied to the calculations of the electromagnetic energy stored
in the atomic cloud, which modifies the energy transport velocity, and of the light scattering and transport mean
free paths. Results are compared to those obtained from a purely scalar model for light.
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I. INTRODUCTION

Light propagating in thick cold atomic gases undergoes
a multiple scattering process [1]. At the origin of this
phenomenon, an incoming wave polarizes an atom, which
reemits a wavelet that can polarize another atom. If light
travels over a distance much larger than the mean free path,
this elementary random process repeats itself many times,
so transport becomes diffusive on average. In this simple
picture, the atomic scatterers seem to be independent of each
other. This, however, may no longer be a good approximation
when the number of atoms becomes large at the scale of the
wavelength of the light [2]. Indeed, in this regime an atom
that polarizes its neighbor can receive back the radiation, thus
yielding an interaction energy between the two atoms. When
considered from the point of view of the propagating wave,
this phenomenon is referred to as dependent scattering. When
considered from the point of view of the two atoms, it is known
as induced dipole-dipole coupling (IDDC) and is, in particular,
connected with the mechanisms of super- and subradiance
[3,4].

Induced dipole-dipole coupling between pairs of scatterers
affects the optical properties of atomic clouds [5–7]. In
particular, in dilute clouds where light propagates by diffusion,
they modify the diffusion coefficient. Accounting for these
corrections is a highly nontrivial problem that requires keeping
track of energy conservation (guaranteed by the Ward identity)
in the perturbation theory. This task was accomplished in
the past for scalar waves [8]. When dealing with multiple
scattering of light, however, an additional difficulty lies
in the vector nature of electromagnetic waves. Because of
this peculiarity, near-field effects are more pronounced than
for scalar waves [9], which may have strong consequences
for the impact of IDDC on diffusion. In this paper, we
develop a multiple scattering theory of diffusive transport
of electromagnetic (vector) waves through dilute clouds of
two-level atoms, treating in a rigorous way the cooperative
interaction between pairs of scatterers. This allows us to
derive the lowest-order dependent-scattering corrections to the
scattering and transport mean free paths and to the energy
transport velocity, which are the three fundamental quantities
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governing light diffusion. We then compare these results to
the previously studied scalar model [8] and comment on the
differences. We finally discuss how our results could guide
a description of multiple scattering of electromagnetic waves
in atomic clouds of higher densities, where near-field effects
were recently suggested to be responsible for the absence of
Anderson localization [10,11]. The main results of the paper
are presented in Secs. II, III, IV, and V. They are based on
the transport theory for vector waves in random media, whose
main lines are recalled in Appendix A. Finally, some technical
results are collected in Appendix B.

II. DIFFUSION OF ELECTROMAGNETIC WAVES IN
ATOMIC CLOUDS

Let consider a quasimonochromatic electromagnetic wave
of carrier frequency ω emitted by a point source located inside
a three-dimensional, nondegenerate atomic gas of two-level
atoms of resonance frequency ω0. For simplicity we assume the
atomic transition to involve a nondegenerate ground state with
angular momentum J = 0 and an excited state with J = 1.
From here on we also neglect saturation effects as well as
Doppler shifts resulting from the atomic motion. This reduces
the model to a classical description of light scattering from
uncorrelated point dipoles at rest. Since we consider a dilute
atomic cloud, the number of atoms in an optical volume is
typically small, namely,

η = 4πn

k3
� 1, (1)

where k = ω/c is the wave number, c is the vacuum speed
of light, and n is the density of the atomic gas. Under this
condition and in the hydrodynamic limit of long times and
large distances from the source point, the disorder-averaged
light intensity at time t and point r , scattered in the direction
of the wave vector p and detected in the polarization channel
ε, is given by

Iω( p,r,t)∼
∫

d�

2π

d3q
(2π )3

A(ω,p)eiq·r−i�t

−i� + Dq2
[1 − ( p̂ · ε)2],

(2)
where p̂ = p/p, D is the diffusion coefficient, and A(ω,p)
is the spectral function (defined below). Iω( p,r,t) is the
optical analog of the Wigner distribution for massive particles.
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When integrated over | p|, it defines the so-called specific
intensity [12]. The term within the square brackets signals the
transverse character of light at large distances from the source
point. A microscopic derivation of Eq. (2) is presented in
Appendix A based on a semiclassical vector transport theory in
random media initially developed in [13,14]. Note that Eq. (2)
implicitly assumes the existence of a diffusion pole at long
times, which in three dimensions is a priori true only in the
weak-disorder limit k�∗ � 1, where �∗ is the transport mean
free path of light. In dilute gases where Eq. (1) holds, this
condition is, however, automatically fulfilled. Indeed, in the
vicinity of the atomic resonance k�∗ = k/(nσ ∗) ∼ 1/η � 1,
where σ ∗ is the resonant atomic cross section [4].

To first order in η, the spectral function in Eq. (2) is given
by

A(ω,p) = 2ω

πc2

ω/(vϕ�s)

(ω2/v2
ϕ − p2)2 + [ω/(vϕ�s)]2

, (3)

where vϕ is the phase velocity, i.e., the vacuum speed of light
divided by the effective refractive index of the atomic gas. The
explicit expression of vϕ will be given below [see Eq. (17)].
�s is the scattering mean free path, i.e., the average distance
traveled by light between two consecutive scattering events.
In this paper, we will study �s by means of a second-order
perturbation expansion in the parameter η � 1. Using vector
transport theory, we show in Appendix A that the diffusion
coefficient of electromagnetic waves is given by

D = vE�∗

3
, (4)

which is the same expression as for scalar waves [8]. vE and
�∗ are the two other fundamental transport quantities that we
propose to study in this paper, up to second order in η � 1.
The transport mean free path �∗ is the typical length scale
for randomizing the direction of the wave vector [12]. vE is
the energy transport velocity, i.e., the speed of propagation of
the average Poynting vector, and has been extensively studied
theoretically [15–19] and experimentally [20–22]. As is well
known, for resonant scatterers vE can be very different from
the phase velocity. Furthermore, when induced dipole-dipole
interactions are considered, �∗ can also be different from the
scattering mean free path, sometimes used in the literature to
characterize the diffusion coefficient [23,24].

III. ENERGY TRANSPORT VELOCITY

A. Definition

We start our analysis of IDDC by considering the energy
transport velocity vE , whose general formulation is provided
by the transport theory for electromagnetic waves, recalled in
Appendix A:

vE = c2/vϕ

1 + a
. (5)

In this relation, the phase velocity does not play a major
role, unlike the parameter a, which significantly affects vE

and on which we will focus on from here on. Physically, a

is the combined electromagnetic energy stored in the atomic
dipoles and the interaction energy between them, relative to
the electromagnetic energy in the surrounding environment

[15]. We show in Appendix A that up to second order in η, a

is given by

a = −
( c

ω

)2
[∫

d3 p
(2π )3

ImG
⊥

(ω,p)

]−1

×Im

[∫
d3 p

(2π )3
G

⊥
(ω,p)	⊥(ω,p)

]
+ O(η3). (6)

Equation (6) is similar to the corresponding expression for
scalar waves given in [25], except that the usual Green’s

function is replaced by the transverse part G
⊥

of the second-
rank Green’s tensor G that describes the average propagation
of the electromagnetic field in the cold atomic gas. G obeys
the Dyson equation [12]

G = [
G−1

0 − �
]−1

, (7)

where G0 is the electromagnetic Green’s tensor in free space
and � is the self-energy tensor. � features the elementary
irreducible scattering processes on which multiple scattering
sequences of the electromagnetic field are built. As will be seen
below, to order η2, this includes both the process of light scat-
tering from each individual atomic scatterer and the possibility
for repeated scattering between pairs of atoms. The transverse

component G
⊥

(ω,p) = [ω2/c2 − p2 − 	⊥(ω,p)]−1 follows
from the decomposition

G(ω, p) = G
⊥

(ω,p)P( p) + G
‖
(ω,p) Q( p), (8)

with a similar definition for 	⊥(ω,p). The tensors P( p) and
Q( p) are the transverse and longitudinal projectors, respec-
tively, given by Pij ( p) = δij − p̂i p̂j and Qij ( p) = p̂i p̂j in
coordinate representation (i,j = x,y,z).

The fact that only the transverse parts of tensors � and
G appear in Eq. (6) is a consequence of the low-density
approximation (1). Indeed, as discussed in Appendix A the lon-

gitudinal Green’s function G
‖
(ω,p) = [ω2/c2 − 	‖(ω,p)]−1

does not contribute to a at order 2 in density (note, however,
that the longitudinal part of G0 does contribute to 	⊥; see
below). We will come back to this point in Sec. V C.

B. Results

Having expressed a in terms of the fundamental irreducible
tensor �, we now explain how to evaluate this quantity. In order
to capture the physics of IDDC, we make use of perturbation
theory and expand � up to order η2. Such an approach was
initially developed in [8] for scalar waves. We here generalize
it to vector waves and write

� = �(1) + �(2) + O(η3). (9)

When inserted into the Dyson equation (7), the first order
of this expansion, �(1) = O(η), iterates a multiple scattering
process in which all atoms are independent, as illustrated in
the left panel of Fig. 1. The self-energy �(1), depicted by a
circled cross in Fig. 2(i), is given by the t matrix t(ω) of an
individual two-level atom at frequency ω, multiplied by the
atomic density [4,8,26]:

�(1)(ω) = nt(ω)1 = 6πn

k

�/2

δ + i�/2
1, (10)
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FIG. 1. Sketch of light propagation in a dilute atomic cloud.
Left: multiple scattering from independent atoms [� = �(1)]; the
propagating wave is never scattered more than one time by the same
atom. Right: multiple scattering involving the possibility of repeated
scattering (IDDC) between pairs of atoms [� = �(1) + �(2)].

where 1 denotes the second-rank unit tensor and we have
introduced the natural width � of the atomic transition and the
detuning δ = ω − ω0 with respect to the resonance frequency
ω0.

The second-order correction, �(2) = O(η2), describes all
binary scattering processes [27]: in the course of the propaga-
tion, the light can be repeatedly scattered between two atoms,
as illustrated in the right panel of Fig. 1. This phenomenon
affects transport and also implies a van der Waals–type force
between the two atoms of a pair. The task of identifying
all irreducible pair diagrams contributing to �(2) has been
accomplished in [8,28]. The result can be recast as two infinite
series �(2,a) and �(2,b) that are depicted in Figs. 2(iii) and
2(iv). �(2,a) describes binary processes in which the radiation
incident on one atom eventually returns to the same one. It
reads

�(2,a)(ω) =
∫

d3r
n2t3G2

0(r)

1 − t2G2
0(r)

, (11)

where the frequency dependences of G0 and t have been
omitted to simplify the notations. In position space, the free

(i) (ii)

(iii)

(iv)

(v)

(vi)

FIG. 2. First- [(i), (ii)] and second-order [(iii), (iv), (v), (vi)]
diagrams involved in the calculation of �s , a, and �∗. Dotted arcs
connect identical atoms. Solid lines refer to the free-space Green’s
tensor G0. Circled crosses denote the atomic t matrix.
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FIG. 3. Stored electromagnetic energy per atom a/η [Eq. (14)]
in units of the quality factor ω0/� for η = 0.4 (solid blue curve).
The dashed red curve is the independent-scattering approximation,
Eq. (15). Inset: Second-order contribution δa, Eq. (16).

Green’s tensor reads

G0(r) =
[
−1 + 1

ikr
+ 1

(kr)2

]
eikr

4πr
P(r)

− 2

[
1

ikr
+ 1

(kr)2

]
eikr

4πr
Q(r) + δ(r)

3k2
1. (12)

Finally, the contribution �(2,b) describes all processes in which
the radiation incident on one atom emerges from the second.
It is given by

�(2,b)(ω,p) =
∫

d3r
n2t4G3

0(r)

1 − t2G2
0(r)

ei p·r (13)

and, unlike �(2,a), displays a dependence on the wave number.
Note that this series implicitly contains a local field correction
−n2t2/3k2 stemming from the contact term in Eq. (12), as was
noted by Morice et al. [29]. This term is responsible for the so-
called Lorentz-Lorenz correction to the atomic susceptibility
in a dense medium and has no equivalent in the scalar model of
light [30,31]. If it were the only contribution to �(2), it would
shift the resonance line by the so-called Lorentz-Lorenz shift
�ω = −πn�/k3. In the present case, the other second-order
contributions also affect the line shape (see below).

Making use of Eqs. (9), (10), (11), and (13), we can now
evaluate Eq. (6) to order η2. We find

a = aISA + δa, (14)

where

aISA = − nc

�k
Im t (15)

and

δa = − n2c

�k3
Im

t2

4
− c

�k
Im 	(2,a)⊥(ω). (16)

Let us briefly comment on these expressions. In the
independent-scattering approximation (left panel in Fig. 1),
a � aISA is the total electromagnetic energy stored in the
individual atomic dipoles, relative to the electromagnetic
energy in the surrounding environment. aISA is shown in Fig. 3
as a dashed red curve as a function of the detuning normalized
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to the natural width of the transition, � = δ/�. We here
assume a large quality factor, ω0/� � 1. In the vicinity of
the resonance, aISA ∼ ηω0/� can be significantly larger than
1 even for a low density of scatterers. This phenomenon is
responsible for the low velocity of light propagating through
ensembles of resonant scatterers [20–22]. δa contains two
contributions. The first one [the first term on the right-hand
side of Eq. (16)] is a trivial refractive index correction that
originates from the renormalization of k = ω/c to ω/vϕ in
aISA, where the phase velocity vϕ is given by

vϕ = c

[
1 + Re	(1)⊥(ω)

2k2

]
+ O(η2). (17)

In this formula, the term in the square brackets is the inverse
of the refractive index of the cloud. It is here given only to
lowest order, which is sufficient for the calculation of a up
to second order (second-order corrections to the refractive
index have been studied in [29]). The second term in Eq. (16)
involves 	(2,a)⊥(ω), the transverse component of Eq. (11), and
represents the total interaction energy of the atomic pairs due
to IDDC. Its explicit form is rather cumbersome and is given in
Appendix B. Note that when expanding Eq. (6) to second order
in density and keeping only terms of lowest order in �/ω0 � 1,
one finds that the contribution of �(2,b) vanishes. Thus, only
the loop diagrams �(2,a) contribute to δa, as is expected from
the general expression of the potential that derives from a
dispersion force [32,33].

We show the stored electromagnetic energy a in Fig. 3 as
a function of � for η = 0.4 (blue curve). In the vicinity of
the resonance, the curve displays a dip. This dip stems from
IDDC, as emphasized in the inset of Fig. 3, which shows δa as
a function of �: δa is strongly negative around the resonance.
In other words, the decrease in the energy transport velocity (5)
is partially reduced as compared to the ideal situation where
atoms are independent. To understand this phenomenon, it is
instructive to look at the shape of the interaction potential
VDD(r) between two atoms in a single pair near resonance
[1,34]:

VDD(r) = − 2c

3�k0
ImTr

t3G2
0(r)

1 − t2G2
0(r)

, (18)

where k0 = ω0/c. After summing VDD(r) over all pairs and
integrating over r , one recovers the second term on the
right-hand side of Eq. (16). The shape of VDD(r) is shown
in Fig. 4 for three positive values of � (the case � < 0 is
similar). When � � 1, it displays a narrow peak of width
δr ∼ 1/(k0�

2) and centered at r∗ ∼ 1/(k0�
1/3). This peak

corresponds to interatomic distances where light is resonant
with the subradiant state that results from the coupling between
the two atoms [3] [a second very smooth peak (hardly visible
in Fig. 4) corresponding to the superradiant state also shows up
right next to the subradiant peak]. Far from resonance, VDD(r)
is small everywhere except within the subradiance resonance,
which is so peaked that it entirely controls the sign of δa after
integration over r . This explains the positive value of δa in
the wings of the resonance profile. When � � 1, on the other
hand, the subradiant peak is smoothed out, so the near-field
region where the potential is attractive extends over a broad

0

-1

1

2

3

4

0 1 2 3

FIG. 4. Induced dipole-dipole interaction potential VDD(r) be-
tween two atoms as a function of the interatomic distance r for three
values of �. When � � 1, the curve displays a narrow subradiance
peak. When � → 0, this peak is smoothed out, and the potential
becomes essentially attractive.

range of interatomic distances. This makes δa negative and
explains the dip in Fig. 3.

IV. TRANSPORT AND SCATTERING MEAN FREE PATHS

A. Definition

We now turn to the discussion of the transport mean free
path �∗ for electromagnetic waves. As shown in Appendix A,
in the low-density limit (1), �∗ is given by

1

�∗ = 〈(1 − p̂ · p̂′)U⊥(ω,k p̂,k p̂′)〉 p̂′

8π
+ O(η3), (19)

where 〈· · · 〉 p̂′ denotes the angular average over the direction
of p′. The fourth-rank tensor U involved in this formula is
the irreducible intensity vertex. U is to the average intensity
what � is to the average field and fulfills the Bethe-Saltpeter
equation [12]

G ⊗ G∗ = [(G ⊗ G
∗
)−1 − U]−1. (20)

As for a, at order η2 only the transverse part U⊥ of
the intensity vertex appears in the definition of �∗.
It is defined as U⊥(ω, p, p′) = P( p) · U(ω, p, p′) · P( p′) ≡
Pij ( p)Uij,kl(ω, p, p′)Pkl( p′) (summation over repeated indices
is implied).

The irreducible tensors U and � are not independent of
each other. They are related through the Ward identity for
electromagnetic waves, which guarantees energy conservation
and is thus crucial for the global consistency of the perturbation
theory. The full tensorial form of the Ward identity is given
in Appendix A. It imposes the following relation between the
transverse parts of U and �:

〈U⊥(ω,k p̂,k p̂′)〉 p̂′

8π
= − Im	⊥(ω,k)

ω/vϕ

, (21)

where the phase velocity is given by Eq. (17). Making use of
Eq. (21), we rewrite Eq. (19) under a form that will turn out to
be more convenient for the perturbative expansion of the next
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FIG. 5. Scattering cross section σs [Eq. (24)] in units of 6π/k2
0

(k0 = ω0/c) for η = 0.4 (solid blue curve). The dashed red curve is the
independent-scattering approximation, Eq. (25). Inset: second-order
contribution δσs , Eq. (26).

section:

1

�∗ = − Im	⊥(ω,k)

ω/vϕ

− 〈 p̂ · p̂′U⊥(ω,k p̂,k p̂′)〉 p̂′

8π
. (22)

This definition of �∗ is exact at order η2. The first term on the
right-hand side defines the inverse of the scattering mean free
path:

1

�s

= − Im	⊥(ω,k)

ω/vϕ

. (23)

�s is the average distance traveled by light between two
consecutive scattering events. It also gives the spatial decay
rate of the average electromagnetic field in the disordered
atomic cloud.

B. Results

Using the same perturbative expansion as in Sec. III, we
can straightforwardly evaluate the scattering mean free path
�s . We express the latter in terms of the scattering cross section

σs ≡ 1

n�s

= σISA + δσs, (24)

where

σISA = − Im t

k
. (25)

σISA is the usual Lorentzian cross section of an individual
atomic dipole and is shown in Fig. 5 as a function of � (dashed
red curve). The correction δσs is given by

δσs = − n

k3
Im

t2

4
− Im	(2,a)⊥(ω) + Im	(2,b)⊥(ω,k)

nk
. (26)

Again, beyond the independent-scattering approximation two
types of corrections to the scattering cross section show up.
The first one [first term on the right-hand side of Eq. (26)] is
the refractive index correction to σISA. The second correction
[second term on the right-hand side of Eq. (26)] is due to
IDDC. It involves the transverse components of both the self-
energies (11) and (13), whose explicit expressions are given
in Appendix B. σs is shown in the main panel of Fig. 5 as a
function of � (solid blue curve), and δσs is shown in the inset.

We see that the overall effect of second-order contribution is
rather moderate.

According to Eq. (22), the calculation of the transport mean
free path requires additional knowledge of the irreducible
tensor U . As for �, we expand the latter as

U = U (1) + U (2) + O(η3). (27)

The first-order term, U (1) = O(η), is the well-known ladder
vertex shown in Fig. 2(ii) and given by U (1)(ω, p, p′) =
n|t(ω)|21. Its contribution to σs and σ ∗ is already accounted
for in the first term on the right-hand side of Eq. (22) via the
Ward identity (21). All second-order diagrams contributing to
U (2) have been identified in [8] in the scalar case. Among them,
only the two types displayed in Figs. 2(v) and 2(vi) (as well
as their complex conjugates, not shown in Fig. 2) provide a
nonvanishing contribution to the angular average in Eq. (22).
They are respectively given by

U (2,a)(ω, p, p′) =
∫

d3r n2|t |4ei( p+ p′)·r

× G0(r) ⊗ G∗
0(r)[

1 − t2G2
0(r)

] ⊗ [
1 − t2G2

0(r)
]∗ (28)

and

U (2,b)(ω, p, p′) =
∫

d3r n2|t |2ei( p− p′)·r

×
{

1[
1 − t2G2

0(r)
] ⊗ [

1 − t2G2
0(r)

]∗ − 1

}
.

(29)

Making use of Eqs. (24), (28), and (29), we can now evaluate
the transport mean free path defined by Eq. (22). Expressing
it in terms of the transport cross section σ ∗, we find

σ ∗ ≡ 1

n�∗ = σISA + δσ ∗, (30)

where

δσ ∗ = δσs − 〈 p̂ · p̂′U (2,a)⊥(ω,k p̂,k p̂′)〉 p̂′

8π

− 〈 p̂ · p̂′U (2,b)⊥(ω,k p̂,k p̂′)〉 p̂′

8π
. (31)

The explicit expressions of the transverse components
U (2,a)⊥ and U (2,b)⊥ are given in Appendix B. δσ ∗ is displayed
in the inset of Fig. 6 as a function of � for η = 0.4 (we again
assume ω0/� � 1). We observe that IDDC brings essentially
a positive correction to the transport cross section (except in a
narrow range on the red side of the transition). This is clearly
visible in the main panel of Fig. 6, which displays the full
dependence of σ ∗ on � (solid red curve). In other words,
in close vicinity to resonance and at low densities, the main
effect of IDDC is to decrease the transport mean free path
of electromagnetic waves. It is interesting to note that the
presence of the last two terms in Eq. (31) makes �∗ much more
sensitive to IDDC than �s .
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FIG. 6. Transport cross section σ ∗ [Eq. (30)] in units of 6π/k2
0 for

η = 0.4 (solid blue curve). The dashed red curve is the independent-
scattering approximation, Eq. (25). Inset: second-order contribution
δσ ∗, Eq. (31).

V. VECTOR VERSUS SCALAR

We finally compare the relative effect of IDDC for vector
and scalar waves. Mathematically, the essential difference lies
in the near-field behavior of the Green’s function, which goes
as 1/r3 for vector waves [see Eq. (12)] and 1/r for scalar
waves [8]. We anticipate that the manifestations of IDDC are
more important for vector waves than for scalar waves due to
the stronger weight on short distances.

A. Stored electromagnetic energy

We show in Fig. 7 the normalized correction δa/(ηaISA) to
the electromagnetic energy for vector (blue curve) and scalar
(orange curve) waves as a function of � (up to a factor η,
this quantity coincides with the first density correction to the
dwell time for light in the scatterers [16]). Since aISA ∝ η and
δa ∝ η2, this ratio is independent of η. The shape of the two
curves is markedly different both around resonance and away
from it, which emphasizes the importance of near-field effects
in the vector case. Near the resonance, no dip is visible in the
scalar model, which is due to the absence of a subradiance

vector

scalar

-4 -2 0 2 4
-2

-1.5

1

0

0.5

-0.5

-1

FIG. 7. Relative correction δa/(ηaISA) as a function of �. The
blue curve is the result for vector waves, Eq. (16), and the orange
curve is the result for scalar waves, Ref. [8].

vector

scalar
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2
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1

0

0.5

-0.5

FIG. 8. Relative correction δσ ∗/(ησISA) as a function of �. The
blue curve is the result for vector waves, Eq. (31), and the orange
curve is the result for scalar waves, Ref. [8]. The dashed curve shows
the contribution of only the lowest-order crossed diagram, calculated
for scalar waves.

peak on the red side of the resonance for scalar waves. Far
from the resonance, δa/(ηaISA) does not fall to zero at large
detuning for vector waves, unlike in the scalar model. This
stems from the specific scaling of δa with � when � � 1,

δa ∼
|�|�1

η2 ω0

�

1

�2
∼ ηaISA, (32)

for the vector model, which should be compared with the scalar
result:

δa ∼
|�|�1

η2 ω0

�

1

�4
∼ η

aISA

�2
. (33)

The scaling (32) is controlled by the subradiance peak, which
is very narrow when |�| � 1 (see Fig. 4) [35]. Equation (32)
indicates that IDDC takes over the independent-scattering
contribution at large detuning as soon as η > 1 [36,37]. In
contrast, for scalar waves IDDC is completely negligible at
large detuning even when η � 1.

B. Transport mean free path

We also show in Fig. 8 the normalized correction (indepen-
dent of η) δσ ∗/(ησISA) to the transport cross section. Again,
the results for scalar and vector waves differ at large detunings
for the same reason as for the stored electromagnetic energy.
Note, however, that around the resonance, the change of σ ∗
due to IDDC is qualitatively the same for scalar and vector
waves, although it is more pronounced in the latter case.

Let us stress that all scattering processes involved in light
transport up to second order in the atomic density are included
in the perturbative approach discussed in this paper. Apart
from the trivial refractive index correction to the indepen-
dent scattering approximation, second-order corrections ensue
from induced dipole-dipole coupling. Among all these binary
processes, it is interesting to note that one is the familiar
lowest-order crossed diagram [first diagram in Fig. 2(v)]. The
latter has been argued to provide the leading-order density
correction to σ ∗ for scalar waves in continuous, Gaussian
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distributed disordered potentials [38,39] and is given by

δσ ∗
Crossed

σISA
= 2π

3

1

k0�ISA
, (34)

where �ISA ≡ 1/(nσISA). This contribution is shown in Fig. 8
as a dashed black curve and, as expected, features a global
decrease of �∗. By making a comparison with the exact second-
order vector result that takes into account all IDDC processes,
however (blue curve), one clearly sees that Eq. (34) constitutes
a poor approximation of δσ ∗/σISA. Even worse, for vector
waves the lowest-order crossed diagram taken alone is, in
fact, divergent. From these results, it thus appears that for
light scattered from discrete objects like in dilute gases, the
lowest-order crossed diagram contribution cannot be isolated
from other IDDC corrections.

C. The question of localization

We finally discuss the question of Anderson localization
of light. According to Fig. 8, in close vicinity to the atomic
resonance, IDDC tends to decrease slightly more �∗ in the
vector case than in the scalar case. From this, one might be
tempted to conclude that vector waves are at least as favorable
as scalar waves for the observation of strong localization. This
conclusion is, however, too naive, because it is not clear which
role the near-field contributions discussed in this paper play
in the regime η ∼ 1 where localization might be expected. In
fact, in the scalar case the description of strong localization is
based on the study of the series of crossed diagrams [40]. At
low densities, this series is irrelevant in dimension 3 because
it provides a (weak localization) contribution δσ ∗/σISA ∼
1/(k0�ISA)2 ∝ η2, i.e., much smaller than the IDDC effects
discussed in the present paper (which are of order η). A close
inspection of the behavior of the series of crossed diagrams
at η ∼ 1 might, however, be required make conclusions on
the fate of strong localization. To our knowledge, for vector
waves such a task has not been accomplished yet. It is more
challenging than in the scalar case for at least one reason: when
η ∼ 1, the transport of vector waves can also be mediated by

the longitudinal component G
‖

of the Green’s function. The
contribution of this mechanism to σ ∗ has been estimated in
[36] in the dilute limit. It was shown to be of third order and
negative, δσ ∗/σISA ∼ −η3 < 0 [41], thus possibly competing
with localization at higher density. This could explain the
absence of Anderson localization of light in atomic clouds
predicted in recent work [10,11].

VI. CONCLUSION

We have developed a diagrammatic perturbative treatment
of binary induced dipole-dipole interactions for electromag-
netic waves propagating in random ensembles of two-level
atoms. As it describes all possible scattering processes at play
up to second order in the density, our approach is rigorous
and, in particular, fully satisfies the Ward identity. We have
applied it to the analysis of the electromagnetic energy stored
in the atomic gas and of the light transport mean free paths. In
close vicinity to the atomic resonance, both are decreased by
IDDC. In particular, the stored energy displays a marked dip
as a result of the attractive atomic interaction within pairs. This

phenomenon is a genuine manifestation of near-field effects
for vector waves and is absent for scalar waves.

An interesting question concerns the effect of IDDC on light
transport at higher densities. In this regime, additional difficul-
ties arise as the longitudinal component of the electromagnetic
field can no longer be neglected in the kinetic equation for
the light intensity. Longitudinal transport might also explain
the recently predicted absence of Anderson localization [10].
Given the elusive nature of three-dimensional Anderson
localization of light in experiments [42,43], an analysis of this
mechanism is undoubtedly an important challenge for future
work.
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APPENDIX A: VECTOR TRANSPORT THEORY

1. Kinetic equation and Ward identity

In this appendix, we present a transport theory for electro-
magnetic waves propagating in dilute atomic clouds and use
it to derive the diffusive solution (2) and formula (4) for the
diffusion coefficient, with a and �∗ given by Eqs. (6) and (19),
respectively. As was shown in [16,26], for two-level atoms with
a nondegenerate ground state, this problem can be equivalently
tackled within a semiclassical formalism where atoms are
modeled by dielectric point particles and light propagation
is governed by the Helmholtz equation. This is the strategy we
adopt here.

Let us thus consider a quasimonochromatic electromagnetic
wave (spectral width �ω, carrier frequency ω � �ω, polar-
ization vector εin) emitted by a point source located inside a
three-dimensional isotropic random medium. We assume the
latter to consist of a collection of dielectric point scatterers
uniformly distributed over space with density n. We describe
them by an inhomogeneous relative dielectric function ε(r) =
αm

∑
i δ(r − r i), where the microscopic polarizability αm

depends on the atomic internal degrees of freedom (� and
ω0) [26]. The electromagnetic Green’s tensor G fulfills the
Helmholtz equation

− ∇ × ∇ × G(r ′,r,ω) + ω2

c2
ε(r)G(r ′,r,ω) = δ(r − r ′)1.

(A1)

At a time t � �ω−1, the disorder-averaged wave intensity at
time t and position r and detected in the polarization channel
εout and in the wave vector channel p′ is, by definition,

Iω( p′,r,t) =
∫

d�

2π

∫
d3q

(2π )3

∫
d3 p

(2π )3
eiq·r−i�t

× (εin ⊗ ε∗
out) · �ω p p′(q,�) · (ε∗

in ⊗ εout).

(A2)
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,

, ,

,

FIG. 9. Schematic representation of Eq. (A3), indicating the con-
ventions for tensor indices and momenta. The upper line symbolizes
Gik , and the lower line symbolizes G∗

j l .

The intensity kernel �ij,kl is a four-rank tensor related to
the Green’s tensor through �ij,kl = GikG

∗
j l . Its momentum

representation is explicitly given by

�ω p p′(q,�) = 〈 p+|G(ω+)| p′+〉 ⊗ 〈 p′−|G∗(ω−)| p−〉, (A3)

where p± = p ± q/2, p′
± = p′ ± q/2, and ω± = ω ± �/2.

These conventions are summarized in Fig. 9. In Eq. (A2),
⊗ denotes the tensor product, and the dots denote tensor
contraction, with the same conventions as in [13].

Given a wave of frequency ω coming from direction p,
�ω p p′(r,t) can be interpreted as the average radiation density
at point r and time t , scattered in direction p′. �ω p p′ fulfills the
tensorial Bethe-Saltpeter equation (20). Combining the latter
with the Dyson equation (7) for the average Green’s tensor,
we find after a few algebraic manipulations [13][

i�ω

c2
1 − i�L p(q) + ��ω p(q,�)

]
· �ω p p′(q,�)

= (2π )3δ( p − p′)�Gω p(q,�)

+
∫

d3 p′′

(2π )3
�Gω p(q,�) · Uω p p′′ (q,�) · �ω p′′ p′(q,�).

(A4)

All tensors that appear in this kinetic equation are of rank 4.
In particular, �Gω p is defined as

�Gω p(q,�) = 1
2i

[
1 ⊗ G(ω+, p+) − G(ω−, p−) ⊗ 1

]
,

(A5)

where G(ω, p) = [k2 − L( p) − �]−1, with L( p) = p2 −
p ⊗ p. ��ω p has a similar definition, and

�L p(q) = 1
2 [1 ⊗ L( p+) − L( p−) ⊗ 1]. (A6)

Equation (A4) is complemented by a conservation law, the
Ward identity, which relates the irreducible vertices U and �

[13]:

ω2
−1 ⊗ �(ω+, p+) − ω2

+�(ω+, p+) ⊗ 1

=
∫

d3 p′

(2π )3
Uω p p′(q,�) · [ω2

−1 ⊗ G(ω+, p′
+)

−ω2
+G(ω−, p′

−) ⊗ 1]. (A7)

Note the presence of the ω2
± prefactors in Eq. (A7), which

are absent for matter waves obeying the Schrödinger equation
[44]. Here, they originate from the frequency dependence of
the disorder “potential” ω2ε(r)/c2 in the Helmholtz equation.

As they depend on �, these prefactors affect the dynamics of
electromagnetic waves and ultimately give rise to the concept
of energy transport velocity.

2. Transverse-field approximation

In this paper, we restrict ourselves to a second-order
perturbation theory in density based on the expansion of the
irreducible tensors U and � up to order η2, as explained
in the main text. At order 2, the longitudinal component of
the average Green’s tensor becomes irrelevant in the kinetic
equation (A4) and the Ward identity (A7) because it gives
rise to terms of higher order in η [36]. For this reason,
up to order η2 it is sufficient to work with the transverse
projection of Eqs. (A4) and (A7). This procedure is known
as the “transverse-field approximation” and was introduced
in [14,45]. The projection is achieved by replacing every
fourth-rank tensor Tω p p′ (q,�) in Eq. (A4) by

T⊥
ω p p′(q,�) = P( p+) ⊗ P( p−)

· Tω p p′ (q,�) · P( p′
+) ⊗ P( p′

−), (A8)

where P( p) = 1 − p̂ ⊗ p̂. With this prescription, Eq. (A4)
becomes

[
i�ω

c2
1 − i p · q + ��⊥

ω p(q,�)

]
· �⊥

ω p p′(q,�)

= (2π )3δ( p − p′)�G⊥
ω p(q,�)

+
∫

d3 p′′

(2π )3
�G⊥

ω p(q,�) · U⊥
ω p p′′ (q,�) · �⊥

ω p′′ p′(q,�),

(A9)

with a similar projection for the Ward identity (A7). Let us
stress that while to order η2 it is legitimate to neglect the
longitudinal contributions to the kinetic equation, keeping
them in the expression of �⊥ and U⊥ [via the longitudinal
part of G0 in Eqs. (11), (13), (28), and (29)] is, on the other
hand, crucial.

3. Diffusive solution

The general solution of Eq. (A9) can be conveniently
expressed in terms of a spectral decomposition of �⊥

ω p p′
originally introduced in [13,46]. In the limit of low frequencies
and small wave numbers (� → 0, |q| → 0) the behavior
of �⊥

ω p p′ is governed by a single, second-rank transverse
eigentensor φω p with the associated eigenvalue λ:

�
⊥ij,kl

ω p p′ (q,�) = φik
ω p(q,�)φjl

ω p′ (q,�)

−i�ω/c2 + λ(q,�)
, (A10)

where we have temporarily displayed tensor indices as
superscripts. φω p and λ fulfill the eigenvalue equation

[
λ(q,�) − i p · q − K̂ω p(q,�)

] · φω p(q,�) = 0, (A11)
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where we have introduced the fourth-rank tensor operator K̂ω p

so that

K̂ω p(q,�) · φω p(q,�)

=
∫

d3 p′′

(2π )3
[�G⊥

ω p(q,�) · U⊥
ω p p′′ (q,�)

− (2π )3δ( p − p′′)��⊥
ω p′′(q,�)] · φω p′′ (q,�). (A12)

The unknown quantities φω p and λ are determined from an
expansion at small q and �. This is achieved by first expanding
φω p as

φij (q,�) ∼ ImG
⊥

(ω,p)Pij ( p) + iqkJij,k(ω, p), (A13)

where we have introduced the third-rank current tensor
J(ω, p), yet to be determined. In this expansion, the propor-
tionality of the term of zeroth order to ImG⊥(ω,p) has been
found by setting q = 0 and � = 0 in Eq. (A11) and (A12)
and using the fact that φω p is a transverse tensor. Note that
keeping an additional term of the order of � in Eq. (A13) is
not required here, as it would eventually give a contribution of
order �2 to �⊥

ω p p′ . We also expand λ(q,�) as

λ(q,�) � λ(0,�) + δλ(q,�). (A14)

Then, we expand the Ward identity and the kinetic equation
to leading order in � and q and combine them to obtain the
following transport equation:

{
i�ω

c2

[
1 + α⊥(ω, p)

] − i p · q
}

· �⊥
ω p p′(q,�) = (2π )3δ( p − p′)ImG

⊥
(ω,p)P( p) ⊗ P( p)

+
∫

d3 p′′

(2π )3
U⊥(ω, p, p′′) · [ImG

⊥
(ω,p)�⊥

ω p′′ p′ (q,�) − ImG
⊥

(ω,p′′)�⊥
ω p p′(q,�)], (A15)

with the definition U⊥(ω, p, p′′) ≡ U⊥
ω p p′′ (0,0). In coordinate representation, the fourth-rank tensor α⊥(ω, p) is given by

α⊥
ij,kl(ω, p) = − c2

ω2

[
Re	⊥(ω,p)Pik( p)Pjl( p) +

∫
d3 p′

(2π )3
Re	⊥(ω,p′)U⊥

ij,kl(ω, p′, p)

]
. (A16)

In order to evaluate λ(q,�), we substitute the solution (A10) for �⊥
ω p p′ in Eq. (A15) using Eqs. (A13) and (A14) and proceed in

two steps. First, we take the limit q → 0 in Eq. (A15), integrate over p and p′, and trace over tensor components. This gives

λ(0,�) = − i�ωa

c2
, (A17)

where

a =
[

2
∫

d3 p
(2π )3

ImG
⊥

(ω,p)

]−1 ∫
d3 p

(2π )3
ImG

⊥
(ω,p)α⊥(ω, p), (A18)

with α⊥(ω, p) = P( p) · α⊥(ω, p) · P( p) ≡ Pij ( p)α⊥
ij,kl(ω, p)Pkl( p). Second, we take the limit � → 0 in Eq. (A15), sum over p

and p′, and trace over tensor components. This leads to

δλ(q,�) =
[
−2

∫
d3 p

(2π )3
ImG

⊥
(ω,p)

]−1 q2

3

∫
d3 p

(2π )3
pmJii,m(ω, p). (A19)

Inserting the results (A13), (A17), and (A19) into Eq. (A10), we infer

�
⊥ij,kl

ω p p′ (q,�) ∼ ImG
⊥

(ω,p)ImG
⊥

(ω,p′)
−i�ω/c2(1 + a) + δλ(q,�)

Pik( p)Pjl( p′), (A20)

where we have dropped the q-dependent terms in the numerator. To obtain the light intensity (A2), we finally contract this result
with the polarization vectors εin and εout and integrate over p. This leads to

Iω( p′,r,t) ∼
∫

d�

2π

∫
d3q

(2π )3

eiq·r−i�t

−i� + Dq2
A(ω,p′)[1 − ( p̂′ · εout)

2], (A21)

which is Eq. (2) of the main text (with p′ and εout relabeled p and ε, respectively). We have here introduced the spectral function

A(ω,p′) = − 2ω

πc2
ImG

⊥
(ω,p′) = − 2ω

πc2

Im	⊥(ω,p′)
[ω2/c2 − Re	⊥(ω,p′) − p′2]2 + [Im	⊥(ω,p′)]2

, (A22)

which to first order in η leads to Eq. (3) of the main text, with vϕ given by Eq. (17) and �s related to 	⊥(ω,p′) through Eq. (23).
The diffusion coefficient D is given by

D =
[
−2

∫
d3 p

(2π )3
ImG

⊥
(p)

]−1
c2

3ω(1 + a)

∫
d3 p

(2π )3
pmJii,m(ω, p), (A23)

which has the form of a Kubo-Greenwood formula [13,46].
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4. Transport mean free path and energy transport velocity

At this stage, the current tensor J in Eq. (A23) is still unknown. A self-consistent equation for J can be found by inserting
Eq. (A10) into Eq. (A15) evaluated at � = 0. This gives

Jij,m(ω, p) = pm|G⊥
(ω,p)|2Pij ( p) + |G⊥

(ω,p)|2
∫

d3 p′

(2π )3
U⊥

ij,kl( p, p′)Jkl,m(ω, p′). (A24)

We explicitly solve this equation by making use of an on-shell approximation, which turns out to be exact at order η2 [8]. The

latter consists of evaluating U⊥
ij,kl( p, p′) at p � p′ � ω/vϕ , using the fact that |G⊥

(ω,p)|2 is a narrow function of p, peaked
around p = ω/vϕ . After iteration of Eq. (A24), this allows us to write

Jij,m(ω, p) = pm|G⊥
(ω,p)|2Pij ( p)

{
1 − 1

2

[∫
d3 p

(2π )3
|G⊥

(ω,p)|2
]
〈 p̂ · p̂′U⊥(ω,k p̂,k p̂′)〉 p̂′

}−1

, (A25)

where we have introduced U⊥(ω, p, p′) = P( p) · U⊥(ω, p, p′) · P( p′) = P( p) · U(ω, p, p′) · P( p′). Equation (A25) is further
simplified by invoking the Ward identity for � = 0 and q = 0:

Im	⊥(ω,p)Pik( p)Pjl( p) =
∫

d3 p′

(2π )3
ImG

⊥
(p′)U⊥

ij,kl(ω, p, p′), (A26)

which after use of the on-shell approximation and trace over tensor components leads to
∫

d3 p
(2π)3 |G⊥(ω,p)|2 =

2/〈U⊥(ω,k p̂,k p̂′)〉 p̂′ . Inserting this result into Eq. (A24), we obtain

Jij,m(ω, p) = 2pm|G⊥
(ω,p)|2Pij ( p)∫

d3 p
(2π)3 |G⊥(ω,p)|2

[
1

〈U⊥(ω,k p̂,k p̂′)(1 − p̂ · p̂′)〉 p̂′

]
. (A27)

We finally insert this relation into the Kubo formula (A23) and again use the on-shell approximation to carry out the integrals

involving |G⊥
(ω,p)|2. This gives

D = c2

3vϕ(1 + a)

8π

〈U⊥(ω,k p̂,k p̂′)(1 − p̂ · p̂′)〉 p̂′
, (A28)

which is Eq. (4) of the main text, with �∗ given by Eq. (19). The formulation (6) of a finally follows from Eqs. (A18) and (A16)
combined with the Ward identity (A26).

APPENDIX B: TRANSVERSE PART OF IRREDUCIBLE VERTICES

In this appendix, we give the explicit expressions of the transverse components of �(2) and U (2) involved in the calculation of
the stored electromagnetic energy a [Eq. (16)] and of the transport mean free path [Eq. (31)].

	(2,a)⊥(ω) and 	(2,b)⊥(ω,k) follow straightforwardly from the decomposition (12) of G0:

	(2,a)⊥(ω) = n2t3
∫

d3r

[
2

3

G⊥2
0 (r)

1 − t2G⊥2
0 (r)

+ 1

3

G
‖2
0 (r)

1 − t2G
‖2
0 (r)

]
(B1)

and

	(2,b)⊥(ω,k) = n2t4
∫

d3r

{[
j0(kr) − j1(kr)

kr

]
G⊥3

0 (r)

1 − t2G⊥2
0 (r)

+ j1(kr)

kr

G
‖3
0 (r)

1 − t2G
‖2
0 (r)

}
− n2t2

3k2
, (B2)

where G⊥
0 (r) = [−1 + 1/(ikr) + 1/(kr)2]eikr/(4πr) and G

‖
0(r) = −2[1/(ikr) + 1/(kr)2]eikr/(4πr). j0 and j1 are spherical

Bessel functions. The last term in Eq. (B2) stems from the singular part of the Green’s tensor (12), which we have explicitly
separated from G⊥

0 (r) and G
‖
0(r).

We then consider the two angular averages in Eq. (30). Their evaluation requires us first to expand the ratio of tensors in
the integrand of Eqs. (28) and (29) over a basis of orthogonal eigentensors and then to carry out the angular integrals over the
directions of r and p′. After a tedious calculation we find

〈 p̂ · p̂′U (2,a)⊥(ω,k p̂,k p̂′)〉 p̂′

8π
=

∫
d3r

n2|t |4
4π

⎧⎨
⎩A(r)

∣∣∣∣ G⊥
0 (r)

1 − t2G⊥2
0 (r)

∣∣∣∣
2

+ B(r)

∣∣∣∣∣ G⊥
0 (r)

1 − t2G⊥2
0 (r)

− G
‖
0(r)

1 − t2G
‖2
0 (r)

∣∣∣∣∣
2

+ 2C(r)Re
G⊥

0 (r)

1 − t2G⊥2
0 (r)

[
G

‖
0(r)

1 − t2G
‖2
0 (r)

− G⊥
0 (r)

1 − t2G⊥2
0 (r)

]∗⎫⎬
⎭ (B3)
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and

〈 p̂ · p̂′U (2,b)⊥(ω,k p̂,k p̂′)〉 p̂′

8π
= −

∫
d3r

n2|t |2
4π

⎧⎨
⎩A(r)

[∣∣∣∣ 1

1 − t2G⊥2
0 (r)

∣∣∣∣
2

− 1

]
+ 2B(r)

∣∣∣∣∣ G⊥
0 (r)

1 − t2G⊥2
0 (r)

− G
‖
0(r)

1 − t2G
‖2
0 (r)

∣∣∣∣∣
2

+ 2C(r)Re
1

1 − t2G⊥2
0 (r)

[
1

1 − t2G
‖2
0 (r)

− 1

1 − t2G⊥2
0 (r)

]∗⎫⎬
⎭, (B4)

where A(r) = j 2
1 (kr) + [j2(kr)j3(kr) − j1(kr)j2(kr)]/(kr), B(r) = 2j 2

2 (kr)2/(kr)2, and C(r) = 3j 2
2 (kr)2/(kr)2.
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