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Casimir-Polder effect for a stack of conductive planes
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The Casimir-Polder interaction between an atom and a multilayered system composed of infinitely thin planes
is considered using the ζ -function regularization approach with zero-point energies summation. As a prototype
material, each plane is represented by a graphene sheet, an atomically thin layer of carbon atoms organized
in a hexagonal lattice, whose optical response is described by a constant conductivity or Drude-Lorentz model
conductivity. Asymptotic expressions for various separations are derived and compared to numerical calculations.
We distinguish between large atom-plane distance limit, where retardation effects are prominent, and small
atom-plane distance limit, where the typical van der Waals coefficient is found to be dependent on the number of
graphenes and characteristic separations. The calculated energies for different atoms and graphene conductivity
models brings forward the basic science of the Casimir-Polder effect and suggests ways to manipulate this
interaction experimentally.
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I. INTRODUCTION

Interactions originating from electromagnetic fluctuations
between objects are of much interest from a fundamental point
of view as well as for the development of novel devices.
Van der Waals (vdW), Casimir, and Casimir-Polder forces are
examples of such interactions. Their common origin has been
recognized in the early works by Lifshitz and collaborators
[1] and they have been studied extensively in recent years [2]
to advance our understanding of light-matter interactions. The
vdW regime corresponds to small distance separation between
the objects, where the speed of light c is neglected. The
Casimir force, describing interactions between objects with
macrodimensions, and the Casimir-Polder force, describing
interactions between polarizable particles and objects with
macrodimensions, on the other hand, correspond to the
retarded regime.

The Casimir-Polder force is of great relevance to novel
phenomena such as trapping cold atoms near surfaces, Bose-
Einstein condensates, and quantum reflection [3,4]. Trapped
atoms appear to be very sensitive to the electromagnetic
characteristics of the nearby objects, which in turn depend on
their response characteristics, boundary conditions, and even
applied external fields. Therefore, utilizing different materials
and system arrangements can be a powerful tool to gain
insight and ultimately control the atom-wall coupling. Recent
studies have shown that systems involving graphene give new
perspectives into this problem due to the graphene reduced
dimensionality and response properties determined by the
Dirac-like energy band structure. Several reports have focused
on theoretical calculations of atom-graphene Casimir-Polder
interactions. These investigations typically use the Lifshitz
theory, which expresses the energy in terms of the atomic
polarizability and frequency-dependent response properties
of the material. It was shown that the dielectric function of
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graphene, described via the Dirac and hydrodynamics models,
leads to different magnitudes of the Casimir-Polder energy [5].
The much reduced interaction captured via the Dirac model as
compared to typical metallic surfaces has also been suggested
as means to shield vacuum Casimir-Polder fluctuations [6].
Casimir-Polder thermal effects involving graphene have also
been studied showing unusual distance asymptotics when
compared to atom-metal wall interactions [7]. Exploring the
extraordinary magneto-optical response of graphene, on the
other hand, was suggested as means to control the Casimir-
Polder interaction by an applied magnetic field [8].

Although atom-single graphene and atom-graphene cov-
ered substrates have been considered by several authors,
as discussed above, the Casimir-Polder interaction in atom-
multilayered graphenes is yet to be explored. Previous studies
have shown that the Casimir energy in multilayered systems
with planar, cylindrical, or spherical symmetries can signifi-
cantly affect not only the strength, but also the characteristic
distance dependences of the interaction [9]. Similarly, the
effects of number of graphenes, graphene-graphene sepa-
rations, and atom-graphene distance are factors that will
affect the Casimir-Polder force. In addition, investigating
different models of describing the response properties of each
constituent layer will also influence the Casimir-Polder force
and lead to distinct asymptotic relations.

In this paper, we consider the Casimir-Polder interac-
tion in atom-multilayered systems using the ζ -regularization
approach, which relies on the zero-point mode summation
of the electromagnetic field. This technique was used to
study the Casimir energy in an infinitely thin spherical
shell, two graphene sheets, and multilayered graphenes [2,10]
and here we expand its applicability to atom-multilayered
configurations. As a prototype to the multilayers we take
graphene sheets, where each graphene can be taken into
account via its conductivity σ (ω), described with different
models. Using media rarefication to obtain the atom-substrate
coupling, analytical expressions in various asymptotic limits
in terms of number of layers and distance separations are
obtained. By utilizing the constant conductivity model and
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Drude-Lorentz approximation, which relies on first-principles
calculation results, we are able to determine how graphene
properties beyond the standard two-band Dirac-like energy
band structure affects the Casimir-Polder interaction.

We also note that throughout the paper we use � = c = 1,
while in the final results the real units are restored.

II. CASIMIR-POLDER ENERGY

The ζ -regularization technique relies on finding the zero-
point energy as a regularized quantity for a given configuration
using the appropriate electromagnetic boundary conditions, as
outlined in Ref. [11]. The system under consideration here
consists of half of the space z < 0 being occupied by a material
with dielectric function ε(ω) and a stack of N equally spaced
infinitely thin layers positioned above it, as shown in Fig. 1.
We distinguish between the plane-plane separation d and the
substrate-bottom plane separation a. The zero-point energy
can be expressed as

E (N )(u) = −�c�2u cos πu

2π

∫∫
d2k⊥
(2π )2

∫ ∞

0
dλλ1−2u

× ∂

∂λ
ln 
N (iλc), (1)

where 
N defines the electromagnetic energy spectrum, which
can be found via the appropriate boundary condition. Also, k⊥
is the two-dimensional (2D) wave vector and λ = −iω/c. The
parameter � with a wave number dimension is introduced
to preserve the energy dimension of E(u). To calculate the
Casimir-Polder interaction, we take advantage of the idea
developed by Lifshitz [1] relying on media rarefication.
Specifically, we take that the half space at z < 0 to be described
as ε(ω) = 1 + 4πLα(ω), where L is the amount of atoms and
α is the polarizability of single atom in this material. In the limit
of L → 0 we obtain the energy E(N ) per atom at a distance a:

E(N ) = − lim
L→0

1

L

∂E (N )

∂a
, (2)

FIG. 1. The N parallel planes are located at points z = a,a +
d,a + 2d,a + 3d, . . . ,a + (N − 1)d . The half space z � 0 is filled
by dielectric media with permeability ε(ω).

where E (N ) = E (N )(L,u) is the ζ -regularized energy with
regularization parameter u for the configuration of N planes
and dielectric medium.

The zero-point energy E (N ) can be found from the standard
boundary conditions when applied to Maxwell’s electromag-
netic equations to the system in Fig. 1. The energy is a
summation of transverse electric (TE) and transverse magnetic
(TM) contributions E = E

(N )
TE + E

(N )
TM , expressed as

E
(N )
TM =

∫ ∞

0
dy

∫ 1

0
dxα

(
xy

d

)
�N

[
η

(
xy

d

)
1

x

]
(2 − x2),

(3)

E
(N )
TE =

∫ ∞

0
dy

∫ 1

0
dxα

(
xy

d

)
�N

[
η

(
xy

d

)
x

]
x2.

The TE and TM terms are conveniently given in terms of

rescaled variables y = 2d

√
k2
⊥ + λ2 and x = λ/

√
k2
⊥ + λ2.

The two contributions have a common function

�N (t) = −y3te− 2a
d

y

2πd4

(
1 + t − e−yf

1 − f 2(N−1)

1 − f 2N

)−1

,

f = cosh y + t sinh y +
√

(cosh y + t sinh y)2 − 1.

Here η = 2πσ/c is the dimensional conductivity. We note
that the appearance of the argument of xy/d follows from
the frequency dependence in the response properties σ (ω) and
α(ω). Details in obtaining E

(N )
TM , E(N )

TE , and �N (t) can be found
in Appendix A.

The expressions for the TE and TM contributions can also
be recast in a different form by further changing the variables
y = sd/a and z = xy/d = xs/a. One finds

E
(N )
TM =

∫ ∞

0
ds

∫ s
a

0
dzα(z)�̃N

(
sη(z)

za

)
(2s2 − (za)2),

(4)

E
(N )
TE =

∫ ∞

0
ds

∫ s
a

0
dzα(z)�̃N

(
zaη(z)

s

)
(az)2,

where

�̃N (t) = − te−2s

2πa3

(
1 + t − e− ds

a f̃
1 − f̃ 2(N−1)

1 − f̃ 2N

)−1

,

f̃ = cosh
sd

a
+ t sinh

sd

a

+
√(

cosh
sd

a
+ t sinh

sd

a

)2

− 1.

It turns out that some analytical results may be obtained in a
more straightforward manner using either Eq. (3) or Eq. (4)
depending on the particular situation considered, as can be
seen in what follows.

The response properties of the atoms and layers are modeled
as follows. The atomic polarizability is represented with an
oscillator model

α(λ) = α(0)

1 + λ2

λ2
a

, (5)

where α(0) is the static polarizability and λa is the charac-
teristic wavelength. Relevant parameters for several atoms,
including H, H2, He, He* (excited He atom), Na, K, Rb,
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Cs, and Fe, are given in Appendix B 2. Since the prototype
layer material is graphene, we consider the situation when
its conductivity is represented via its universal value σgr =
e2/4�. This is expected to be a good approximation when
studying the Casimir-Polder interaction at large separations
since σ0 is maintained over a relatively large frequency range
�ω � 3 eV. [12]. The graphene conductivity is also described
using a Drude-Lorentz (DL) model. Taking into account that
σ for a single graphene is very similar to the one for graphite
in all frequency ranges except for small ω, the graphene
conductivity can be represented as a DL sum [13], as can
be seen in Appendix B 1. Infinitely conducting planes or
planes described by any value of constant conductivity are also
investigated.

III. ASYMPTOTIC RELATIONS

Several asymptotic expressions for the energy of the atom-
multilayers system can be found when considering small
or large atom-layer separations and/or constant graphene
conductivity η0. In the calculations, both forms in Eqs. (3)
and (4) are utilized depending on the particular case
considered.

A. N planes, a → ∞
The Casimir-Polder energy for an atom interacting with

N planes when the separation a is large can be found using
Eq. (3). Making the substitution y = sd/a and then taking the
limit of a → ∞, it is found that f → 1, while α → α(0), and
η → η(0) = η0. Performing the integration afterwards, one
obtains the interaction energy

E(N )
a→∞ = −3α(0)

8πa4
q(Nη0). (6)

This result is very similar to the standard Casimir-Polder
energy for an atom-perfect metal system (see, for example,
Ref. [11]), but with an additional factor q[Nη(0)], which has
the general expression

q(x) = 1

6
+ 1

2x2
− 1

4x
+ x2

2
− x

4

− 1

2x3
ln(1 + x) − x(x2 − 2)

2
ln

(
1 + 1

x

)
. (7)

The explicit form of q(x) enables us to examine other
asymptotic behavior in terms of the magnitude of the constant
conductivity and number of planes. For example, one finds
q(x)x→∞ = 1. Therefore, for infinite number of planes, N →
∞, or perfectly conducting planes, η0 → ∞, the standard
Casimir-Polder energy is recovered.

The opposite limit can also be examined. Using Eq. (7), the
small argument expansion gives

q(x)|x→0 = −(
1
8 + ln x

)
x + O(x2). (8)

The above expression covers situations of small constant con-
ductivity, which includes the case of graphene with estimated
universal value ηgr ≈ 0.0114. For example, the Casimir-
Polder energy for an atom-single graphene is E

(1)
a→∞,gr =

− 3α(0)
8πa4 0.05. Thus, the interaction is about 20 times smaller

than the one involving a perfect metallic surface.
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FIG. 2. Left: the function q(x) as a function of x. Right : the ratio
E(N )/E

(N )
a→0 for hydrogen atom and for different number of planes

N = 1,2,∞ (from bottom to top). We adopt the constant conductivity
model with η = ηgr and interplane distance d = 0.3354 nm.

Equations (6) and (7) are also useful in understanding
better how the energy of the atom-multilayers system can
be manipulated. Increasing N , while η0 is constant results
in the same outcome when η0 is increased and N is constant.
Figure 2 (left panel) displays q(x) as a function of x, which
essentially traces the Casimir-Polder interaction energy when
the atom is at a larger distance (a � d) from the N stack of
planes.

B. N planes, a → 0

In the case of small atom-plane separations, the Casimir-
Polder energy is mainly determined by the TM mode, while
the TE contribution is negligible, as can be seen from Eq. (4)
after numerical calculations. Taking the limit of a → 0 in the
TM contribution in Eq. (4) when a � η(0)/λj ,η(0)/λa (λj are
the DL characteristic frequencies as defined in Appendix B 1),
one finds

Ea→0 = − 1

4πa3

∫ ∞

0
α(z)dz. (9)

This result was obtained in Ref. [9], where the authors
have considered the vdW limit of atom interacting with a
perfect metal. It is interesting that the same result is obtained
for the atom-multilayer configuration considered here. In
addition to the energy being independent of N , there is no
dependence on the magnitude of the conductivity providing
the above discussed conditions, [a � η(0)/λj ,η(0)/λa], are
fulfilled.

Figure 2 (right panel) shows how EN /Ea→0 changes as
a function of a, where EN is calculated numerically using
Eq. (3). It is evident that the interaction does not depend
strongly on the number of planes involved. Also, Fig. 2 (right
panel) displays that EN /Ea→0 does not change significantly
as a is increased showing that the a → ∞ limit is quickly
approached (after a few nm-s).

C. Large (d → ∞) and small (d → 0) interplane distances

Asymptotic expressions can also be obtained by consid-
ering different limits of the interplane distance separation.
Taking d → ∞ while a is finite in Eq. (4) the energy for
a single plane (N = 1) is recovered, E(1) = E

(1)
TM + E

(1)
TE. In

addition, the limit of d → 0 (d � a) in Eq. (4) is equivalent
to the limit of a → ∞ as we obtain that E

(N )
d→0 = E

(N )
a→∞. It is

noted that these asymptotic limits hold for both models of the
graphene conductivity providing that d � max(a,λ−1

j ,λ−1
a ) if
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σ is described via the DL model and d � max(a,λ−1
a ) if σ is

taken to be constant.

IV. NUMERICAL SIMULATIONS

Analyzing the Casimir-Polder energy when the graphene
sheets are described via the DL model (parameters are
given in Appendix B 1) requires numerical calculations. Such
calculations are also needed when evaluating the interaction
beyond the asymptotic limits for η = η0 discussed previously.
Taking the parameters for several atoms (Appendix B 2) E(N )

can be calculated as a function of the a and d separations and
number of planes N using Eq. (3).

In Fig. 3, the Casimir-Polder energy for a hydrogen atom
is shown as a function of the number of graphene planes N
for different distances a = 10n nm, n = 0,1,2,3,∞ where the
graphene conductivity is taken using the DL model and ηgr .
Here the equilibrium for graphite interplane distance is used
such that d = 0.3345 nm [14].

Figure 3 shows that for all a the normalized E(N )/ECP

increases up to a certain N , after which there is no change.
Depending on a, reaching the constant E(N )/ECP happens at
different N . Specifically, for smaller atom-plane separations,
the constant E(N )/ECP is achieved at much smaller values
of N as opposed to larger a, where the constant behavior is
achieved when there are many planes in the stack.

We also consider how different types of atoms affect
the interaction in terms of their characteristics, specified in
Appendix B 2. Figure 4 shows that all atoms affect the energy
in a similar way as a function of N . The rescaled EN increases
as N increases until a plateau is reached, which corresponds
to the asymptotic limit of large N in Eq. (6) [q(Nη0) → 1 due
to the large argument]. The magnitude of the plateau region is
essentially determined by α(0). Therefore, we see that atoms
with larger α(0), such as Cs, have bigger energy, as opposed
to the ones with smaller α(0), such as Na.

Is is also interesting to compare how the different models
for the graphene conductivity affect the Casimir-Polder inter-
action. Figure 5 shows the energy for a hydrogen atom at a

a 1nm

a 10nm

a 100nm

a 1000nm a

0 200 400 600 800 1000
0.0

0.2

0.4

0.6

0.8

1.0

E
N
E C
P

FIG. 3. The Casimir-Polder energy of a hydrogen atom, normal-
ized by the Casimir-Polder energy atom-ideal metal, near a stack
of graphene planes with conductivity described using DL model for
a = 10n, n = 0,1,2,3,∞. The interplane graphene separation is the
equilibrium distance for graphite d = 0.3345 nm.
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FIG. 4. The Casimir-Polder energy multiplied by a4 for several
atoms as a function of number of graphene planes N . The conductiv-
ity for each graphene plane is taken into account using the DL model
and the interplane distance is d = 0.3345 nm while a = 100 nm.

distance a = 100 nm when each graphene plane is described
using both models. Although the characteristic behavior as
a function of N is the same, the EN /ECP is smaller when
η = ηgr . In addition, the constant region is achieved faster for
the DL model as compared to constant conductivity.

The Casimir-Polder interaction for the considered system
here can further be analyzed by separating the retarded and
nonretarded regimes. This can be achieved by casting the total
energy from Eq. (3) via y = sd/a in the form

E(N ) = −C3(a,N )

a3
, (10)

where C3(a,N ) is the vdW coefficient, which depends on the
number of planes and the atom-plane separation a. The 1/a3

dependence and C3 being a constant are characteristic for the
nonretarded vdW regime, typically for a < 5 nm. For larger
a, however, retardation effects become important and the 1/a3

behavior is no longer valid.
Investigating C3(a,N ) dependence on a is instructive for

the understanding of the importance of the relativistic effects,
while the N dependence is indicative of how the size of the
planar stack influences the interaction. In Figs. 6 and 7, we

ΗDL

ΗDL

Ηgr

Ηgr

20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

E A
E C
P,
A

FIG. 5. The Casimir-Polder energy for hydrogen (solid lines) and
Rb (dashed lines) atom near a stack of graphene planes with DL
(top two curves) and ηgr (bottom two curves) conductivities. Here
d = 0.3345 nm and a = 100 nm.
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FIG. 6. The vdW coefficient C3(a,N ) for several light atoms and
for two models of the conductivity. Solid lines: N = 1 and dashed
lines: N = ∞. The insert is the relative difference given by Eq. (11)
as a function of a separation.

show the vdW coefficient for several atoms as a function of
a for the two models of the graphene conductivity. One notes
that in both cases, C3(a,N ) decreases as a grows, however,
this decay is stronger for η = ηgr , which is the reason for the
smaller vdW coefficient when compared with the one found
with η = ηDL. The strength of the atomic polarizability and
number of planes determine the overall value of the vdW
coefficient. For larger α0 (Na, K, Rb, Cs ), C3 has bigger
magnitude when compared to the C3 for H, H2, He. Similarly,
larger N results in larger vdW coefficients.

Examining the large a behavior in Figs. 6 and 7 shows
that C3(a,N ) ∼ 1/a. Therefore, the overall behavior of the
interaction energy is E ∼ 1/a4, which coincides with the
asymptotic limit discussed in Sec. III. Figures 6 and 7 show
that the 1/a behavior becomes apparent for shorter separations
when the number of planes is small and for the constant
graphene conductivity model.

The comparison of the vdW coefficients for the different
atoms calculated with the two models for the graphene
conductivity can further be examined by calculating the
following difference

δ(a) = C3(a,∞) − C3(a,1)

C3(0,1)
100%. (11)

The above expression gives means to obtain how the differ-
ence between the vdW coefficients for N = 1 and N = ∞
normalized to the coefficient at a = 0 for one graphene plane
changes as a function of a. The insert in Figs. 6 and 7
shows that δ(a) has nonmonotonic behavior. It experiences
a maximum point at a certain separation a. For atoms with
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FIG. 7. The vdW coefficient C3(a,N ) for several heavy atoms
and for two models of the conductivity. Solid lines:N = 1 and dashed
lines: N = ∞. The insert is relative the difference given by Eq. (11)
as a function of separation a.

smaller polarizability δmax is found at shorter separations. For
atoms with larger polarizability δmax is fairly insensitive to the
a separation.

V. CONCLUSION

The Casimir-Polder interaction is a ubiquitous force in any
atom-substrate system. Due to recent experimental advances
in materials at the nanoscale, atom-multilayered systems
composed of graphene sheets are of particular interest. In
this work we present a perspective of Casimir-Polder effects
using summation of zero-point energies via the ζ -function
regularization technique. The zero-point energies are found
by solving the boundary conditions of the electromagnetic
spectrum, which allows the utilization of different models for
the response properties of the atoms and layers.

The asymptotic derivation for large separations between
the atom and the graphene stack shows that the Casimir-Polder
energy takes a form similar to the one for atom-single graphene
and a numerical factor q[Nσ (0)]. Thus the interaction can
be increased, for example, either by increasing σ (0) or the
number of graphenes in the stack N . The small separation
limit between the atom and the graphenes recovers the expres-
sion for the atom-single graphene configuration. The large
and small intergraphene distances are also considered. The
derived asymptotic relations compare well with the numerical
calculations of the derived Casimir-Polder expression. The
numerical calculations also show that the constant conductivity
description results in a smaller magnitude interaction as
opposed to the Drude-Lorentz model for σ (ω).
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We also consider the nonretarded regime by calculating
the vdW coefficient C3(a,N ), which depends on the atomic
separation and the number of planes. Again, it is found that
C3(a,N ) is strongly dependent on the model for σ (ω) as
σgr results in a smaller coefficient when compared to the
calculations with the DL model. The atomic polarizability also
affects the interaction showing that atoms with larger α(0) have
stronger Casimir-Polder interaction.

This work shows that the applicability of the ζ -
regularization technique can be expanded to atom-multilayer
systems. The asymptotic expressions help us gain insight
into the basic science of the Casimir-Polder interaction. The
calculations for the various atoms and models for the graphene
conductivity are also useful to find ways to manipulate this
interaction.
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APPENDIX A: ENERGY OF AN ATOM NEAR THE
STACK OF N CONDUCTIVE PLANES

Due to the planar symmetry of the system in Fig. 1, the
electric (E) and magnetic (H) fields are represented by the
following:

E = e(z)eikxx+ikyy−iωt , H = h(z)eikxx+ikyy−iωt . (A1)

Taking into account that Ohm’s law is satisfied on each
conductive surface, the boundary conditions can be written
in a decoupled form for the TE and TM contributions.

1. TM mode, Hz = 0

The TM electromagnetic modes are found by solving the
Maxwell equations with E and H for the system in Fig. 1. The
dielectric medium at z < 0 is considered to have frequency-
dependent response properties ε = ε(ω),μ = μ(ω) and each
2D layer has the same conductivity σ (ω), while the domains
between z = 0 and z = a + (N − 1)d are with ε = 1,μ = 1.
The respective boundary conditions are

[e′
z]z=a+jd = 0,

[ez]z=a+jd = −4πiσ

ω
e′
z = −2πσ

cκ
e′
z, (A2)

[e′
z]z=0 = 0, [εez]z=0 = 0,

where [f ]z = f (z − 0) − f (z + 0).
Thus there are 2N + 2 coupled equations, whose main

determinant can be written on the imaginary axis ω = iλ

according to Eq. (1),


TM =

∣∣∣∣∣∣∣∣∣∣∣∣

Z1 B0 0 . . . 0 0
0 A0 B1 . . . 0 0
0 0 A1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . AN−2 BN−1

Z2 0 0 . . . 0 AN−1

∣∣∣∣∣∣∣∣∣∣∣∣
. (A3)

This (N + 1) × (N + 1) determinant is in a block-diagonal
form with elements

Bl =
(

e(l−1)p −e−(l−1)p

e(l−1)p e−(l−1)p

)
, B0 =

(
e−ap −eap

e−ap eap

)
,

Aj =
( −ejp e−jp(− 2πσ

c
− 1

)
ejp

(
2πσ

c
− 1

)
e−jp

)
, (A4)

Z1 =
(− κε

κ
0

−ε 0

)
, Z2 =

(
0 −e−(N−1)p

0 e−(N−1)p

)
,

where l = (1,N − 1), j = (0,N − 1). Also, p = dκ, a =
a/d, κε =

√
k2
⊥ + εμλ2, and κ =

√
k2
⊥ + λ2.

The diagonalization of the matrix yields


TM = det[Z1 + (−1)NC(ap)C(N−1)(p)Z2], (A5)

where

C(x) = BlA
−1
l =

(− cosh x − 2πσ
c

sinh x sinh x
2πσ

c
cosh x + sinh x − cosh x

)
.

To calculate the (N − 1) power of the matrix C, we represent
it in Jordan form C = T JT −1, where

T =
( − sinh p

cosh p−f −1
− sinh p

cosh p−f

1 1

)
, J = −

(
f 0
0 f −1

)
, (A6)

and f =
√

(cosh p + b1 sinh p)2 − 1 + (cosh p + ηκ

λ
sinh p).

For the calculation of the Casimir-Polder force one needs
the renormalized spectrum, which requires finding 
∞

TM
at the limit of a → ∞ and d → ∞(p → ∞). Thus, the
renormalized determinant reads


TM


∞
TM

= − e−p(N−1)

fN−2
(
1 + ηκ

λ

)N {
e−p 1 − f 2(N−1)

1 − f 2

− 1 − f 2N

f (1 − f 2)

(
1 + ηκ

λ
+ ηκ

λ
e−2ap κε − εκ

κε + εκ

)}
.

(A7)

One notes that for ε = μ = 1, we obtain the result for N
planes, as found in Ref. [10].

Finally, after changing variables in Eq. (1) to spher-
ical coordinates kx = κ sin θ cos ϕ,ky = κ sin θ sin ϕ,λ =
κ cos θ (κ =

√
k2
x + k2

y + λ2), y = 2p = 2dκ,λ = κx,x =
cos θ , the Casimir-Polder energy can be written as

E (N )
TM = Q

(N )
TM

d3
, (A8)
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where

Q
(N )
TM =

∫ ∞

0
y2dy

∫ 1

0
dx ln �

(N )
TM

(
η

x

)
,

�
(N )
TM (t) = −e−p(N−1)

32π2fN−2(1 + t)N

{
e−p 1 − f 2(N−1)

1 − f 2

− 1 − f 2N

f (1 − f 2)

(
1 + t + te−2ap κε − εκ

κε + εκ

)}
,

f =
√

(cosh p + t sinh p)2 − 1 + cosh p + t sinh p.

(A9)

Rarefying the media ε(ω) = 1 + 4πLα(ω) and μ(ω) =
1 + 4πLβ(ω) [α(ω): atomic polarizability; β(ω): atomic
dynamic magnetic susceptibility] leads to the Casimir-Polder
energy. For an atom with trivial magnetic properties such as
μ = 1, the media rarefication is only for ε(ω). Below we
provide both situations

E
(N )
TM =

∫ ∞

0
dy

∫ 1

0
dxα

(
xy

2d

)
(2 − x2)�N

(
η

x

)
, (A10)

Ê
(N )
TM = −

∫ ∞

0
dy

∫ 1

0
dxβ

(
xy

2d

)
x2�N

(
η

x

)
, (A11)

where

�N (t) = −y3te− a
d
y

32πd4

(
1 + t − e− y

2 f
1 − f 2(N−1)

1 − f 2N

)−1

.

2. TE mode, Ez = 0

Obtaining the electromagnetic spectrum for the TE modes
follows a similar procedure for the appropriate boundary
conditions

[hz]z=jd = 0,

[h′
z]z=jd = 4πiσωhz = −2ηλ

κ
κhz, (A12)

[h′
z]z=0 = 0, [μhz]z=0 = 0.

The determinant of the coupled equations has the same form
as in Eq. (A3) and

B0 =
(

e−ap eap

e−ap −eap

)
, Z1 =

(− κε

κ
0

−μ 0

)
. (A13)

Executing the variable change to spherical coordinates, the
energy is found as

E (N )
TE = Q

(N )
TE

d3
, (A14)

where

Q
(N )
TE =

∫ ∞

0
y2dy

∫ 1

0
dx ln �

(N )
TE (ηx), (A15)

and

�
(N )
TE (t)=− e−p(N−1)

32π2fN−2(1 + t)N

{
e−p 1 − f 2(N−1)

1 − f 2

− 1− f 2N

f (1− f 2)

(
1+ t + te−2ap μκ − κε

μκ + κε

)}
. (A16)

Rarefying the dielectric medium yields

Ê
(N )
TE = −

∫ ∞

0
dy

∫ 1

0
dxβ

(
xy

2d

)
(2 − x2)�N (ηx),

E
(N )
TE =

∫ ∞

0
dy

∫ 1

0
dxα

(
xy

2d

)
x2�N (ηx), (A17)

where we marked by hat the magnetic contributions.
We finally note that there is a simple relation between the

�N function and the reflection coefficients rTM,TE of the atom-
multilayered system as follows:

�N

(
η

x
,y

)
= rTM, �N (ηx,y) = −rTE. (A18)

Thus, the total Casimir-Polder energy can be expressed as

E(N ) =
∫ ∞

0
dy

∫ 1

0
dx{2[αrTM + βrTE]

− x2[α + β][rTM + rTE]}, (A19)

which has the same structure as the energy obtained via the
Lifshitz approach for an atom-substrate system (Eq. (16.91) in
Ref. [11]).

APPENDIX B: DIELECTRIC RESPONSE PROPERTIES

1. Drude-Lorentz model of conductivity

Several reports have shown that the optical conductivity of
graphene is very similar to the in-plane optical conductivity
of graphite over a wide frequency range (∼0.1–40 eV) [15].
Results from first-principles calculations for graphite have
been mapped to a Drude-Lorentz model consisting of a Drude
term and seven Lorentz oscillators according to [13]

σDL(ω) = f0ω
2
p

γ0 − iω
+

7∑
j=1

iωfjω
2
p

ω2 − ω2
j + iωγj

. (B1)

Thus, a viable approach for this study is to use the above
representation for graphite and adapt it to graphene. Specifi-
cally, the graphene DL conductivity is obtained from Eq. (B1)
for the 3D graphite by multiplying it with 2πa/c (a is
a characteristic distance typically taken as the interplanar
distance of graphite). The expression is given on the imaginary

TABLE I. Parameters for the Drude-Lorentz model of a graphene
sheet in 3D graphite.

ηk γk eV ωk eV γ̃k
1

nm
λk

1
nm

η0 0.01712 γ0 6.365 - - γ̃0 0.0322 - -
η1 0.13855 γ1 4.102 ω1 0.275 γ̃1 0.0207 λ1 0.0014
η2 0.05949 γ2 7.328 ω2 3.508 γ̃2 0.0371 λ2 0.0177
η3 0.37991 γ3 1.414 ω3 4.451 γ̃3 0.0072 λ3 0.0225
η4 0.08462 γ4 0.46 ω4 13.591 γ̃4 0.0023 λ4 0.0688
η5 1.09548 γ5 1.862 ω5 14.226 γ̃5 0.0094 λ5 0.0721
η6 0.30039 γ6 11.922 ω6 15.55 γ̃6 0.0604 λ6 0.0788
η7 0.03983 γ7 39.091 ω7 32.011 γ̃7 0.1981 λ7 0.1622
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TABLE II. Polarizability parameters of the single-oscillator

model for several atoms (B4). Here 1 a.u. = 0.1482 Å
3
.

Atom α(0) (a.u.) ωa (eV)

H 4.5 11.65
H2 5.439 14.09
He 1.384 27.64
He∗ 315.77 1.18

axis ω = iλc (k = iλ) as follows:

ηDL(λ) = η0γ̃0

γ̃0 + λ
+

7∑
k=1

ληkγ̃k

λ2 + λ2
k + λγ̃k

. (B2)

Here, γk is the relaxation time and ωk is the characteristic
frequency for the kth term. Also, γ̃k = γk/c, λk = ωk/c, and
ηk = 2πafkω

2
p/cγk . In Table I we show the parameters using

the calculated values for graphite [13].
We note that the optical response in the infrared regime

for 3D graphite and an isolated graphene is different. While
σ for graphite exhibits a Drude-like behavior, the graphene
optical conductivity is constant. This difference is attributed
to the different electronic structure characteristics for the two
systems [15]. To ensure that the σ = const. feature is captured,
the single graphene conductivity η̃DL is obtained by using a
characteristic distance a = 0.224 nm. In addition, we require
that η̃DL(0) coincides with ηgr at zero frequency as:

η̃DL(λ) = ηDL(λ)
ηgr

η0
. (B3)

2. Atomic polarizabilities

In general, the atomic polarizability can be represented as
a multioscillator model in the following form:

α(λ) =
m∑

k=1

αk

1 + λ2

λ2
a,k

, (B4)

where the imaginary frequency axis is used.

TABLE III. Parameters of two- and single-oscillator models for
several atoms.

Two-oscillator Single-oscillator

Atom α1 (a.u.) ω1 (eV) α2 (a.u.) ω2 (eV) α0 (a.u.) ω0 (eV)

Na 162.1 2.12 0.547 116.4 162.6 2.13
K 288.4 1.66 1.754 87.0 290.2 1.68
Rb 316.7 1.65 1.85 119.6 318.6 1.68
Cs 397.3 1.53 2.597 123.8 399.9 1.55
Fe 307.8 1.75 9.972 42.8 317.8 1.89

For lighter atoms, such as H2, He, and He* a one-oscillator
model is typically used in Ref. [5]. Thus, we utilize available
data in Refs. [16,17] summarized as in Table II.

For heavier atoms, such as Na, K, Rb, Cs, and Fe consistent
data for the one-oscillator polarizability is not readily found.
However, we use numerical results in Ref. [18], where precise
calculations of the α(0) and their vdW coefficients Ca

3 and Ca
6

vdW coefficients are reported. Using the following relations,

Ca
3 = 1

4π

∫ ∞

0
dωα(iω), Ca

6 = 3

π

∫ ∞

0
dωα2(iω), (B5)

α(iω)ω=0 = α(0), lim
ω→∞ ω2α(iω) = N, (B6)

it is realized that a two-oscillator model (four parameters) for
α(ω) is needed in order to a have self-sustained solution. The
results obtained are shown in Table III.

It is evident that the first oscillator gives the dominant
contribution to the atomic polarizability. One further notes
that if only Ca

6 coefficient is used together with α(iω)ω=0 =
α(0), the obtained data for the atomic polarizability and
characteristic frequency are very similar to the first oscillator
parameters if obtained via the Ca

6 and Ca
3 two-oscillator

scheme.
The calculations for the Casimir-Polder force are not

affected significantly by using the atomic polarizability via
one- or two-oscillator representation if the regime of interest
is at larger separations. For shorter separations, however, the
difference can be significant. For example, the relative error
for C3(a,N ) in Eq. (10) is found to be on the order of 15%
(Na), 23% (K), 28% (Rb), 33% (Cs), 38% (Fe). Therefore, for
the calculations of the vdW coefficient in Eq. (B4), the two
oscillator model for the atomic polarizability is utilized.
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