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Explicitly correlated three-dimensional potential-energy surface of the thiazyl-hydride–helium
weakly bound system and implications for HSN detection
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LOMC-UMR 6294, CNRS, Université du Havre, 25 Rue Philippe Lebon, Boı̂te Postale 540, 76058, Le Havre, France

J. S. Francisco
Department of Chemistry and Department of Earth and Atmospheric Science, Purdue University, West Lafayette, Indiana 49707, USA

M. Hochlaf*

Laboratoire Modélisation et Simulation Multi Echelle, Université Paris-Est, MSME UMR 8208 CNRS, 5 Bd Descartes, 77454
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The intermonomer three-dimensional potential-energy surface (3D PES) of the thiazyl-hydride–helium (HSN-
He) weakly bound molecular system is generated using the explicitly correlated coupled-cluster method with
single, double, and perturbative triple excitations. The 3D PES is mapped in Jacobi coordinates. This potential-
energy surface shows a unique potential well at planar configurations. The depth of this potential is 74.4 cm−1.
This 3D PES is incorporated into a close-coupling and coupled-states quantum dynamical treatment of nuclear
motions to deduce the rotational (de-)excitation of HSN by He for energies up to 1400 cm−1. After averaging over
a Maxwell-Boltzmann distribution, the collisional rate coefficients are derived for temperatures ranging from 5
to 200 K. These data are essential for the identification of HSN molecules in astrophysical media. A comparison
between thionitrosyl-hydride—He and HSN-He is performed.
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I. INTRODUCTION

Only a few molecules containing both sulfur and nitrogen
are detected in astrophysical media. To date, the list of detected
molecules is restricted to the diatomic nitrogen sulfide (SN
[1]) and the tetratomics isothiocyanic acid (HNCS) [2]) and
thiocyanic acid (HSCN [3]). This list is relatively short when
one considers the rich chemistry occurring in these media
and where for instance the SN diatomic can be involved.
Surprisingly, these observations do not include any triatomic
SN-containing molecules, even the thiazyl hydride (HSN)
or thionitrosyl hydride (sulfimide, HNS) species that may
be formed after reactive collisions or radiative attachment
reactions between SN and the H atom. Recent studies have
shown that favorable reaction pathways for bimolecular
collisions between SN and H exist and these can lead to
the formation of HSN and HNS triatomics [4]. Bimolecular
H-H− + SN−-SN reactions followed by electron detachment
have been suggested to form HSN or HNS [5]. Although
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the rates of such reactions are slow and/or the abundance
of the SN− anion for the latter process is low, both HNS
and HSN molecular species are suspected to be present
and hence detectable in astrophysical media at least where
SN is definitely identified [1]. Detection of HNS and HSN,
however, requires an accurate set of rotational and vibrational
spectroscopic parameters, and information regarding their
molecular stabilities, reaction probabilities, and radiative and
collisional excitation rates with the most abundant interstellar
species (i.e., H, He, H2, and free electrons) under the physical
conditions of the interstellar medium [6,7]. High-resolution
telescopes are capable of detecting these molecules and of
giving insights into their abundances after analysis of the
corresponding spectral lines [8].

Without spectroscopic laboratory measurements of HNS
and HSN, it is difficult to identify their molecular lines in astro-
nomical spectral survey. In 2014, Ben Yaghlane et al. provided
accurate geometric parameters and the rovibrational structure
of both HNS and HNS molecular species using state-of-the art
theoretical and computational approaches [9]. Ajili et al. [10]
examined the rotational (de)excitations of thionitrosyl hydride,
HNS, by He. In the present contribution, the three-dimensional
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(3D) intermononomer interacting potential of the HSN-He
complex is presented in Jacobi coordinates. The electronic
computations are carried out using the explicitly correlated
coupled-cluster approach with single, double, and perturbative
treatment of triple excitations [CCSD(T)-F12] [11,12] in con-
junction with the augmented correlation-consistent polarized
valence triple-zeta (aug-cc-pVTZ) basis set [13,14].

Dynamical computations of the nuclear motions on this
potential are studied, after which, the rotational (de)excitation
collision rate coefficients of HSN by He are deduced. Note
that the dominant collisional partner in the cold interstellar
medium is para-H2. For heavy molecules such as HSN, the
use of He as a template for para-H2 represents a reasonable
approximation for the estimation of the collisional data. Such
treatment is found to lead to limited uncertainties whereas
the cost of the computation is strongly reduced [8]. This
study focuses on rotational (de-)excitation at low-temperature
collision rates, i.e., well below the threshold for the excitation
of the vibrational modes of HSN (X̃ 1

A) (ν1 = 2031, ν2 =
1005, and ν3 = 1162 cm−1) [9]. Hence, the HSN molecule is
considered as a rigid rotor. In 2005, Faure et al. [15] showed
that several choices for the geometry of the triatomic molecule
are possible such as the re or r0 structures, the latter being
seemingly preferable. Since there appear to be no experimental
structural data on HSN, the internal coordinates (rHS, rSN, α)
of HSN are fixed at their equilibrium geometry as computed
at the CCSD(T)-F12 level with the cc-pVQZ-F12 basis
set [9]: rHS = 2.657 bohr, rSN = 2.827 bohr, and α = 109.9◦.
Together with the spectroscopic parameters, the calculated
collision rate coefficients should help in the identification of
HNS in astrophysical media.

II. INTERMOLECULAR POTENTIAL-ENERGY SURFACE
OF HSN-He COMPLEX

Electronic computations are performed using the MOLPRO

package (version 2012) [16] in the C1 point group sym-
metry. Preliminary CASSCF computations that were carried
out showed that the weight of the dominant configuration
for the ground state is around 0.93 for all investigated
geometries of the HSN-He complex. This validates the use
of monoconfigurational methods for the generation of the
potential-energy surfaces for the HSN-He complex. Using the
explicitly correlated coupled-cluster [CCSD(T)-F12] method,
the aug-cc-pVTZ basis set was used for H, He, S, and N
atoms. The MOLPRO default choices for the density fitting and
resolution of identity basis sets were applied [17]. In a series
of papers, this methodology has been shown to generation
accurate multidimensional potential surfaces of weakly bound
complexes [18–24]. Indeed, we established that the CCSD(T)-
F12 with aug-cc-pVTZ potential-energy surfaces are close to
those computed using the standard coupled-cluster approach
and a complete-basis-set (CBS) extrapolation limit.

The ground state of the HSN-He complex is of singlet
spin multiplicity. It correlates with the HSN (X̃ 1

A) + He
asymptote at large intermonomer separation. The energy of
this asymptote is taken as reference. For the calculations of the
interaction potential between HSN and He, Jacobi coordinates
R,θ,φ, as shown in Fig. 1, are used. They are defined with
respect to the molecular fixed principal inertia axes (Gx, Gy,

FIG. 1. Jacobi coordinates of HSN-He system with respect to the
HSN center of mass G and principal axes (Gx, Gy, Gz). The planar
configuration (Gxz plane) corresponds to φ = 0◦.

Gz) whose origin coincides with the center-of-mass of HSN,
G. These axes are placed along the three principal directions
of inertia of the HSN asymmetric-top molecule. R connects
G and He; θ is the angle between R and the (Gz) axis, and φ

is the angle between the molecular plane (Gxz plane) and the
axis joining the center of mass of the molecule HSN to thate of
the He atom. The (Gx), (Gy), and (Gz) axes are placed along
the three principal directions of inertia of HSN molecule.

This 3D potential-energy surface (PES) is constructed with
9139 nonequivalent ab initio geometries where 37 values
for the scattering coordinate R (from 4.25a0 to 100a0) are
assigned, and 19 and 13 values are assigned (from 0◦ to 180◦)
for the angles θ and φ, respectively. The grids on θ and φ

are uniform with steps of 10 and 15◦, respectively. R is set
to [4.25, 4.5, 4.75, 5, 5.25, 5.5, 5.75, 6, 6.25, 6.5, 6.75, 7,
7.25, 7.5, 7.75, 8, 8.25, 8.5, 8.75, 9, 9.25, 9.5, 9.75, 10, 10.5,
11, 12, 13, 14, 16, 18, 20, 25, 30, 40, 50, 100] (in units of
a0; 1 a0 = 1 bohr = 0.5292 Å). For mapping the 3D PES, a
relatively large grid of R coordinates is used for several angular
orientations in order to account for possible anisotropy of
this potential. For each nuclear configuration, the interaction
potential V (R,θ,φ), is corrected by the basis-set superposition
error (BSSE) using the Boys and Bernardi [25] counterpoise
formula:

V (R,θ,φ) = EHSN−He(R,θ,φ) − EHSN(R,θ,φ)

−EHe(R,θ,φ), (1)

where EHSN−He(R,θ,φ), EHSN(R,θ,φ), and EHe(R,θ,φ) are
the total electronic energies of the HSN-He cluster and the
HNS and He subsystems, respectively, and where all energies
are computed in the full basis set of HSN-He.

Because of the non-size-consistency of the CCSD(T)-
F12 method [12], the generated potential is shifted up by
∼ 4.76 cm−1 (its absolute value for R = 100 a0). Then we
deduced an analytic expansion of this 3D PES, where the
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TABLE I. Equilibrium geometries (distances in units of a0) and depth of the potential wells (V, cm−1) of the minimal structures of the
HSN-He 3D PES for φ = 0◦, φ = 90◦, and φ = 180◦.

φ = 0◦

θ = 5◦ θ = 103◦ θ = 180◦

R V R V R V

7.15 −45.04 6.15 −74.39 8.35 −25.09

φ = 90◦

θ = 0◦ θ = 121◦

R V R V

7.15 −44.33 6.95 −32.36

φ = 180◦

θ = 0◦ θ = 75◦ θ = 180◦

R V R V R V

7.15 −44.33 6.55 −36.01 8.35 −25.08

ab initio energies were fitted to the following formula:

V (R,θ,φ) =
lmax∑

l=0

mmax∑

m=0

vlm(R)
Yl,m(θ,φ) + (−1)mYl,−m(θ,φ)

1 + δm0
,

(2)

with Yl,m(θ,φ) and δm0 correspond to a normalized spherical
harmonic function and the Kronecker symbol, respectively.

For each point of the radial grid, a least-squares procedure
is performed to compute the coefficients of the development
on the angular functions. In the expansion, consideration is
given to the full set of m values (0 � m � l) for l ranging
from 0 to 11, whereas we considered mmax = 6 for lmax = 12.
This gives a total of 85 angular expansion coefficients vlm(R).
The quality of the fit is controlled by minimizing the value
of the root mean square in order to ensure reproduction of the
ab initio points with a relative error less than 0.5% for all radial
values.

Table I lists the characteristics of some selected HSN-He
configurations. Given are the geometries and the energies of the
minima found on the HSN-He PES for φ = 0◦, 90◦, and 180◦.
The global minimum of the 3D PES is located at R = 6.15 a0,
θ = 103◦, and φ = 0◦ with a well depth of V = −74.39 cm−1.
For φ = 0◦, two other local minima are located for R = 7.15 a0

and θ = 5◦ (V = −45.04 cm−1) and for R = 8.35 a0 and θ =
180◦ (V = −25.09 cm−1). For φ = 90◦ and 180◦, the potential
wells along R and θ are less deep than those described for
φ = 0◦: at R = 7.15 a0, θ = 0◦, and φ = 180◦ the depth of the
local minimum is −44.33 cm−1; and at θ = 0◦, φ = 90◦, and
R = 7.15 a0, the depth of this potential well is −44.33 cm−1.

Figure 2 depicts the two-dimensional cuts of the 3D PES
of HSN-He along the R and θ coordinates for three selected
configurations (φ = 0◦, φ = 90◦, and φ = 180◦) and along the
angular coordinates (φ, θ ) for R = 6.15 a0 and along R and φ

for θ = 103◦. These cuts show that the R stretch coordinate is
strongly coupled with θ and φ and that the angular coordinates
are also coupled together. These couplings result in strong
anisotropy of the potential along the Jacobi coordinates, which
should induce large rotational (de-)excitation collisional rates

for HSN colliding with He. Figure 2 reveals also that the
minima described above are separated by transition states.
Interestingly, all these transition states are located below
the dissociation energy to form HSN(X̃ 1

A) + He products.
Accordingly, the levels located above these isomerization
barriers are bound and may exhibit large-amplitude motions.
Finally, the comparison of the 3D PES of HSN-He to that of
the isomeric form HNS-He [10] reveals that the HSN-He, like
HNS-He, has in its turn a symmetric trend dependent upon the
value of φ and possesses deeper potential wells.

III. COLLISION CROSS SECTIONS AND RATE
COEFFICIENTS FOR THE HSN-He SYSTEM

A. Dynamical calculation details

At present, collisions between an asymmetric-top molecule
(HNS) and a spherical atom (He) are considered. The rotational
Hamiltonian of the HSN molecule is given by

Hrot = j 2
x

2Ix

+ j 2
y

2Iy

+ j 2
z

2Iz

− DJ j 4 − DJKj 2j 2
z − DKj 4

z

(3)

where Iα(α = x,y,z) are the principal moments of inertia
with respect to the principal axes of inertia (Gx), (Gy),
and (Gz) of HSN. (G,x,y,z) is the body-fixed reference,
related to the space-fixed reference (G,X,Y,Z) by the Euler
angles. Ix , Iy , and Iz are related to the rotational constants
according to A = 1/2Ix , B = 1/2Iy , and C = 1/2Iz. The
total angular momentum of the molecule is such that j 2 =
j 2
x + j 2

y + j 2
z . DJ , DJK , and DK are first-order centrifugal

distortion corrections. The rotational wave function |jτm〉 of
an asymmetric-top molecule can be defined by three quantum
numbers j , τ , m and can be expressed as a linear combination
of the rotational wave functions |jτm〉 of a symmetric-top
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 = 0°  = 90°

 = 180° R = 6.15 a0

θ = 103°

FIG. 2. Two-dimensional contour plots of the 3D HSN-He PES along the R and θ coordinates for fixed φ = 0◦, 90◦, and 180◦. We give also
the cuts along the angular coordinates R = 6.15 a0 and along R and φ for θ = 103◦. Energies are in cm−1. Black (red) contour lines represent
repulsive (attractive) interaction energies.

molecule such as [26]:

|jτm〉 =
j∑

k=−j

a
j

τk|jkm〉, (4)

where j , k, and m denote the rotational quantum number,
its projection along the molecular z axis, and its projection
along the space-fixed Z axis, respectively; and τ is a pseudo-
quantum-number that varies between −j and j . The rotational
levels of an asymmetric-top molecule are conventionally
labeled jKaKc

(adopted hereafter), where Ka and Kc are the
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FIG. 3. HSN rotational levels for jKa Kc
up to 909. These levels

are labeled by the values of the rotational quantum number j (given
along the abscissa) and the projection quantum numbers Ka and Kc.

projections of the rotational angular momentum along the axis
of symmetry in the cases of the prolate and oblate symmetric-
top limits, and are related to τ through τ = Ka − Kc.

The rotational energy levels EjKaKc
≡ Ejτ of HSN

are computed from the ab initio rotational and distor-
tional constants calculated by Ben Yaghlane et al. [9]
at the CCSD(T)-F12 and cc-pVQZ-F12 level of the-
ory, which are Ae = 0.692, Be = 0.742, Ce = 10.186,DJ =
1.0 × 10−6,DK = 3.22 × 10−5,DJK = 1.22 × 10−3 (all val-
ues are in cm−1). No rovibrational spectra for HSN species
have apparently been measured so far. For scattering calcula-
tions, only the first 36 levels of the HSN molecule are con-
sidered. This corresponds to a maximum of rotational energy
Erot � 70 cm−1, i.e., up to jKaKc

= 909 (Erot = 67.97 cm−1).
For illustration, the diagram corresponding to these rotational
levels is presented in Fig. 3. Since this molecule is relatively
heavy, this diagram reveals that the rotational structure is
very complex with a high density of rotational levels and
with relatively small energy spacing between these levels.
Shown in Table II are the frequencies for some selected dipole-
allowed transitions. The dipole moment of HSN is estimated
at the CCSD(T) and aug-cc-pVTZ level of theory using
the finite-field method to be μx = 0.6083, μy = 0.00, μz =
−2.5834 (in [debye(D)]).

The analytical expansion of the 3D PES of HSN-He is
incorporated into dynamical computations using the close-
coupling (CC) method [27] and the coupled-states (CS)
approach [28] as implemented in the MOLSCAT program. These
dynamical computations are carried out for total collisional
energies ranging from 1.44 up to 1400 cm−1, thus enabling
the calculation of converged rate coefficients for the range of
temperatures T = 5−200 K, between the first 36 rotational
levels of HSN. The CC method is used for total energies of the
complex up to 100 cm−1. Beyond this value, i.e., for energies
from 100 cm−1 up to 1400 cm−1, the CS approximation is
employed. To account for resonances during the calculations,
the energy is carefully spanned over the energy range as
follows: for E < 100 cm−1, the energy step is set to 0.1 cm−1,
for 100 � E � 400 cm−1 it is set to 1 cm−1, for 400 � E �
1000 cm−1 to 5 cm−1, and for 1000 � E � 1400 cm−1 to

TABLE II. Frequencies (in GHz) for some selected dipole-
allowed transitions of the HSN-He system. The precision on these
estimates is ∼ 0.1 GHz.

Transition jKaKc
–j ′

K ′
aK ′

c
Frequency

101-000 43.01
111-000 326.30
110-000 327.80
212-111 84.53
202-101 86.03
212-101 367.81
313-212 126.79
303-202 129.03
313-202 408.58
414-313 169.05
404-303 172.01
414-303 448.60
515-414 211.29
505-404 214.96
515-404 487.88

50 cm−1. The log-derivative propagator of Manolopoulos [29]
is used to solve the coupled equations.

Since the size of the coupled equations and the necessary
computer time for their resolution increase rapidly with the
size of the basis set, a series of calculations is performed
for all ranges of scattering energies in order to test the
convergence of the inelastic collision cross sections with
respect to the rotational basis size. These tests showed
that jmax = 12 for total energies E � 100 cm−1, jmax = 13
for 100 � E � 400 cm−1, and jmax = 15 for 400 � E �
1400 cm−1 are enough to establish convergence within a
few percent. In addition, rotational levels are capped at
Emax = 200 cm−1 for E � 100 cm−1, at Emax = 300 cm−1

for 100 � E � 400 cm−1, and at Emax = 400 cm−1 for 400 �
E � 1400 cm−1, since a given j rotational number spans a large
amount of rotational energy. These Emax (cutoff energies) are
sufficient to converge cross sections for rotational levels up to
jKaKc

= 909. A cutoff procedure removes some highly excited
states that formally become open but in practice remain very
weakly populated by transitions from the lowest states. The
maximum value of the total angular momentum Jtot is set
large enough to ensure the convergence of the inelastic cross

sections to within 0.01 Å
2
.

The use of both CC and CS approaches is due to the
complexity of calculations dealing with asymmetric-top-atom
systems. Indeed, the determination of HSN-He cross sections
using the exact close-coupling method is very CPU consuming,
as it relates to the complexity associated with the increase of
the number of channels in the CC equations to be solved at high
collisional energies. To reach the highest rotational states, the
coupled-states approach approximation is used instead for the
upper collision energies. Previous studies showed that the CS
approach represents a good approximation for the considered
ranges of total energies [30–32]. This is also confirmed as
shown in Fig. 4, which presents a close comparison of the
CC and CS cross sections for some transitions and for total
collisional energies 1.44 � E � 100 cm−1. Indeed, this figure
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FIG. 4. Comparison between CC (dashed lines) and CS (solid
lines) cross sections for selected transitions as a function of kinetic
energy Ek .

shows that the cross-section shapes, magnitudes, and positions
of the resonances are quite similar and well reproduced with
the CS approximations, and the agreement improves with
increasing collision energy (∼12% for total energy greater
than 100 cm−1). Therefore, we adopt the CS approximation
for total collision energies E > 100 cm−1. Finally, in order
to obtain a set of rate coefficients as accurate as possible,
the CS cross sections are scaled at 100 cm−1 to match CC
cross sections so that both values of the cross sections
coincide.

B. Collision cross sections

Figure 5 illustrates the typical kinetic-energy dependence
of the present calculated deexcitation cross sections
associated with rotational transitions of HSN characterized
by �j = (−5, −4, −3, −2,−1), �Ka = (−1,0), and
�Kc = (−5, − 4, − 3, − 2, − 1,0,1). It appears that these
deexcitation cross sections share a similar shape. Indeed, they
decrease quickly with increasing kinetic energy. For collision
energies up to 100 cm−1 (i.e.,approximately the depth of the
HSN-He potential), many resonances are found. These are a
consequence of the quasibound states arising from tunneling
through the centrifugal energy barrier (shape resonances), or
from the presence of an attractive potential well that allows
the He atom to be temporarily trapped in the well and hence
quasibound states to be formed (Feshbach resonances) before
the complex dissociates [33]. It is interesting to note that the
resonances decrease in number and height with increasing j

and �j and do not exist for cross sections involving levels with
large �j due to the large threshold energy value. The first row
of Fig. 5 shows that the deexcitation cross sections decrease
with increasing �j . Note that such behavior of cross sections
has been observed for the HNS-He collision system. Here,
it is worth noting that the HNS-He system exhibits a favored
set of transitions corresponding to |�j = 2|, �Ka = 0, and
�Kc = �j (the transition 505-303 dominates the 505-404 one),
like its isomeric form HSN-He. As we pointed out in Ref. [10],
these propensity rules for even or odd �j are found in the case
of diatomic and linear molecules colliding with He or H2 and
have been explained in Refs. [34–38]. When the anisotropy of
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FIG. 5. Typical rotational deexcitation cross sections for collision
of HSN He as a function of kinetic energy Ek . We present
those for �j = (−5, −4, −3, −2,−1), �Ka = (−1,0), and �Kc =
(−5, − 4, − 3, − 2, − 1,0,1). These cross sections are computed
using the CC approach for E < 100 cm−1 and the CS approximation
for E > 100 cm−1.The CS cross sections are scaled and matched to
the CC calculations at collision energy E = 100 cm−1.

the potential-energy surface with respect to the He approach
is weak, the transitions with even �j are favored, whereas
the transitions with odd �j are favored when the potential
is strongly anisotropic. Please note also that the strongest
cross sections are those that connect levels with �Kc = 0 as
already found for an asymmetric-top molecule in collision with
atoms [39].

C. Rate coefficients

The collisional deexcitation rate coefficients between initial
and final rotational levels jKaKc

and j ′
K ′

aK
′
c

are calculated by
averaging the cross sections over the Maxwell-Boltzmann
distribution that describes the distribution of kinetic energies
of the molecules in the gas at a given kinetic temperature (see
[10]). The cross sections for total collisional energies ranging
from 1.26 to 1400 cm−1 lead to converged rate coefficients
for the first 36 rotational levels of the HSN molecule for
temperatures ranging from 5 to 200 K. The complete set of
(de-)excitation rate coefficients between the rotational levels
will be deposited in the LAMDA [40] and BASECOL [41]
databases, and can be sent upon request to the authors. For
illustration, Fig. 6 depicts the rotational deexcitation rate
coefficients of HSN after collision with He as a function
of kinetic temperature for jKa=0,Kc=j−000 (with 1 � j � 5)
transitions. Obviously, the rate coefficients display the same
propensity rules as do the cross sections, and the strongest
ones are those with to |�j = 2|, �Ka = 0, and �Kc = �j .
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FIG. 6. Rotational deexcitation rate coefficients of HSN after
collision with He as a function of kinetic temperature for jKa=0,Kc=j

-000 (with 1 � j � 5) transitions.

D. Comparison of HSN-He and HNS-He results and
detectability of HSN and HNS

It is interesting to compare the HSN-He rate coefficients
with those of the HNS-He isomeric systems. Such a compar-
ison should help us to determine which isomer will lead to
the strongest emission lines in the interstellar spectra and thus
could be more easily identified. Indeed, the magnitude of the
emission lines is proportional to the population of the excited
states of the molecules in the interstellar clouds. Two processes
contribute to the population of the excited states: radiative and
collisional processes. The magnitude of the emission lines will
hence depend on both the dipole moment and the collisional
rate coefficients.

Figure 7 displays the HSN–He and HNS–He deexcitation
rate coefficients from the 505 level at 100 and 200 K. On the
whole, the HSN and HNS rate coefficients are of the same order
of magnitude and display propensity rules in favor of |�j = 2|
transitions. Note that the rate coefficients for HNS-He are
slightly larger than those for HSN-He. This difference is
surprising, taking into account the slightly greater well depth
in the HSN-He than in the HNS-He potential-energy surface.
Such behavior can, however, be explained by a stronger
anisotropy in the HNS-He system which favors inelastic over
elastic transitions.

More generally, such propensity rules will not help in
observing these molecules in the interstellar medium (ISM)
since collisions will not favor radiative transitions with |�j =

FIG. 7. HSN-He and HNS-He deexcitation rate coefficients from
the 505 level at 10 and 100 K.

1| [7,37]. Indeed, the propensity rules in favor of |�j = 2|
transitions will not favor emission lines with strong intensity.
Nevertheless, the rate coefficients with |�j = 1| are stronger
for HNS-He than for HSN-He. This information suggests
that HNS will present stronger emission spectra than HSN,
assuming the two molecules are present in the same envi-
ronment and under similar physical environmental conditions.
However, the intensity of the emission lines also depends on the
dipole moment. The dipole moment of HSN (|μ| = 2.65 D)
is larger than that of HNS (|μ| = 1.48 D [10]), leading to
stronger line intensity for HSN than for HNS in the case of a
similar population of the rotational states. As a consequence,
it seems that HNS molecules will be more easily detected in
low- to intermediate-density astrophysical media where local
thermodynamic equilibrium (LTE) conditions are not reached
(in the case of a competition between collisional and radiative
processes for determining the population of excited states). On
the other hand, in high-density astrophysical media where LTE
conditions are reached, HSN lines should be more intense.

IV. CONCLUSION

The three-dimensional potential-energy surface of the
HSN-He colliding system in Jacobi coordinates is generated
and presented. The potential-energy surface is strongly an-
harmonic. Incorporation of the 3D potential-energy surface
into dynamical computations to treat the nuclear motions
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enabled the collision cross sections and the rate coefficients
for the rotational (de-)excitation of HSN by He to be deduced.
Comparisons of the collision coefficients for the rotational
(de-)excitation of HNS by He suggest that HNS should be
more easily detectable in interstellar cold molecular clouds
(where the density is low), whereas, the emission spectra of
HSN should be more intense for high-density media, and may
be more easily seen in the spectral survey.
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