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The magnetic hyperfine (MHF) splitting of the ground and low-energy 3/2+ (7.8 ± 0.5 eV) levels in the 229Th
nucleus in the muonic atom (μ−

1S1/2

229Th)∗ is calculated considering the distribution of the nuclear magnetization
in the framework of the collective nuclear model with wave functions of the Nilsson model for the unpaired
neutron. It is shown that (a) deviation of the MHF structure of the isomeric state exceeds 100% from its value for
a pointlike nuclear magnetic dipole (the order of sublevels is reversed); (b) partial inversion of levels of the 229Th
ground-state doublet and spontaneous decay of the ground state to the isomeric state occur; (c) the E0 transition,
which is sensitive to differences in the mean-square charge radii of the doublet states, is possible between mixed
sublevels with F = 2; and (d) MHF splitting of the 3/2+ isomeric state may be in the optical range for certain
values of the intrinsic gK factor and a reduced probability of a nuclear transition between the isomeric and the
ground states.
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Introduction. The unique transition between the low-lying
isomeric level 3/2+(Eis = 7.8 ± 0.5 eV) (its energy is mea-
sured in [1] and its existence is confirmed in [2]) and the
ground 5/2+(0.0) state in the 229Th nucleus draws the attention
of specialists from different areas of physics. The reason is the
anomalous low energy of the transition. Its proximity to the
optical range gives us hope for a number of scientific break-
throughs that could have a significant impact on technological
development and applications, such as a metrological standard
for time [3–5] and a laser at the nuclear transition in the vacuum
ultraviolet (VUV) range [6]. The relative effect of the variation
of the fine-structure constant e2 (we use the system of units
� = c = 1) and the strong interaction parameter mq/�QCD [7]
are also of considerable scientific interest. Finally, we mention
the decay of the isomeric nuclear level via the electronic bridge
[8], high sensitivity of the nuclear transition to the chemical
environment, and ability to use the thorium isomer as a probe to
study the physicochemical properties of solids [8], cooperative
spontaneous Dicke emission [9] in the system of excited nuclei
229Th, and accelerated α decay of the 229Th nucleus via the
isomeric state [10]. The behavior of the excited 229Th nucleus
inside dielectrics with a large band gap is of particular interest
[11]. Since there is no conversion decay channel in such a
dielectric, the nucleus can absorb and emit VUV-range photons
directly, without interaction with the electron shell [10]. As a
result, studying the isomeric state by optical methods becomes
possible [5,12–15].

In this work the 229Th ground-state doublet is investigated in
the muonic atom (μ−

1S1/2

229Th)∗. The muon on the 1S1/2 atomic
orbit creates a very strong magnetic field at the nucleus [16,17].
The interaction of this field with the magnetic moments of
nuclear states leads to a magnetic hyperfine (MHF) splitting
of nuclear levels (see, for example, [18–28], and references
therein). We demonstrate here that the MHF splitting has a
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number of nontrivial features in the case of (μ−
1S1/2

229Th)∗: the
partial inversion of nuclear sublevels and spontaneous decay of
the ground state 5/2+ to the isomeric 3/2+ state, the anomaly
deviation of the MHF structure of the isomeric state from its
value for a pointlike nucleus, the important role of the dynamic
effect of finite nuclear size (or the penetration effect) in the
state mixing, the possible existence of the electric monopole
transition and optical transitions between MHF sublevels, etc.
This situation is very unusual and looks promising with regard
to experimental research.

The Fermi contact interaction. Let us consider the system
(μ−

1S1/2

229Th)∗, which consists of a muon bound on the 1S1/2

shell of a muonic atom and the 229Th nucleus. The muon in the
(1S1/2)1 state results in a strong magnetic field in the center
of the 229Th nucleus. The value of this field is given by the
formula for the Fermi contact interaction,

Hμ = −16π

3

me

mμ

μB

σ

2
|ψμ(0)|2, (1)

where me and mμ are the masses of the electron and muon,
respectively, μB = e/2me is the Bohr magneton, σ are the
Pauli matrices, and ψμ(0) is the amplitude of the muon Dirac
wave function at the origin.

The amplitude ψμ(0) can be calculated numerically by
solving the Dirac equations for the radial parts of the large,
g(x), and small, f (x), components of ψμ(x):

xg′(x) − b[E + 1 − V (x)]xf (x) = 0,

xf ′(x) + 2f (x) + b[E − 1 − V (x)]xg(x) = 0.

Here x = r/R0, where r is the muon coordinate in the spherical
coordinate system and R0 = 1.2A1/3 fm is the average radius
of the 229Th nucleus, which has the form of a charged sphere,
b = mμR0, and E and V (x) are, respectively, the muon binding
and potential energies (in the units of mμ) in the field produced
by the nucleus protons. (For lower muonic states, electron
screening plays a negligible role [18,27]. Therefore we neglect
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FIG. 1. Dimensionless densities of the muon (ρμ) and unpaired
neutron (ρn) in the ground 5/2+[633] state and isomeric 3/2+[631]
state; ρm

c is the core magnetization.

here effects due to the influence of the electron shell on the
muon wave function.)

We assume that the proton density of the nucleus has
the Fermi shape ρp(x) = ρ0/{1 + exp[(x − 1)/χ ]}, where
χ = [0.449 + 0.071(Z/N )]/R0 is the diffuseness or the half-
density parameter of the proton density Fermi distribution [29].
The density is normalized by the condition

∫ ∞
0 ρp(x)x2dx =

Ze, where Z is the nucleus charge. The muon wave function
is normalized by the condition

∫ ∞
0 ρμ(x)x2dx = 1, where

ρμ(x) is the muon density ρμ(x) = g2(x) + f 2(x). The result
of calculation of the muon density is presented in Fig. 1.
To evaluate the magnetic field one can use Eq. (1) with
the value of the muon wave function given by ψμ(0) =
Y00(ϑ,ϕ)g(0)/R3/2

0 , where Y00(ϑ,ϕ) is the spherical harmonic,
and from calculations it follows that g(0) = √

ρμ(0) = 1.76.
Thus, according to Eq. (1) the magnetic field at the center of

the 229Th nucleus is about 23 GT. Interaction of point magnetic
moments of the ground state (μgr = 0.45) and isomeric state
(μis = −0.076) with the magnetic field leads to a splitting of
the nuclear levels. The energy of the sublevels is determined
by the formula

E = Eint
F (F + 1) − I (I + 1) − s(s + 1)

2Is
, (2)

where Eint = −μgr(is)μNHμ is the interaction energy, μN =
e/2Mp is the nuclear magneton (Mp is the proton mass), I is
the nuclear state spin, and s is the muon spin. The quantum
number F takes two values, F = I ± 1/2, for the ground
and isomeric states and determines the sublevel energies. The
resulting energy values are given in Fig. 2.

The MHF splitting found in the model of the Fermi contact
interaction is very significant. However, since the muon density
decreases quickly to the nuclear edge the obtained values are
grossly overestimated.

The distributed magnetic dipole model. The influence of
a finite nuclear size on MHF splitting was first considered by
Bohr and Weisskopf [30]. Later the effect of the distribution of
nuclear magnetization on the MHF structure in muonic atoms
was studied by Le Bellac [31]. According to these works, in
the case of a deformed nucleus the energy of sublevels is given
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FIG. 2. Magnetic hyperfine structure of the 229Th ground-state
doublet in the muonic atom in various models. The uncertainty range
for the energy of the states due to variations of the parameters gK and
BW.u. (M1; 3/2+ → 5/2+) (see text for details) is shown at the right.

by Eq. (2), where

Eint =
∫

d3r j(r)A(r) (3)

is the energy of interaction of the muon current j(r) =
−eψ+

μ (r)αψμ(r) (α = γ 0γ , γ are the Dirac matrices) with the
vector potential of the electromagnetic field A(r) generated
by the magnetic moment of the nucleus. For a system of
a “rotating deformed core (with collective rotating angular
momentum �) + unpaired neutron (with spin Sn),” the vector
potential is determined by the relation [30,31]

A(r)=−
∫

d3R
[
ρn(R)gSSn+ρm

c (R)gR�]×∇r

1

|r−R| , (4)

where ρn(R) is the distribution of the spin part of
the nuclear moment and ρm

c (R) is the distribution of
the core magnetization, gS is the spin g factor, and gR is the
core gyromagnetic ratio. The distributions ρn(R) and ρm

c (R)
are normalized:

∫
d3Rρn(R) = 1,

∫
d3Rρm

c (R) = 1.
Here we use the standard nuclear wave function [32]

�I
MK =

√
(2I + 1)/8π2DI

MK (�)ϕK (R), where DI
MK (�) is

the Wigner D function of the Euler angles denoted, collec-
tively, by �, ϕK (R) is the wave function of external neutron
coupled to the core, K is the component of I along the
symmetry axis of the nucleus, and M is the component of
I along the direction of the magnetic field.

As follows from Eqs. (3) and (4), Eint consists of two parts.
The first part is the interaction of the muon with the external
unpaired neutron and the second is the interaction of the muon
with the rotating charged nuclear core. These energies are
calculated in accordance with formulas from [31]. In our case
the muon interacts with the nucleus in the head levels of
rotational bands (for such states we have K = I ), and two
contributions take the following form:

E
( n

core)
int = E0

I

I + 1

(
IgK

gR

){
〈M〉 −

∫ (
ρn(y)

ρm
c (y)

)
d3y

×
∫ y

0

[
1 − x3

(
(I,θ )

1

)]
f (x)g(x)dx

}
. (5)
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Here, E0=−2e2Mp/[3(MpR0)2], gK is the intrinsic
g factor, ρn(y) = ϕK (y)∗ϕK (y), y = R/R0, (I,θ ) =√

4π/5Y20(θ )(2I + 1)/[I (2I + 3)]. The first term in square
brackets in Eq. (5), 〈M〉 = ∫ ∞

0 f (x)g(x)dx = −0.1895, cor-
responds to the interaction of the muon with a point nuclear
magnetic dipole. The resulting energy sublevels are close to
the values calculated with Eq. (1).

For the unpaired neutron the wave functions ϕK were taken
from the Nilsson model. The structure of the intrinsic state
ϕK of the 229Th ground state 5/2+(0.0) is Kπ [Nnz�] =
5/2+[633]. The structure of the isomeric state 3/2+
(7.8 eV) is 3/2+[631] [33]. For each of these states, the wave
function has the form ϕK = φ�(ϕ)φ�,nr

(η)φnz
(ζ ), where the

quantum number nr = (N − nz − �)/2, the variables on the
axes ζ = R0

√
Mpωzycosθ , η = R0

√
Mpω⊥ysinθ , the ener-

gies of the oscillatory quanta ωz = ω0
√

1 + 2δ/3 and ω⊥ =
ω0

√
1 − 4δ/3, where ω0 = 41/A1/3 MeV is the harmonic

oscillator frequency, δ = 0.95β, and β is the parameter of the
deformation of the nucleus defined in terms of the expansion
of the radius parameter R = R0(1 + βY20(θ ) + · · · ).

The constituent wave functions are as follows:
φ�(ϕ) = ei�ϕ/

√
2π , φ�,nr

(η) = e−η2/2η�L(�)
nr

(η2)/Nη,

φnz
(ζ ) = e−ζ 2/2Hnz

(ζ )/Nζ , where L(�)
nr

is the generalized
Laguerre polynomial, Hnz

is the Hermite polynomial [34], and
Nη,ζ are the normalization factors. The density distributions
of the unpaired neutron in states 5/2+[633] and 3/2+[631]
averaged over the angles θ and ϕ are shown in Fig. 1. In our
numerical calculations we took into account the asymmetry
of the nucleon wave functions in Eq. (5) but neglected the
small difference between ωz and ω⊥.

For the core magnetization we used the classical density
of the magnetic moment, ρm

c ∝ x2/{1 + exp[(x − 1)/χ ]},
obtained from proton density ρp by averaging over the angles.
This quadratic dependence was used in [19] and [35]. The
normalized function ρm

c is shown in Fig. 1.
The resulting scheme of MHF splitting for (μ−

1S1/2

229Th)∗ is
shown in Fig. 2. For g factors of the ground state we have used
values which are accepted nowadays: gR = 0.309, gK = 0.128
[36]. The reduction of the MHF structure in comparison with
the model of the point nuclear magnetic dipole is about 56%
for the 5/2+(0.0) state.

For calculation of the isomeric state we have taken gR =
0.309 and gK = −0.29 [37], which is obtained from the mean
value |gK − gR| = 0.60 (the values |gK − gR| = 0.59 ± 0.14
and 0.61 ± 0.10 were measured in [38]). The gyromagnetic
ratio gR = 0.309 ± 0.016 from [36] is determined with a much
higher precision than |gK − gR| for band 3/2+[631], and the
existing uncertainty in |gK − gR| is related exclusively to gK :
gK = 0.29 ± 0.12. This leads to uncertainty in the position of
levels (see Fig. 2).

A somewhat paradoxical situation can take place because of
the complex structure of the magnetic moment of the isomeric
state and the behavior of the muon wave function (currently we
consider a variant without mixing of states with equal values
of F ). From Fig. 3 it follows that in the range −0.30 < gK <

−0.29 the 3/2+[631] state has a nonzero magnetic moment,
whereas MHF splitting is absent or very weak. Conversely,
the magnetic moment of the isomeric level equals 0 for gK ≈
−0.206, while the MHF splitting is relatively large. The reason
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FIG. 3. Imbalance of the MHF interaction for the composed
magnetic moment of the isomeric state in 229Th: energies of the
sublevels relative to Eis and the magnetic moment μis as a function
of the gyromagnetic factor gK in the absence of mixing of the states
with F = 2 (see text for details).

is the following. The magnetic field generated by the spin of the
nucleon is sensitive to the nonsphericity of the wave functions
ϕK . This leads to the appearance of the additional factor (I,θ )
in the spin part of Eq. (5) [30,31]. Averaging over the angles
reduces the spin contribution with respect to the orbital part.
A small imbalance emerging in the system leads to violation
of the “fine-tuning” between the spin and the orbital parts of
the magnetic moment and to the effect described above. This
mechanism can also occur in other nuclei with low energy (up
to some kiloelectronvolts) levels.

Mixing of sublevels with F = 2. To find the final position
of the sublevels we now consider the mixing of states with
F = 2 [25]. The interaction energy, E , of the nuclear and
muon currents during the transition between the |3/2+,F = 2〉
sublevel with energy E1 and the |5/2+,F = 2〉 sublevel with
energy E2 can be found from equations given in Refs. [39] and
[40]. They generalize the static Bohr-Weisskopf effect for the
case of nuclear excitation at the electron (muon) transitions in
the atomic shell. For the M1 transition we obtain

E = E0ξ 〈M〉
√

(15/2)BW.u.(M1; 3/2+ → 5/2+),

where BW.u.(M1; 3/2+ → 5/2+) = 3.0 × 10−2 is the reduced
probability of the nuclear isomeric transition in Weisskopf’s
units [41], and ξ is a factor that takes into account the dynamic
effect of the nuclear size [40] or the penetration effect [42].
Calculation of the nuclear current with the neutron wave
function in the Nilsson model gives the value of ξ = 0.45.
As a result, we have E � 150 eV.

The energies of the new sublevels with F = 2 are calculated
according to the formulas [43]

E1′,2′ = [E1 + E2 ±
√

(E1 − E2)2 + (2E)2]/2,

where E1′(2′) are the energies of the new sublevels
|3/2+(5/2+),F = 2〉′. We emphasize that these energies
are valid for the most probable values of gK and
BW.u.(M1; 3/2+ → 5/2+). Variations of the parameter gK

in the range (gK = 0.29 ± 0.12) and the reduced prob-
ability of the nuclear transition (currently 3 × 10−3 �
BW.u.(M1; 3/2+ → 5/2+) � 5 × 10−2 [41]) gives a fairly
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FIG. 4. Range of values of gK and BW.u.(M1; 3/2+ → 5/2+) at
which the transitions between the sublevels lie in the optical or VUV
ranges. Dotted lines show areas where the sublevels have the same
energy.

large area of uncertainty (see Fig. 2) in the position of the
levels.

In Fig. 4 we reproduce the values of gK and
BW.u.(M1; 3/2+ → 5/2+) with an energy difference between
the sublevels of less than 10 eV. The existence of the
optical range for the transitions |5/2+,F = 3〉 → |3/2+,

F = 2〉′ and |3/2+,F = 2〉′ → |3/2+,F = 1〉 is an unusual
feature of the MHF structure in (μ−

1S1/2

229Th)∗. It gives hope
that advanced optical methods can be applied to the study of
this extraordinary nuclear state.

Transitions between sublevels. Both sublevels of the iso-
meric state 3/2+(7.8 eV) lie below the ground-state sublevel
|5/2+,F = 3〉. As a result, spontaneous transitions to the
isomeric level accompanied by its population become possible.

Mixing of sublevels with F = 2 significantly increases the
probability of transitions 2 and 4 in Fig. 2 between the sublevels
of the ground and isomeric states. The wave functions of the
new sublevels have the form

|3/2+,F = 2〉′ =
√

1 − b2|3/2+,F = 2〉 + b|5/2+,F = 2〉,
|5/2+,F = 2〉′ = −b|3/2+,F = 2〉 +

√
1 − b2|5/2+,F = 2〉,

where b = (E1′ − E1)/
√

(E1′ − E1)2 + E2 � 0.47 [43]. Ac-
cordingly, the component of the transition, which connects
the state |5/2+,F = 3〉 with b|5/2+,F = 2〉 makes the main
contribution to the transition 2 in Fig. 2. This transition occurs
via a spin flip of the muon without changing the nuclear
state.

The main decay channel of the |5/2+,F = 3〉 sublevel is the
transition to the |5/2+,F = 2〉 ground-state sublevel (labeled
1 in Fig. 2). The probability of transition 1 calculated by
means of formulas in Refs. [26] and [44] is 2.8 × 10−11 eV.

The transition is accompanied by the emission of conversion
electrons. The muon in (μ−

1S1/2

229Th)∗ is practically inside the
thorium nucleus. The electronic shell perceives the system
“muon + thorium nucleus” as an actinium nucleus of charge
89. Therefore, the internal conversion will take place in the
electron shell of the Ac atom. For transition 1 the internal
conversion coefficient αM1 is equal to 6.6 × 105 (it was
found using the code described in [8]) with the full width
�tot = 1.8 × 10−5 eV. This means that the half-life of the
sublevel |5/2+,F = 3〉 is less than 2.5 × 10−11 s. That is, the
relaxation of this level is completed prior to muon absorption
(∼10−7 s) or muon decay (2 × 10−6 s).

Taking into account coefficient b2, the radiation width of
transition 2 is 1.1 × 10−14 eV and the total width equals
7.0 × 10−7 eV (αM1 = 6.0 × 107). Thus, the probability of
isomeric-state excitation at the decay of the ground state is
3%–4%. Modern muon factories generate105 muonic atoms
per second. Thus we can expect the formation of the order
of Nis � 3 × 103 isomeric nuclei per second. From measure-
ments of the corresponding conversion electrons one can hope
to identify experimentally the fast transitions 3, 4, and 5. They
are comparable in intensity to transitions 1 and 2. Measurement
of the parameters of the transitions can give information about
gK and B(M1; 3/2+ → 5/2+).

The value Nis � 3 × 103 s−1 is a lower estimate. The muon
capture by atom is followed by a cascade of muon transitions in
the atomic shell. The process of nonradiative nuclear excitation
by means of direct energy transfer from the excited atomic
shell to the nucleus via the virtual X photon is possible if
the muon transition is close in energy and coincides in type
with the nuclear one (see, for example, [24]). This effect was
predicted by Wheeler [16]. In the case of resonant excitation of
the levels of the 5/2+[633] rotational band the probability of
the population of the 3/2+[631] isomeric state is estimated by
1%–2%. (This value corresponds to the probability of isomer
population at the α decay of 233U, which involves mainly the
levels of the 5/2+[633] band in 229Th.) However, a precise
account of the isomer population in muonic transitions can be
given only experimentally.

Another interesting consequence of the mixing of
F = 2 states is the possible existence of an E0 component
at transition 5 in Fig. 2. The E0 transition is sensitive
to differences in the mean-square charge radii 〈R2

p〉 [45].
The probability of the transition depends on the E0 tran-
sition strength ρ(E0)2, which is proportional to b2(1 −
b2)(〈R2

p〉5/2+ − 〈R2
p〉3/2+ )2/R4

0. ρ(E0)2 = 0 in the framework
of the simplified model for the charge distribution ρp used in
this work. In reality, the radii 〈R2

p〉3/2+ and 〈R2
p〉5/2+ can differ

in magnitude and detection of the E0 transition would be a
step towards a better understanding of the properties of the
low-energy doublet in 229Th.
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