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We present numerically accurate calculations of the bound-state spectrum of the highly excited valence electron
in the heavy alkali-metal atoms solving the radial Schrödinger eigenvalue problem with a modern spectral
collocation method that applies also for a large principal quantum number n � 1. As an effective single-particle
potential we favor the reputable potential of Marinescu et al. [Phys. Rev. A 49, 982 (1994)]. Recent quasiclassical
calculations of the quantum defect of the valence electron agree for orbital angular momentum l = 0,1,2, . . .

overall remarkably well with the results of the numerical calculations, but for the Rydberg states of rubidium
and also cesium with l = 3 this agreement is less fair. The reason for this anomaly is that in rubidium and
cesium the potential acquires for l = 3 deep inside the ionic core a second classical region, thus invalidating
a standard Wentzel-Kramers-Brillouin (WKB) calculation with two widely spaced turning points. Comparing
then our numerical solutions of the radial Schrödinger eigenvalue problem with the uniform analytic WKB
approximation of Langer constructed around the remote turning point r

(+)
n,j,l we observe everywhere a remarkable

agreement, apart from a tiny region around the inner turning point r
(−)
n,j,l . For s states the centrifugal barrier is

absent and no inner turning point exists: r
(−)
n,j,0 = 0. With the help of an ansatz proposed by Fock we obtain for

the s states a second uniform analytic approximation to the radial wave function complementary to the WKB
approximation of Langer, which is exact for r → 0+. From the patching condition, that is, for l = 0 the Langer
and Fock solutions should agree in the intermediate region 0 < r � r

(+)
n,j,l , not only an equation determining

the quasiclassical quantum defect δ0 but also the value of the radial s-wave function at r = 0 is analytically
found, thus validating the Fermi-Segrè formula for the hyperfine splitting constant A

(HFS)
n,j,0 . As an application we

consider recent spectroscopic data for the hyperfine splittings of the isotopes 85Rb and 87Rb and find a remarkable
agreement with the predicted scaling relation A

(HFS)
n,j,0 (n − δ0)3 = const.

DOI: 10.1103/PhysRevA.94.012509

I. INTRODUCTION

The alkali-metal atoms have a simple ground-state elec-
tronic structure, with only one valence electron in an s state.
On a level of accuracy, where the relativistic corrections to
the spectrum can be ignored, the bound-state spectrum of
the excited valence electron can be well described by the
spherically symmetric effective single-particle potential of
Marinescu et al. [1,2]:

Veff(r; l) = −2
Zeff(r; l)

r
− αc

1 − exp
[ − (

r
rc(l)

)6]
r4

, (1)

where

Zeff(r; l) = 1 + (Z − 1)e−ra1(l) − re−ra2(l)[a3(l) + ra4(l)].
(2)

This is actually a nonlocal potential, because it depends
for each proton number Z of the alkali-metal atom under
consideration parametrically on the orbital angular momentum
l = 0,1,2,3, . . . of the valence electron. At small distance r to
the atomic nucleus this effective interaction potential mutates
into a Coulomb potential, describing the interaction of Z

protons with the outermost electron, and an additional (large)
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constant; that is [2],

Veff(r; l) → −2Z

r
+ 2[(Z − 1)a1(l) + a3(l)] for r � 1.

(3)
Conversely, far outside the ionic core region the potential
converts into a superposition of a long-ranged Coulomb
term, describing the interaction between a net positive charge
Z − (Z − 1) = 1 and the valence electron (like in a hydro-
gen atom), and a short-ranged core polarization term; that
is [2],

Veff(r; l) → −2

r
− αc

r4
for r � 1. (4)

In the region around the ionic core, comprising Z − 1 strongly
bound electrons filling the inner electron shells of the atom,
the two parameters αc and rc(l) represent the effects of the
polarizability of the latter, while the parameters a1(l), a2(l),
a3(l), and a4(l) shape the spatial dependence of the effective
charge Zeff(r; l), as it alters as a function of r from unity to
a value Z. For rubidium Z = 37, for cesium Z = 55, and for
francium Z = 87.

Recently, a phenomenological modification of the potential
for l = 1,2 has been suggested in terms of a cutoff rso(l) in
the core region, which successfully predicts for all principal
quantum numbers n and total angular momentum j = l ± 1/2
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the fine splittings of the Rydberg levels [2,3]:

Vmod(r; j,l) =
{

Veff(r; l) if 0 � r � rso(l),

Veff(r; l) + VSO(r; j,l) if r > rSO(l),
(5)

where VSO(r; j,l) denotes the spin-orbit potential. New precise
spectroscopic data of 87Rb indeed comply for all principal
quantum numbers n > 7 very well with the (semi)analytical re-
sults obtained from quasiclassical Wentzel-Kramers-Brillouin
(WKB) calculations; cf. Tables I and II in Ref. [3].

In what follows, Sec. II, we first check the accuracy of our
recent quasiclassical calculations of the spectrum of the highly
excited valence electron in 87Rb [3] with the potential (5),
employing for the solution of the radial Schrödinger eigenvalue
problem a modern numerical collocation method based on the
barycentric Chebyshev interpolation [4–6]. The results of these
numerical calculations indeed agree very well with our recent
quasiclassical calculations of the quantum defects for orbital
angular momentum l = 0,1,2 and also l � 4, but for l = 3 we
spot for the heavy alkali-metal atoms rubidium and cesium a
discrepancy. In Sec. III we then provide an explanation for
this discrepancy, bringing out for l = 3 a hitherto unnoticed
feature of the reputable potential of Marinescu et al., Eq. (1). In
Sec. IV we show how to construct for the radial eigenfunctions
of the Rydberg states carrying an arbitrary orbital angular
momentum l � 0 two complementary uniform quasiclassical
approximations. The first is the uniform WKB approximation
of Langer [7], where we determine the normalization constant
by the procedure described by Bender and Orszag [8]. The
obtained analytical formula for the radial eigenfunctions of the
Rydberg states for l = 0,1,2, . . . in fact agrees remarkably well
with the numerical calculations almost everywhere with the
exception of a small region around the origin at r = 0. Close
to the origin, however, the Langer approximation becomes
invalid. We thus patch in the region well below the remote
turning point the quasiclassical approximation of Langer with
an ansatz for the radial wave function in terms of a Bessel
function first proposed by Fock [9] that is asymptotically
exact for r → 0+, thus enabling us, for example for l = 0, to
analytically determine at the origin r = 0 the value of the radial
wave function for the highly excited s states. In Sec. V, finally,
we use these results to present a simple elementary proof
for the semiempirical Fermi-Segrè formula [10] determining
the hyperfine splittings of the highly excited s states of the
alkali-metal atoms.

II. SPECTRAL COLLOCATION ON A CHEBYSHEV GRID:
A NUMERICALLY ACCURATE METHOD FOR THE

SOLUTION OF THE RADIAL SCHRÖDINGER
EIGENVALUE PROBLEM

To verify the accuracy of the quasiclassical calculations
presented in Ref. [3] a numerically accurate method (see the
Supplemental Material [11]) is required that solves the radial
Schrödinger eigenvalue problem for the radial eigenfunctions
Rn,j,l(r) = 1

r
Un,j,l(r) with the modified potential (5) reliably

and accurately also for large principal quantum numbers

n � 1 [2]:[
− d2

dr2
+ l(l + 1)

r2
+ Vmod(r; j,l) − En,j,l

]
Un,j,l(r) = 0.

(6)
To achieve this goal we use here a spectral collocation
method [4–6] on a grid consisting of kmax + 1 Chebyshev
grid points obtained by projecting equally spaced points on
the unit circle down to the interval [−1,1]. Trivial scaling and
shift leads then to the not-equally spaced point set

rk = rmax

1 − cos
(
π k

kmax

)
2

, 0 � k � kmax, (7)

which clusters near r = 0 and near r = rmax. In sharp contrast
to a traditional finite difference method that controls the error
of numerical discretization by the choice of grid spacing, the
accuracy of a spectral collocation method (a well-known con-
cept in modern numerical mathematics) is only limited by the
smoothness of the function being approximated [4,11]. Imple-
menting now spectral Chebyshev collocation the sought wave
function Un,j,l(r) = rRn,j,l(r) solving the radial Schrödinger
eigenvalue problem (6) is represented in terms of a finite vector
Un,j,l(rk) of its values at the Chebyshev grid points rk , thus
defining implicitly a stable and accurate Lagrange polynomial
interpolant of degree kmax. Of particular value and simplicity
is the numerically robust barycentric representation of this
interpolant due to Salzer [4]:

un,j,l(r) =
∑kmax

k=0
wk Un,j,l (rk )

r−rk∑kmax
k′=0

wk′
r−rk′

, (8)

where

wk = (−1)k ×
{

1
2 if k = 0 or k = kmax,

1 otherwise.
(9)

As a matter of fact, un,j,l(r) is a polynomial of degree kmax,
coinciding with the function values Un,j,l(rk) at the grid points
rk . Well-known accuracy and stability concerns regarding
convergence of high-order polynomial interpolants do not
apply to a Chebyshev grid with its not-equispaced points
clustering around the corner points of the grid [4].

Replacing the function Un,j,l(r) by such a polynomial
interpolant un,j,l(r) of degree kmax implies that derivative
operations on those functions are replaced by the same
operations applied to their interpolant. Thus, the first derivative
d
dr

Un,j,l(r) is now represented by a matrix D(1) of size
(kmax + 1) × (kmax + 1) acting on the vector of function values
Un,j,l(rk) at kmax + 1 grid points rk [5]; likewise the second-
order derivative d2

dr2 Un,j,l(r) is represented by a matrix D(2) =
D(1) ◦ D(1), where the symbol ◦ denotes matrix multiplication.
This approach converts the radial Schrödinger eigenvalue
problem (6) into a standard matrix eigenvalue problem.

A crucial point here is that in the calculations of the
spectrum of the highly excited bound valence electron the
grid should be fine enough to resolve the oscillations of
the wave functions Un,j,l(r) under consideration also in the
coarsest part of the grid in accordance with the sampling
theorem [12]. Moreover, the largest grid point rmax should be
located in the region well beyond the remote classical turning
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TABLE I. The values of quantum defect �j,l associated with the Rydberg level n = 15 for l = 0,1,2,3,4 and j = l ± 1/2. Experimental
values for l = 3,4 are related to 85Rb and all theoretical values correspond to 87Rb. An estimation of uncertainties for the values of quantum
defect calculated by both quasiclassical theory and numerical collocation spectral method based on the barycentric Chebyshev interpolation
was obtained by varying the parameter a3(l) by around 1%. NA indicates data not available.

Quantum defect �j,l Expt. [13] Expt. [14] Expt. [16] Expt. [15] Quasiclassical theory [3] Numerical calculation (this work)

�1/2,0 3.132 45(10) 3.132 45(2) NA NA 3.131(3) 3.132(3)
�1/2,1 2.656 79(10) NA NA NA 2.640(4) 2.659(3)
�3/2,1 2.643 58(10) NA NA NA 2.653(4) 2.645(3)
|�1/2,1 − �3/2,1| 0.013 21(14) NA NA NA 0.013(8) 0.013(6)
�3/2,2 1.344 86(4) 1.344 85(2) NA NA 1.345(9) 1.345(9)
�5/2,2 1.343 27(3) 1.343 28(2) NA NA 1.347(9) 1.344(9)
|�3/2,2 − �5/2,2| 0.001 59(5) 0.001 57(3) NA NA 0.001(18) 0.001(18)
�5/2,3 NA NA 0.016 1406(9) NA 0.013 400(4) 0.0164(4)
�7/2,3 NA NA 0.016 1606(7) NA 0.013 404(4) 0.0164(4)
|�5/2,3 − �7/2,3| NA NA 0.000 0200(7) NA 0.000 004(8) 0.000 03(8)
�7/2,4 NA NA NA 0.004 05(6) 0.005 1500(4) 0.003 8385(4)
�9/2,4 NA NA NA 0.004 05(6) 0.005 1500(4) 0.003 8385(4)

point r (+)
n,j,l � 2/(−En,j,l), say, rmax � 3

2 r (+). In effect, one then
requires Dirichlet boundary conditions for the eigenfunction
Un,j,l(r) at both ends of the grid:

Un,j,l(0) = 0 = Un,j,l(rmax). (10)

These boundary conditions imply that the first and the last
columns as well as the first and the last row of the matrix
D(2) can be stripped off [5], thus leading to a (kmax − 1) ×
(kmax − 1) matrix eigenvalue problem to be solved for the
kmax − 1 unknown function values Un,j,l(rk) at the inner points
of the grid.

It should be noted that only eigenvectors with associated
eigenvalue −1 < En,j,l < 0 need to be searched [2]. More-
over, because only eigenvectors with components Un,j,l(rk)
becoming exponentially small for rk well beyond the remote
classical turning point r

(+)
n,j,l are meaningful, all other solutions

of the discrete matrix eigenvalue problem are physically
meaningless.

For a detailed discussion and demonstration of the accuracy
of the spectral collocation method on a Chebyshev grid, we
refer to our Supplemental Material [11], where we present a
comparison with the well-known analytical eigenfunctions of
the hydrogen atom.

III. THE QUANTUM DEFECT OF THE RYDBERG STATES
IN RUBIDIUM AND THE l = 3 ANOMALY IN

RUBIDIUM AND CESIUM

The bound-state spectrum of the valence electron in 87Rb,
as calculated by the aforementioned spectral collocation
method [11], indeed agrees for almost all orbital angular
momenta l, as well with the spectroscopic data [13–15] as
with the quasiclassical calculations [3], with the exception
of the l = 3 Rydberg states [16], where a small systematic
discrepancy is discernible between the results obtained by the
quasiclassical and the full numerical calculations; cf. Table I.
We offer here a simple explanation for this anomaly, which
applies only to the heavy alkali-metal atoms rubidium and
cesium (and most likely also to francium), and which to the
best of our knowledge has not been reported before.

There exists deep inside the atom core of rubidium and
cesium, and this applies as a matter of fact only for orbital
angular momentum l = 3, a tiny second classical region of
the potential (1) (see Fig. 1), where the classical (radial)
momentum

pn,j,l(r) = √−Qn,j,l(r), (11)

with

Qn,j,l(r) = l(l + 1)

r2
+ Vmod(r; j,l) − En,j,l, (12)

acquires as a function of distance r to the origin again
real-numbered values. This feature invalidates a standard two-
turning-point WKB calculation of the spectrum of the l = 3

FIG. 1. The quasiclassical momentum pn,j,l(r) = √−Qn,j,l(r) vs
scaled distance r/rc(l) for orbital angular momentum l = 3 and total
angular momentum j = 7/2 of the excited bound valence electron
(n � 1) for rubidium (red line) and cesium (dashed blue line) atoms,
calculated with the effective potential of Marinescu et al., Eq. (1).
There exists a tiny second classical region located deep inside the
atom core close to the origin, where the quasiclassical momentum
acquires again real values, well below the positions of the inner
turning points r

(−)
Rb and r

(−)
Cs for rubidium and cesium, respectively,

representing the lower boundary of their respective outer classical
regions extending up to their remote turning point r

(+)
n,j,l .
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Rydberg states, where the widely spaced classical interval
r

(−)
n,j,3 < r < r

(+)
n,j,3 between the remote turning point r

(+)
n,j,3 and

the (second largest) inner turning point r
(−)
n,j,3 � r

(+)
n,j,3 is taken

into account, ignoring the existence of the tiny second classical
region inside the core of the atom for l = 3; cf. Fig. 1. Because
the asymptotics (3) of the potential reveals in the vicinity of the
origin r = 0 a large constant term, which by far dominates the
energy eigenvalues En,j,l of the bound valence electron, the
classical (radial) momentum inside this second classical region
is nearly independent on the energy variable −1 < En,j,l < 0
of the bound states under consideration.

As explained in Ref. [3], the quantum defect �j,l = δl +
ηj,l is connected to the energy eigenvalue En,j,l of the bound
valence electron with principal quantum number n � 1 and
total angular momentum j = l ± 1/2 by [2,17]

En,j,l = − 1

(n − �j,l)2
, (13)

the fine splittings of the spectrum being thus to leading or-
der proportional to the difference �l− 1

2 ,l − �l+ 1
2 ,l = ηl− 1

2 ,l −
ηl+ 1

2 ,l of the associated quantum defects [3]; cf. Table I.
We find for all principal quantum numbers n > 7 that

choosing the values of the cutoff rso(l) in Eq. (5) according
to the rule [2]

rSO(l) �

⎧⎪⎨⎪⎩
0.0286294rc(l) = 0.043 for l = 1,

0.0585394rc(l) = 0.285 for l = 2,

0.135464rc(l) = 0.650 for l = 3,

(14)

the numerical calculations of the fine splitting agree surpris-
ingly well with the spectroscopic data of Refs. [13–16]; cf.
Table I. Choosing larger or smaller values for rSO(l) than
stated in Eq. (14), the calculated fine splittings cease to give
better agreement with experiment. Only for orbital angular
momentum l = 3 we also find that changing the parameter
a3(l) in the effective potential (1) from its tabulated value in
Ref. [1] according to the rule a3(l = 3) → 0.983431a3(l = 3)
slightly improves the coincidence between the numerical
calculations and spectroscopic data [16,18]. Note that for the
quasiclassical calculation of quantum defect associated with
l = 0 and l = 2 we use the scaling prescription for a3(l = 0)
and a3(l = 2) according to Ref. [3].

Recently, a calculation of the fine splittings for l = 3 in
rubidium atoms was carried out, taking a different potential
and using a relativistic many-body perturbation theory that
employs relativistic finite basis sets constructed from solutions
to the single-electron Dirac equation with a potential [19]. The
results of these calculations for the fine splittings of l = 3 states
in Rb atoms are closer to the experiments [16,20,21]. However,
we should like to point out a serious consistency problem
attempting to solve a relativistic many-particle problem em-
ploying a single-electron Dirac equation with a potential V (r)
that treats the relative coordinate r as a four-vector; cf. Eq. (1)
in Ref. [19]. For a thorough analysis of the relativistic H
atom, we refer to Ref. [22]. A correct approach aiming at
taking into account the leading order of relativistic effects in a
many-electron problem should, in our opinion, be based on the
Breit-Pauli Hamiltonian [23,24], including not only the usual
spin-orbit term, but also the spin-spin interaction term and the

spin-other-orbit interaction [3,24]. Both terms, the spin-spin
interaction and the spin-other-orbit interaction, influence the
fine splitting as genuine relativistic multielectron terms which
are certainly beyond the terms provided by any single-electron
Dirac equation; see Refs. [23,24] for expanded details.

IV. TWO COMPLEMENTARY UNIFORM
QUASICLASSICAL APPROXIMATIONS FOR THE

RADIAL EIGENFUNCTIONS

Once an energy eigenvalue −1 < En,j,l < 0 is determined
from the quasiclassical quantization condition, the correspond-
ing uniform WKB approximation of Langer to the solution of
the radial Schrödinger equation (6), being constructed around
the remote turning point r

(+)
n,j,l , is [7,8]

U
(L)
n,j,l(r) = C

(L)
n,j,l

[
3

2
S

(L)
n,j,l(r)

] 1
6 [

sgn(r − r
(+)
n,j,l)Q

(L)
n,j,l(r)

] −1
4

× Ai

{
sgn(r − r

(+)
n,j,l)

[
3

2
S

(L)
n,j,l(r)

] 2
3

}
. (15)

The function Ai(x) denotes the well-known Airy func-
tion [8] and sgn(x) = |x|/x. The function S

(L)
n,j,l(r) is the

Langer action integral,

S
(L)
n,j,l(r) =

⎧⎪⎨⎪⎩
∫ r

(+)
n,j,l

r
dr ′

√
−Q

(L)
n,j,l(r

′) if r � r
(+)
n,j,l ,∫ r

r
(+)
n,j,l

dr ′
√

Q
(L)
n,j,l(r

′) if r � r
(+)
n,j,l ,

(16)

where the function
√

−Q
(L)
n,j,l(r) is the quasiclassical momen-

tum (11), but slightly modified with the centrifugal barrier
term being altered taking into account the Langer correction
l(l + 1) → (l + 1

2 )
2
[25]:

Q
(L)
n,j,l(r) =

(
l + 1

2

)2

r2
+ Vmod(r; j,l) − En,j,l . (17)

For l = 0 the centrifugal barrier term and the spin-orbit
coupling potential VSO(r; j,l) are both absent, and the lower
turning point r

(−)
n,j,0 transforms into a singularity of the radial

Schrödinger equation, Eq. (6), thus preventing a standard
two-turning-point WKB calculation of the spectrum. For a
rigorous derivation of the normalization constant C

(L)
n,j,l we

refer to Ref. [8]:

C
(L)
n,j,l = (−1)n−l−1

√√√√√ 2π∫ r
(+)
n,j,l

r
(−)
n,j,l

dr√
−Q

(L)
n,j,l (r)

. (18)

In our WKB calculations we determine the positions r = r
(±)
n,j,l

of the turning points numerically by solving the implicit
equation Q

(L)
n,j,l(r) = 0. For large n there holds approximately

r
(+)
n,j,l �

⎧⎨⎩
2

−En,j,l
if l = 0,

1
−En,j,l

[
1 +

√
1 + (

l + 1
2

)2
En,j,l

]
if l � 1,

(19)
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FIG. 2. The Langer action integral S
(L)
n,j,l(r) [cf. Eq. (16)], as

calculated from a barycentric polynomial interpolant s
(L)
n,j,l(r) on a

Chebyshev grid, for the excited bound valence electron of 87Rb with
principal quantum number n = 15, orbital angular momentum l = 0,
and total angular momentum j = 1/2.

and

r
(−)
n,j,l �

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if l = 0,

0.02rc(l) if l = 1,2,(
l+ 1

2

)2

1+
√

1+
(
l+ 1

2

)2
En,j,l

if l � 3.
(20)

In Fig. 2 the action integral S
(L)
n,j,l(r) is displayed, choosing,

for example, n = 15, l = 0, and j = 1/2. Replacing the action
integral (16) as a function of the radial variable r in Eq. (15)
by an accurate barycentric interpolation polynomial on a
suitable Chebyshev grid (7), a substantial saving of computer
time without any loss of accuracy is attained. We found it
advantageous to use in the calculations of the action integral
two complementary Chebyshev grids, one with a number
kmax of grid points rk in the interval 0 � rk � r

(+)
n,j,l , the other

with a smaller number k′
max of grid points rk′ in the interval

r
(+)
n,j,l � rk′ � rmax.

In Fig. 3(a), the (normalized) Chebyshev polynomial
interpolant un,j,l(r) to the radial eigenfunction Un,j,l(r) of the
valence electron of 87Rb, as calculated from Eq. (8) with the
method of spectral collocation on a Chebyshev grid, is plotted
for the excited valence electron in 87Rb for principal quantum
number n = 15, l = 0, and j = 1/2 [26]. With the exception
of a small region around the origin a remarkable agreement is
evident between the uniform WKB approximant U

(L)
n,j,l(r) of

Langer and the Chebyshev polynomial approximant un,j,l(r)
to the eigenfunction Un,j,l(r).

Excluding a small region near the lower boundary r
(−)
n,j,l of

the classically accessible region r
(−)
n,j,l � r � r

(+)
n,j,l , the uniform

WKB solution U
(L)
n,j,l(r) of Langer approximates for r > r

(−)
n,j,l

the exact eigenfunction Un,j,l(r) of the valence electron in the
alkali-metal atoms for arbitrary orbital angular momentum l

very well, with the exception of the l = 3 states in rubidium
and cesium, because of the second classically region inside
the core; cf. Fig. 1. The key idea of the uniform WKB
approximation of Langer is to replace the spatial variation of

(a)

(b)

FIG. 3. (a) The Chebyshev polynomial interpolant un,j,l(r) to the
eigenfunction Un,j,l(r) vs radial distance r of the excited valence
electron in 87Rb for principal quantum number n = 15, l = 0, and
j = 1/2 as calculated with the method of spectral collocation on a
Chebyshev grid (red line), choosing rmax = 663.261 and kmax = 700.
Also shown is the uniform WKB approximant U

(L)
n,j,l(r) of Langer

(dashed blue line), the error |un,j,l(r) − U
(L)
n,j,l(r)| being smaller than

10
−3

for r > aB (cf. Ref. [11]). (b) Expanded view around r = 0 of
un,j,l(r) (dashed red line), of U

(L)
n,j,l(r) (blue line), and of the uniform

quasiclassical approximant U
(F)
n,j,l(r) of Fock (green line), the error

|un,j,l(r) − U
(F)
n,j,l(r)| being smaller than 10

−7
for r < 3aB . For further

details see Ref. [11].

the potential around the turning points r
(±)
n,j,l of the classically

accessible region by a linear function of r , thus reducing in
that region the radial differential equation (6) to an analytically
solvable one in terms of the Airy functions. But r

(−)
n,j,l is

zero for l = 0, and according to Eq. (20) it is very small
for l = 1,2. Hence, for orbital angular momentum l < 4 the
spatial variation of the potential (1), which is near the origin a
Coulomb potential [cf. Eq. (3)], in fact cannot be approximated
well by a linear function of r .

Fortunately, with the help of an ansatz proposed by Fock [9],
a second uniform quasiclassical solution to Eq. (6) can be
constructed that approximates now close to the origin the exact
eigenfunction Un,j,l(r) very well, thus being complementary
to the uniform WKB solution (15):

U
(F)
n,j,l(r) = C

(F)
n,j,l√

d
dr

ln[sn,j,l(r)]
J2l+1(sn,j,l(r)). (21)

012509-5



ALI SANAYEI AND NILS SCHOPOHL PHYSICAL REVIEW A 94, 012509 (2016)

Here Jk(z) denotes a Bessel function of order k, and the
unknown function sn,j,l(r) is chosen such that the differential
equation obeyed by the ansatz U

(F)
n,j,l(r) in the interval 0 �

r � r
(+)
n,j,l coincides with the radial Schrödinger equation (6)

for r → 0+; see Sec. V.
Figure 3(b) presents an expanded view of the region around

the origin, revealing that the uniform WKB approximation of
Langer ceases to agree well with the eigenfunction un,j,l(r)
for r → 0+. Instead, now a remarkable agreement between
un,j,l(r) with the uniform quasiclassical solution U

(F)
n,j,l(r), as

obtained with the ansatz of Fock, is evident.

V. QUASICLASSICAL WAVE FUNCTIONS AND
HYPERFINE SPLITTINGS OF THE RYDBERG s STATES

We want to find out how the size of the hyperfine splittings
of the Rydberg s states depends on the principal quantum
number n and on the quantum defect δ0. Due to the absence
of the centrifugal barrier and zero spin-orbit coupling for
l = 0 and j = 1/2, the associated exact radial wave func-
tion Un,j,0(r) = rRn,j,0(r) solving the Schrödinger eigenvalue
problem (6) becomes near the origin a linear function of
r . Thus, it is required that the quasiclassical approximation
U

(F)
n,j,0(r) to Un,j,0(r) obeys to the boundary-value condition

lim
r→0+

U
(F)
n,j,0(r)

r
= lim

r→0+

dU
(F)
n,j,0(r)

dr
= R

(F)
n,j,0(0) = const. (22)

The task is to determine that constant R
(F)
n,j,0(0) within the

quasiclassical theory. A straightforward calculation shows that
the function U

(F)
n,j,0(r) defined in Eq. (21) solves the differential

equation [
− d2

dr2
+ Q

(F)
n,j,0(r)

]
U

(F)
n,j,0(r) = 0, (23)

provided that

Q
(F)
n,j,0(r) = −[

s
(1)
n,j,0(r)

]2 + 3

4

[
s

(1)
n,j,0(r)

sn,j,0(r)

]2

+3

4

[
s

(2)
n,j,0(r)

s
(1)
n,j,0(r)

]2

− 1

2

s
(3)
n,j,0(r)

s
(1)
n,j,0(r)

. (24)

Here f (k)(r) ≡ dk

drk f (r) denotes the derivative of order k =
1,2,3, . . . of a function f (r). The choice

sn,j,0(r) = S
(F)
n,j,0(r) ≡

∫ r

0
dr ′ √−Qn,j,0(r ′), (25)

with

Qn,j,0(r) = Veff(r; l = 0) − En,j,0, (26)

leads now to the identification

Q
(F)
n,j,0(r) = Qn,j,0(r) − 3

4

Qn,j,0(r)[
S

(F)
n,j,0(r)

]2

+ 5

16

[
Q

(1)
n,j,0(r)

Qn,j,0(r)

]2

− 1

4

Q
(2)
n,j,0(r)

Qn,j,0(r)
. (27)

FIG. 4. Comparison of the Chebyshev polynomial approximant
un,j,l(r) to the normalized eigenfunction Un,j,l(r) as calculated with
the method of spectral collocation on a Chebyshev grid (red line),
choosing rmax = 663.261 and kmax = 700, with the uniform Fock
ansatz (dashed green line) associated with the bound valence electron
in 87Rb for the Rydberg level with principal quantum number n = 15,
l = 0, and j = 1/2.

For r → 0+ the residue vanishes, that is,
Q

(F)
n,j,0(r)−Qn,j,0(r)

Qn,j,0(r) →
0, implying that the Fock ansatz (21) represents for l =
0 inside the classically accessible interval 0 � r < r

(+)
n,j,0 a

second uniform approximation to the solution of the radial
Schrödinger equation (6). The uniform quasiclassical solution
of Fock, which we present for l = 0 now in the guise

U
(F)
n,j,0(r) = C

(F)
n,j,0

√
S

(F)
n,j,0(r)

[−Qn,j,0(r)]
1
4

J1
(
S

(F)
n,j,0(r)

)
, (28)

indeed approximates inside the classically accessible region
0 � r < r

(+)
n,j,0 the exact eigenfunctions Un,j,0(r) of the Ryd-

berg s states of the valence electron in the alkali-metal atoms
very well, almost up to the remote turning point r

(+)
n,j,0; see

Fig. 4.
Deep inside the classically accessible region 0 � r �

r
(+)
n,j,0 both action integrals, S(F)

n,j,0(r) and S
(L)
n,j,0(r) [see Eqs. (25)

and (16)], assume for n � 1 large values, so that the well-
known asymptotics of the Bessel function J1(z) and of the
Airy function Ai(−z), valid for large arguments z � 1, can be
used [27]:

Ai(−z) → 1√
π

cos
(

2
3z

3
2 − π

4

)
z

1
4

, (29)

and

J1(z) →
√

2

πz
cos

(
z − 3

4
π

)
. (30)

Accordingly, the uniform approximations of Langer [Eq. (15)]
and of Fock [Eq. (28)] respectively simplify in that region to

U
(L)
n,j,0(r) → C

(L)
n,j,0√
π

cos
[
S

(L)
n,j,0(r) − π

4

]
[−Qn,j,0(r)]

1
4

, (31)

and

U
(F)
n,j,0(r) → C

(F)
n,j,0

√
2

π

cos
[
S

(F)
n,j,0(r) − 3

4π
]

[−Qn,j,0(r)]
1
4

. (32)
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The patching requirement that both functions U
(L)
n,j,0(r) and

U
(F)
n,j,0(r) should coincide for 0 � r � rn,j,0

(+) can only be
fulfilled provided that

S
(F)
n,j,0(r) + S

(L)
n,j,0(r) =

∫ r
(+)
n,j,0

0
dr ′ √−Qn,j,0(r ′) = nπ, (33)

and

C
(F)
n,j,0 = (−1)n−1

√
2

C
(L)
n,j,0. (34)

Equation (33) is the quasiclassical quantization condition for
zero orbital angular momentum l = 0 [3,28], determining here
the energy levels of the Rydberg s states [2],

En,j,0 = − 1

(n − δ0)2
, (35)

with δ0 ≡ �1/2,0 the quantum defect of the valence electron for
l = 0. It turns out that Eq. (28) is a very good approximation
to the eigenfunction Un,j,0(r) everywhere in the classically
accessible region below the remote turning point; cf. Fig. 4.

The normalization constant (18) for l = 0 can also be
expressed analytically in terms of the quantum defect δ0. To
see this, let us write for the moment being the remote turning
point r

(+)
n,j,0 as a function of the energy variable E; i.e., the

function r (+)(E) is determined from the requirement

E − Veff(r (+)(E); l = 0) = 0. (36)

We now rewrite Eq. (18) in the guise

1∣∣C(L)
n,j,0

∣∣2 = lim
E→En,j,0

d

dE
ν(E), (37)

with ν(E) denoting the action integral [3]

ν(E) = 1

π

∫ r (+)(E)

0
dr ′ √E − Veff(r ′; l = 0). (38)

With the help of the relation d
dE

ν(E) = 1
dE/dν

and taking into
account the identity limE→En,j,0 ν(E) = n [cf. Eq. (33)], there
follows from Eq. (34) at once for l = 0 and j = 1/2∣∣C(F)

n,j,0

∣∣2 = 1

2

∣∣C(L)
n,j,0

∣∣2 = 1

2

d

dn
En,j,0 = 1 − d

dn
δ0

(n − δ0)3
. (39)

For the l = 0, j = 1/2 states of the valence electron in the
alkali-metal atoms the fine structure splitting due to spin-orbit
coupling (assuming exact spherical symmetry of the effective
potential) is zero. Neglecting the electric quadrupole moment
of the nucleus, a detectable shift in the spectrum can now
be attributed to the hyperfine interaction of the magnetic
moment of the valence electron with the nuclear magnetic
moment [29]. Within the range of validity of the Fermi-
contact-interaction model, the size of the spectral splitting is
then determined by the magnetic dipole interaction (hyperfine
splitting) constant [29]:

A
(HFS)
n,j,0 = 2

3
μ0gsg̃Iμ

2
B lim

|r|→0+
|ψn,j,0(r)|2. (40)

Here μ0 is the vacuum permeability, μB = |e|�
2me

denotes the
Bohr magneton, and the g factors of electron and nucleus

are gs = 2.0023193043622 and g̃I = me

mp
gI , respectively. For

87Rb it is found that g̃I = −0.0009951414, and for 85Rb,
g̃I = −0.00029364000 [30]. It should be noted that in our
system of units (see Ref. [2]), the particle density distribution
|ψn,j,0(r)|2 is being measured as the number of particles per
unit volume (aB)3.

The value of the wave function of the Rydberg s states,
ψn,j,0(r) = Rn,j,0(r) Y0,0(ϑ,ϕ), at the origin r = 0 can be
calculated analytically using the asymptotics of the action
integral (25) for small r:

S
(F)
n,j,0(r) →

√
8Zr + O

(
r

3
2
)
. (41)

Insertion of Eq. (41) into Eq. (28) leads then together with
the analytical result of Eq. (39) for the normalization constant
to the exact result

lim
|r|→0+

|ψn,j,0(r)|2 = lim
r→0+

∣∣∣∣U (F)
n,j,0(r)

r

1√
4π

∣∣∣∣2

= Z

π

1 − d
dn

δ0

(n − δ0)3
. (42)

This formula connects the value of the s-state wave function at
the origin to the derivative d

dn
En,j,0 of the bound-state spectrum

in a radial Schrödinger eigenvalue problem. In the literature
it is often referred to as the semiempirical Fermi-Segrè
formula [9,10,31]. For a rigorous derivation for differential
equations of the type of Eq. (6), based on an identity for the
Wronski determinant, see Ref. [32].

Equation (40) engenders that the magnetic dipole interac-
tion (hyperfine splitting) constant A

(HFS)
n,j,0 for the highly excited

valence electron of the alkali-metal atoms (dδ0/dn ≈ 0)
indeed should obey the scaling relation

A
(HFS)
n,j,0 (n − δ0)3 = const. (43)

In experiment the hyperfine level shift depends on nuclear spin
I , on total angular momentum of the valence electron, j , and
on total angular momentum F assuming values in the interval
|I − j | � F � I + j . If only the magnetic dipole interaction
was considered, then for l = 0, j = 1/2 a level En,j,0 would
split as a result of the magnetic hyperfine interaction for the
special case of nuclear spin I � 1/2 into a doublet structure
with quantum numbers F = I ± 1/2 [29]:

�E
(HFS)
n,j,0 = A

(HFS)
n,j,0

F (F + 1) − I (I + 1) − j (j + 1)

2
. (44)

TABLE II. Values of the scaled magnetic dipole interaction

(hyperfine splitting) constant
A

(HFS)
n,j,0

h
(n − δ0)3, in gigahertz, associated

with the highly excited s states of the bound valence electron
in 85Rb and 87Rb. Experiments were carried out for principal
quantum numbers n ∈ {28,29,30,31,32,33} [13,14], and for n ∈
{20,21,22,23,24} [33]. The uncertainty for the theory results here
from varying the parameter a3(0) by around 1%; see Table I. NA
indicates data not available.

Isotope Expt. [13] Expt. [14] Expt. [33] Theory (this work)

85Rb 4.87(14) NA NA 5.082(3)
87Rb NA 16.75(9) 18.55(2) 17.223(3)
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Table II compares the theoretical values of the mag-
netic dipole interaction (hyperfine splitting) constant A

(HFS)
n,j,0

obtained from Eq. (43) for 85Rb and 87Rb atoms with
spectroscopic data [13,14,33]. Overall, a very good agreement
between theory and experiment can be observed.

VI. CONCLUSIONS

Using a numerically accurate and easy-to-implement mod-
ern numerical method, namely, spectral collocation on a
Chebyshev grid [4–6] based on the barycentric interpolation
formula of Salzer [Eq. (8)], we solved the radial Schrödinger
eigenvalue problem and determined the excitation spectrum
of the bound valence electron in the alkali-metal atoms,
thus confirming the high accuracy of recent quasiclassical
calculations of the quantum defect for the Rydberg states
carrying orbital angular momentum l = 0,1,2 or l > 3, with
exception of the l = 3 Rydberg states of rubidium and cesium
atoms. As a reason for this anomaly we identified as a feature
of the potential of Marinescu et al. [1], existing only for
orbital angular momentum l = 3, a tiny second classical region
located deep inside the atomic core around the nucleus of
alkali-metal atoms with proton number Z � 37 (cf. Fig. 1),
thus invalidating for the heavy alkali-metal atoms, rubidium
and cesium (and possibly also francium), a standard WKB
calculation with only two widely spaced turning points. Also,
we found that the uniform WKB approximation of Langer
for the radial wave function of the valence electron for l �= 3
indeed represents almost everywhere a remarkably accurate
approximation to the exact solution of the radial Schrödinger
eigenvalue problem [Eq. (6)], omitting a tiny interval near
the lower turning point of the classically accessible region.
In the region around the origin, where the uniform WKB

approximation of Langer for the s states ceases to be valid, we
then showed, using an ansatz of Fock [9], that a complementary
uniform quasiclassical solution in terms of a Bessel function
can be constructed that coincides with the exact solution of the
radial wave function for r → 0+. The uniform quasiclassical
approximation of Fock for the Rydberg s states was found to
approximate the exact radial eigenfunction almost everywhere
in the classically accessible region remarkably well, with
the exception of a small interval around the remote turning
point. A substantial reduction of computer time was achieved
in the evaluations of the quasiclassical wave functions (15)
and (28), when we replaced the action integral S

(L)
n,j,l(r) by

a corresponding (high-order) barycentric interpolation poly-
nomial s

(L)
n,j,l(r) in the interval 0 � r � rmax. Upon patching

the wave function of Langer and Fock inside the classically
accessible region and making use of an exact result for the
normalization integral of the Langer wave function, due to
Bender and Orszag [8], we finally derived an analytical result
determining the quantum defect for l = 0 and also the value of
the radial s-wave eigenfunctions at the origin, thus providing
a very simple and short proof of the Fermi-Segrè formula.
Also, within the range of validity of the Fermi-contact model
an analytic scaling relation for the constant A

(HFS)
n,j,0 describing

the size of the hyperfine shifts and splittings of the Rydberg s

states of the valence electron in alkali-metal atoms was found
[cf. (43)] that apparently is for all principal quantum numbers
n � 1 in good agreement with precise spectroscopic data of
85Rb and 87Rb.
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