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Correlation spectroscopy has been proposed as a spectroscopic technique for measuring the coherence between
the ground states in electromagnetically induced transparency (EIT). While in the time domain the steep dispersion
in the EIT condition accounts for the robustness of the correlation linewidth against power broadening, such
physical insight was not directly established in the frequency domain. We propose a perturbative approach to
describe the correlation spectroscopy of two noisy lasers coupled to a � transition in cold atoms, leading to
EIT. Such approach leads to an analytical expression that maps the intensity correlation directly in terms of the
absorption and dispersion of the light fields. Low and high perturbative regimes are investigated and demonstrate
that, for coherent light sources, the first-order term in perturbation expansion represents a sufficient description for
the correlation. Sideband resonances are also observed, showing the richness of the frequency domain approach.

DOI: 10.1103/PhysRevA.94.012503

The coherent interaction between light and matter has been
a subject of fundamental interest in quantum communication
and quantum information [1,2]. Such coherence opens the
possibility of mapping information between light and matter,
which is necessary for developing quantum memories and
quantum repeaters [3–5]. Among those coherent interactions,
electromagnetically induced transparency (EIT) has been
spectroscopically studied [6,7]. The EIT phenomenon in a �

transition relies on the interference between atomic excitations
driven by two light fields pumping the atomic state into a
superposition between ground states, known as a dark state. In
this dark state, the medium becomes transparent to light when
the optical frequencies satisfy the two-photon resonance, with
a linewidth narrower than the natural linewidth. Given this
subnatural character of the EIT linewidth, it finds applications
in atomic clock stabilization and cold-atom thermometry [8,9].
Nevertheless, the linewidth of the EIT signal is sensitive not
only to the decoherence between the ground states, but also to
power broadening.

Usually, the EIT linewidth is measured by transmission
spectroscopy, with the measurement of the mean value of
the transmitted intensity. On the other hand, the sensitivity
increases when we look at the intensity fluctuations of the field
when noisy light sources are employed for the spectroscopy.
Yabuzaki et al. [10] showed that this type of spectroscopy
is characterized by the transformation of excess phase noise
into amplitude noise, due to the interaction with a two-level
atom. Moreover, instead of only measuring the intensity noise
of the light beams, measuring the intensity correlation of
two beams interacting in EIT condition has provided new
insights [11–17]. Recent contributions [17,18] showed that,
by performing intensity correlation spectroscopy with noisy
lasers, it is possible to measure the intrinsic EIT linewidth,
which is narrower than the EIT linewidth measured by standard
transmission spectroscopy. In particular, in Ref. [18] a simple
model was developed that allows to connect the intrinsic EIT
linewidth with the decoherence that limits the lifetime of the
ground states’ superposition, for cold atoms. This technique
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can work as a tool to directly measure the decoherence between
ground states since it is free from power broadening.

Although the intensity correlation was well described
by numerical calculations, the lack of an analytical model
prevents a deeper physical insight that would help to establish
which atomic properties determine the spectroscopic features
of intensity correlation. The physical description of the corre-
lation can be done either in the time domain by the normalized
two-time correlation function g2(τ ) or in the frequency domain
by a normalized version of its Fourier transform C(ω). In the
time domain, Felinto et al. [18] proposed a simple model
for g2(0) that illustrates the role of the steep dispersion in
preventing the power broadening of the intrinsic linewidth.
The numerical evaluation of the correlation in the frequency
domain is successful in showing the same feature, as it was
shown in Refs. [14,19]. However, an analytical description was
still missing.

In this paper, we propose a perturbative approach to
determine the intensity correlation between two light fields
in EIT with cold atoms, when described in the frequency
domain. The perturbative expansion lets us identify the main
atomic contributions to the intensity correlation between
the beams, in both time and frequency domains. From the
perturbative approach we obtained an analytical expression
for the correlation coefficient.

We show that the atomic response to a low-noise laser can
be fully described by the first-order term in the expansion. This
first-order term is determined by the absorption and dispersion
of the fields, as in the heuristic model in Ref. [18]. For noisy
laser sources, higher-order terms in the perturbative expansion
are considered, recovering the correlation profile obtained in
Refs. [17–19]. We also show that the correlation coefficient
presents the contribution from the resonances of the sidebands
of the laser, shifted from the central carrier by the analysis
frequency ω. Their contribution results in a broadening
of the correlation profile inside the transparency window.
Nevertheless, the intrinsic linewidth of the correlation peak
is completely invariant to the analysis frequency, showing that
both approaches are equivalent for measuring the coherence
lifetime of the ground states.

The paper is organized as follows. In Sec. I, we briefly
describe the atomic levels for studying the correlation
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spectroscopy. We also introduce the approach of stochastic
variables used in the calculation of the covariance matrix as-
sociated to the atomic density operator and the corresponding
spectral density matrix. In Sec. II, we present the perturbative
expansion to determine the g2(0) function and the correlation
coefficient C(ω). In Sec. III, we decompose the perturbative
result to obtain the analytical expression of the correlation in
terms of absorption and dispersion of the fields. In Sec. IV,
we show the role of sideband resonances in the correlation
spectroscopy and in Sec. V, we summarize the results of the
perturbative approach for correlation spectroscopy.

I. CORRELATION SPECTROSCOPY

The correlation between any two light fields with intensities
I1(t) and I2(t + τ ) can be quantified by the g2(τ ) function [13].
In particular, we study the intensity correlation between two
noisy lasers (a diode laser for example) induced by cold-atomic
media in EIT condition. The use of noisy lasers limits the
intensity correlation to those obtained by classical states of
light (i.e, those described by regular Glauber-Sudarshan P

functions [20]). Yabuzaki et al. showed in Ref. [10] that the
atomic medium transforms excess of phase noise of the input
light sources into intensity noise at the output. Hence, the
phase noise to amplitude noise (PN-AN) transformation has
to be considered for the theoretical description of the intensity
correlation in our bipartite system in EIT condition. Here,
we will present a semiclassical approach, where the atomic
response is treated by quantum mechanics while the light
fields are considered to be classical, with stochastic phase
fluctuations. Therefore, intensity fluctuations at the input are
not considered.

Let us consider two electromagnetic fields described by

Ei(t) = Ei exp{i[ωit + φi(t)]}ei , (1)

with a stochastic phase fluctuation φi that models the excess
of noise in diode lasers. In the expression for the fields, i =
1,2 denotes the two beams, Ei and ωi are, respectively, the
amplitude and the frequency, and ei stands for the distinct
polarization modes.

The converted phase noise is easily measurable by pho-
todetectors. This can be shown if we consider that after the
propagation of the field through the medium, the output field
in the thin sample limit [21] is given by

E′
i(t) = Ei(t) + iκPi(t), (2)

where polarization Pi(t) represents the atomic response in-
duced by the incident fields Ei(t) and κ is a real constant that
depends on the atomic density.

The usual scheme for correlation spectroscopy in a �-EIT
condition is shown in Fig. 1(a). Two fields, E1(t) and E2(t), are
coupled to two different transitions of a three-level atom, with
different one-photon detunings �1 and �2, respectively. The
intensity correlation between the two fields is measured after
interacting with the atomic ensemble as presented in Fig. 1(b).

The incident fields are coupled through the � transition,
inducing polarizations of the atomic medium that contribute
to each output field as Pi = di3ρi3, where di3 and ρi3

represent the electric dipole moment and the atomic coherence
associated to the fields i = 1,2. The output intensity of each

FIG. 1. (a) Levels scheme in �-type configuration for EIT.
(b) Basic setup for measuring the intensity correlation spectrum in
time [g2(τ )] or frequency domain [C(ω)].

field is then given by

I ′
i (t) = Ii − 2	iEiIm{ρi3e

iφi }, (3)

where 	i = κdi · ei and the intensity is expressed up to first
order in κ . The intensity correlation between two light fields
is defined as

g2(τ ) = 〈δI ′
1(t)δI ′

2(t + τ )〉√〈δI ′
1(t)2〉〈δI ′

2(t + τ )2〉 , (4)

where δI ′
1(t) and δI ′

2(t + τ ) represent the light intensity
fluctuations of each beam at different times separated by a time
delay τ . For τ ∼ 0, the atomic response induces correlation
[g2(0) > 0] or anticorrelation [g2(0) < 0] between the light
fields [13,17–19], depending on the two-photon detuning
δ = �1 − �2.

The heuristic model proposed in Ref. [18] establishes a
direct relation between the atomic response and the g2(0)
function. It was shown that the stochastic phase fluctuations
were not only mapped by the absorptive properties of the
medium, but also by the dispersive atomic response. In the
thin sample limit, the intensity fluctuations are proportional
to the atomic coherences, i.e., δI ′

i (t) ∼ δ Im{pie
iφi }, where

pi = ρss
i3 is the stationary solution of the density matrix

element contributing to the intensity fluctuation in Eq. (3).
As a consequence of the time averaging of the phase diffusion,
δI ′

i (t) can be expressed in terms of Repi and Impi , and
therefore, the correlation function g2(0) is also written in terms
of the contributions of atomic dispersion (Repi) and absorption
(Impi) for each beam as

g2(0) = Rep1Rep2 + Imp1Imp2√
(Re2p1 + Im2p1)(Re2p2 + Im2p2)

. (5)

It was shown that in the low-power regime, the absorption
dominates and the medium induces correlation between both
light fields. As the power of the fields is increased, the disper-
sive term Rep1Rep2 < 0 overcomes the contribution from the
absorptive term Imp1Imp2 > 0, leading to anticorrelated light
fields, i.e., g2(0) < 0.

Moving to the frequency domain, the noise correlation is
defined as the normalized Fourier transform of the correlation
function in Eq. (4), that can be described as

C(ω) = SI
12(ω)√

SI
11(ω)SI

22(ω)
, (6)
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where SI
ij (ω) represents the symmetrical intensity correlation

spectrum for i and j fields at a given analysis frequency ω

such that

SI
ij (ω) = 1

2π

∫ ∞

−∞
dτ e−iωτ 〈I ′

i (t),I
′
j (t + τ )〉S, (7)

where we define the symmetrical covariance 〈I ′
i (t),I

′
j (t +

τ )〉S = [〈I ′
i (t),I

′
j (t + τ )〉 + 〈I ′

j (t),I ′
i (t + τ )〉]/2 with

〈ϒi,ϒj 〉 = 〈ϒiϒj 〉 − 〈ϒi〉〈ϒj 〉 as the covariance for
any stochastic variable ϒi , similar to g2(0), for correlated
fields C(ω) > 0, and for anticorrelated fields C(ω) < 0.

The theoretical approach used in the evaluation of this
correlation adopted in Refs. [12,14,19] provides a result that
is consistent with experimental data. Nevertheless, they do not
present the detailed role of each term of atomic absorption and
dispersion, as was done in Ref. [18] in evaluation of Eq. (5).
In order to overcome this limitation, we study the stochastic
dynamic for the �-EIT system using Ito’s calculus, which
is the platform for the perturbative expansion performed in
Sec. II.

A. Langevin equation for the atomic dynamics
from Ito’s calculus

Following the theoretical approach in Refs. [14,19], let us
consider a three-level system interacting with two light fields
E1 and E2 in a � configuration as shown in Fig. 1(a). The
interaction Hamiltonian is given by

Hint = �(∗
1σ̂13e

i[ω1t+φ1(t)] + ∗
2σ̂23e

i[ω2t+φ2(t)] + H.c.), (8)

where σ̂i3 = |i〉〈3| are the atomic operators associated with
each transition, i are the Rabi frequencies, ωi are the optical
frequencies, and φi(t) are the stochastic phase fluctuations,
associated to the fields Ei for i = 1,2. The time evolution of
the phase fluctuations φi(t) is described by a Wiener process,
therefore, their statistical moments satisfy

〈dφi(t)〉 = 0, (9a)

〈dφi(t),dφi(t)〉 = 2γidt, (9b)

〈dφ1(t),dφ2(t)〉 = 2γ12dt, (9c)

〈dφi(t)
n,dφj (t)m〉 = 0 for n � 2, m � 2, (9d)

where 〈. . . 〉 denotes stochastic average, 〈. . . , . . . 〉 stands
for the covariance, and γi represents the linewidth of the
Lorentzian line shape that spectrally characterizes the laser’s
phase fluctuations. Considering the experimental conditions
where the two beams are generated by the same laser source,
we can assume the same linewidth for both beams, with
correlated fluctuations, such that γ1 = γ2 = γ12 = γ̄ .

The atomic dynamics is described by the Bloch equa-
tions for the atomic matrix elements ρ̃ij , which are ob-
tained from the interaction Hamiltonian of the system.
Their evolution is better described with the use of Liou-
ville space. In particular for our three-level system, we
use the vector y = (ρ̃11,ρ̃22,ρ̃13,ρ̃31,ρ̃23,ρ̃32,ρ̃12,ρ̃21) to de-
scribe all the independent components. The Bloch equa-
tions are determined in Appendix A and they describe
the dynamics for the rapidly varying variables y. To ob-
tain a linear system without explicit time dependence, the

atomic dynamics is better described by the slowly vary-
ing variables x = (ρ11,ρ22,ρ13,ρ31,ρ23,ρ32,ρ12,ρ21). Hence,
it is convenient to perform the rapidly-to-slowly varying
variables transformation such that ρ̃i3e

−i[ωi t+φi (t)] → ρi3 and
ρ̃12e

−i[(ω1−ω2)t+φ1(t)−ω2(t)] → ρ12. Such transformation is rep-
resented in a very compact way as

x(t) = e−iN1[ω1t+φ1(t)]e−iN2[ω2t+φ2(t)]y(t), (10)

where N1 and N2 are diagonal matrices with zeros and
ones defined in Appendix A. Each one of the matrices Ni

corresponds to each noisy beam i = 1,2. Therefore, the matrix
representation of the Bloch equations is given by

dy(t)

dt
= −eiN1[ω1t+φ1(t)]eiN2[ω2t+φ2(t)]Ax(t) + y0, (11)

where the y0 vector and theAmatrix are both defined explicitly
for a three-level system in Appendix A. The vector y0 is
constant, used for normalization of the closed three-level
system. The evolution matrix A depends on parameters of the
light-atom interaction such as the spontaneous decay rate �,
the ground-state coherence lifetime γd , the Rabi frequencies i

for each field mode, and the resonant frequencies for the atomic
transitions ω(13) and ω(23). It is worth noting that the matrix
representation in Eq. (11) stands for any atomic structure
(with M levels) that couples two noisy beams and additional
monochromatic noiseless fields. In that general case, the only
difference would be the higher dimension to be considered for
the vectors and matrices in Eq. (11), such as the five-level
system in Ref. [22]. Even more general, if we consider a
M-level atom interacting with more than two noisy beams, the
only difference, aside from higher dimensions, are the extra
terms for exp{iN1[ω1t + φ1(t)] + · · · + iNn[ωnt + φn(t)]} in
Eq. (11) where n would be the total number of fields
with stochastic phase noise. Thus, the theoretical treatment
presented here can be easily extended for M-level atomic
systems interacting with two noisy fields. Nevertheless, we
restrict ourselves here to describe a three-level system.

Once we obtain the Bloch equations, now we determine the
Langevin equations for the slowly varying variable x with the
help of Ito’s calculus [23] for the stochastic fluctuations dφ(t).
By applying Ito’s differentiation rule dx = [∂tx + 1

2 (∂2
φ1

x +
∂2
φ2

x + ∂2
φ1φ2

x + ∂2
φ2φ1

x)]dt + ∂φ1 x dφ1 + ∂φ2 x dφ2 into the
transformation (10), we obtain a general Langevin equation

dx(t) = a[x,t]dt + B1[x,t]dφ1(t) + B2[x,t]dφ2(t)

− 1
2

(
N2

1dφ2
1 + N2

2dφ2
2 + 2N1N2dφ1dφ2

)
x(t) (12)

with

a[x,t] = −At x(t) + x0, (13a)

B1[x,t] = iN1 x(t), (13b)

B2[x,t] = iN2 x(t), (13c)

where At = A − iN1ω1 − iN2ω2, and x0 corresponds to the
transformation of y0, following Eq. (10). The new evolution
matrix At has the same matrix form as A in Eq. (A13), but in
that case we change ω(3i) → �i with �i = ωi − ω(3i) which
represent the optical frequency detunings with respect to the
atomic resonances for both beams i = 1,2 (see Fig. 1).
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Notice that the atomic evolution given by Eq. (12) is written
as a contribution of two main parts. The dynamics determined
by noiseless fields is described by the vector a, while the
contribution of stochastic phase fluctuations dφi(t) into the
atomic dynamics depends on Ni matrices up to second order.
These phase fluctuations are amplified by the atomic variables
due to the product dφ × x(t) and are fed back into the system
evolution by dx(t).

According to the statistical properties of the phase fluc-
tuations in Eqs. (9), the mean value of the atomic variables
evolves slowly as

d〈x(t)〉 = [−M〈x(t)〉 + xo]dt (14)

with M = At + γ̄ [N2
1 + N2

2 + 2N1N2], reaching the stationary
state of the mean value given by

〈x(t)〉ss = M−1xo. (15)

The components ρss
13 and ρss

23 correspond to the stationary
solution for the coherences associated to each transition. The
real and imaginary parts of these coherences are respectively
related to the dispersion and absorption of the fields by the
atomic media.

B. Covariance matrix dynamics and spectral density

The next step is the evaluation of the atomic covari-
ances since they are directly related with the intensity
fluctuations of the fields. The evolution of the atomic co-
variance matrix g(t,t + τ ) = 〈x(t),x†(t + τ )〉 = 〈x(t)x†(t +
τ )〉 − 〈x(t)〉〈x†(t + τ )〉 can be obtained with the help of the
dynamical equation (12) for x(t).

Let us start by describing the dynamical evolution of
the covariance matrix for τ 	= 0 based on the regression
theorem [23], such that

dg(τ )

dτ
= −M g(τ ), τ > 0 (16a)

dg(τ )

dτ
= g(τ ) M†, τ < 0 (16b)

where we define g(τ ) ≡ g(t,t + τ ), simplifying the notation.
The solution is directly obtained from the stationary solution

g(τ )ss =
{
e−M τ g(0)ss , τ > 0
g(0)sseM† τ , τ < 0

(17)

where the subindex ss denotes the stationary solution for g(τ ).
In such a regime, for any interval of time τ , the covariance
matrix g(τ )ss is invariant under temporal displacements,
i.e., g(t,t + τ )ss = g(t ′,t ′ + τ )ss for t ′ 	= t . The solution (17)
shows that, in the stationary regime, the covariances between
the atomic density elements present an exponential decrease
for intervals of time separated by τ .

Now, let us consider the case when τ = 0. The dynamics is
obtained by direct derivation of g(t,t) and application of Ito’s

calculus, resulting in

dg(t,t)

dt
= −[M g(t,t) + g(t,t) M†]

+ 2γ̄ � g(t,t) � + 2γ̄ �〈x(t)〉〈x(t)†〉� (18)

with

� = (N1 + N2). (19)

In the stationary regime, we have

2γ̄ �〈x(t)〉ss〈x(t)†〉ss� = [M g(0)ss + g(0)ss M†]

− 2γ̄ � g(0)ss �. (20)

Typical measurements are performed rather in the fre-
quency domain than in the time domain, allowing to selectively
avoid the contribution of noise from other sources in the spec-
troscopy. In the frequency domain, the intensity fluctuations
are described by the spectral density, obtained from a Fourier
transform of the covariance matrix in Eq. (17), resulting in the
spectral density matrix

S(ω) = 1

2π
[(iω + M)−1 g(0)ss + g(0)ss (−iω + M†)−1].

(21)

Computing [iω + M]S(ω)[−iω + M†] and with the help of
Eq. (20), we obtain

S(ω) = 1

π
[(M + iω)−1 � � � (M† − iω)−1], (22)

where

� =γ̄ [〈x(t)〉ss〈x(t)†〉ss + g(0)ss]. (23)

We can relate the Fourier transform of the atomic covariance
matrix described above (21) to the intensity spectrum of the
light fields given in Eq. (7) using the thin sample model for
the transmitted intensity relating fields and atomic coherences
weighted by the effective optical density 	i . Therefore, the
spectral correlation C(ω) in Eq. (6) is given by spectral
densities

SI
11(ω) = μ11{[S(ω)]33 + [S(ω)]44 − [S(ω)]34 − [S(ω)]43},

(24a)

SI
22(ω) = μ22{[S(ω)]55 + [S(ω)]66 − [S(ω)]56 − [S(ω)]65},

(24b)

SI
12(ω) = μ12

2
{[S(ω)]36 + [S(ω)]45 − [S(ω)]35 − [S(ω)]46

+ [S(ω)]63 − [S(ω)]64 + [S(ω)]54 − [S(ω)]53},
(24c)

where μij = 	iEiEj . However, in most of the experimental
conditions, both the fields have the same intensity, such that
μ11 ≈ μ22 ≈ μ12 = μ̄.

We can see that intensity spectra become a powerful tool
to understand the atomic covariance matrix which is directly
dependent on the coherences and populations involved in
the EIT process. The spectral density in Eq. (22) takes the
same form of an Ornstein-Uhlenbeck (OU) process, where
� � � represents the diffusion matrix. The matrix �
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[Eq. (23)] presents a contribution from the mean value of the
atomic population and coherences 〈xss(t)〉 (associated to the
absorption and dispersion of the fields) and their respective
covariances g(0)ss .

The resulting calculation, although successful in describing
the observed spectra presented in [14,19], does not distinguish
the contribution of each term in matrix �. So far, the
calculation to obtain the spectral density matrix S(ω), and
consequently the intensity correlation C(ω), is reduced to
a numerical task lacking analytical and physical insight of
the atomic response in the induction of a certain level of
noise and intensity correlation. The perturbative approach we
present below brings new information about the role of each
term.

II. PERTURBATIVE APPROACH

The time evolution of the atomic variables in Eq. (12) shows
the relation between the optical pumping (included in the a
matrix and proportional to the spontaneous decay �) and the
laser linewidth (associated to dφ) that determines how the
system is affected by the excess of phase noise in the incident
light fields. We may associate a perturbative parameter to the
laser linewidth as ε = √

γ̄ and redefine the phase fluctuation
as dφi(t) = εdWi(t), where dWi(t) is a Wiener processes
with 〈dWi(t),dWj (t)〉 = 1. Then, following the perturbative
approach described in [23], we expand the vector x(t) as

x(t) = x(0)(t) + ε x(1)(t) + ε2x(2)(t) + · · · . (25)

After substitution of this result in Eq. (15) we obtain the
stationary solution for the mean value of the different orders
x(n)(t):

〈x(0)(t)〉ss = M−1 xo, (26a)

〈x(n)(t)〉ss = 0, n � 1 (26b)

retaining nonzero solutions of the mean value only for the
contribution of lowest order.

As for the covariance matrix g(t,t), it can be expanded in
powers of ε as

g(0) = ε2σ (2) + ε3σ (3) + ε4σ (4) + ε5σ (5) + · · · , (27)

where we define the covariances σ (n) as

σ (2) = 〈x(1)(t),x(1)(t)†〉, (28a)

σ (3) = 〈x(1)(t),x(2)(t)†〉 + 〈x(2)(t),x(1)(t)†〉, (28b)

σ (4) = 〈x(2)(t),x(2)(t)†〉 + 〈x(3)(t),x(1)(t)†〉 + c.c, (28c)

σ (5) = 〈x(2)(t),x(3)(t)†〉 + 〈x(4)(t),x(1)(t)†〉 + c.c,

...
...

... . (28d)

Substituting these results in Eq. (20), we derive a recursive
formula to obtain the stationary condition for σ (n) matrices

Mσ (2n)
ss + σ (2n)

ss M† = 2 � σ 2(n−1)
ss � n � 1 (29a)

σ (2n−1)
ss = 0, n � 2. (29b)

All odd-order matrices vanish, while even-order matrices
are recursively obtained from the zero-order matrix, given by

the product of the vectors

σ (0)
ss = 〈

x(0)
ss

〉〈
x(0)

ss

†〉
, (30)

which is calculated from the stationary solution given in
Eq. (26a).

From the combined expansion of g(0) and the evaluation of
the mean value 〈x(0)

ss 〉, Eq. (23) can now be written as

� =
∞∑

n=0

γ̄ n+1σ (2n)
ss , (31)

involving a power series on the laser linewidth γ̄ .
Regarding the spectral density matrix S(ω), from the

substitution of Eq. (31) into (22), we can also obtain an
expansion involving increasing powers of the linewidth

[S(ω)]kl =
∞∑

n=0

γ̄ n+1[S(2n)(ω)]kl, (32)

where

S(2n)(ω) = 1

π

[
(M + iω)−1 � σ (2n)

ss �†(M† − iω)−1
]
. (33)

This solution is one of the main results in this work. The matrix
S(0)(ω) represents the leading term and contains the absorptive
and dispersive properties of the medium from Eq. (30). Higher-
order terms are considered for a complete description of the
system.

A. Correlation spectroscopy

The perturbative expansion of the noise spectra and the
cross-correlation term in Eq. (24) are obtained from substi-
tution of the matrix elements from Eq. (32). Therefore, the
intensity correlation C(ω) in Eq. (6) has different contributions
depending on the terms we are taking into account in the
expansion of the spectra. The same applies to the evaluation
of g2(0) [Eq. (4)] in the perturbative approach. Figures 2(a)
and 2(b) show the perturbative result for correlation spectra
C(ω) and g2(0), respectively, considering the same anticor-
relation regime studied in Refs. [18,19], with laser linewidth
of γ̄ /2π = 1 MHz. The dashed line represents the first-order
expansion in γ̄ associated to σ (0). Corrections of higher-order
terms up to γ̄ 2 and γ̄ 3 are shown in dotted and dotted-dashed
lines, respectively. The convergence to Ito’s solution (solid
line, as in Ref. [19]) is evident. It is clear that considering the
expansion up to γ̄ 2 would be a valid approximation to describe
the intensity correlation in this case.

The limit of relevant terms in the evaluation of the
correlation is obviously dependent on the laser linewidth, as is
shown in Figs. 3(a) and 3(b). The correlation spectra for laser
linewidths of the order of γ̄ /2π = 10 MHz (high-noise laser)
and γ̄ /2π = 0.01 MHz (low-noise laser) are compared. For a
high-noise laser, Fig. 3(a) shows that higher-order terms are
necessary to determine completely the intensity correlation.

On the other hand, Fig. 3(b) shows that for low-noise lasers,
the intensity correlation is fully described by the first-order
term, which matches Ito’s solution. This demonstrates that for
a coherent light source, the usual linearization approximation
for the atomic variables x(t) = 〈x(t)〉 + δx(t) is valid and
sufficient.
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FIG. 2. Intensity correlation as a function of the two-photon
detuning δ = �1 − �2 [see Fig. 1(a)] of two beams interacting with
a three-level � system. (a) Correlation coefficient C(ω) and (b)
correlation function g2(0). The transparency window is �ωEIT/2π ∼
2 MHz. Parameters for the calculation: laser linewidth γ̄ /2π =
1 MHz, Rabi frequency 1 = 2 = 0.3�, ground-state decoherence
γd/2π = 150 kHz, natural linewidth �/2π = 6 MHz, analysis fre-
quency ω/2π = 2 MHz, and one-photon detuning �2 = 0.

In both cases, the intrinsic linewidth of the correlation spec-
trum remains narrower than the transparency window �ωEIT

measured by the FWHM of the absorption Im〈ρi3〉ss . It was
shown in Refs. [17–19] that, unlike the transparency window
�ωEIT which is sensitive to power broadening, the linewidth of
the correlation spectrum is free from power broadening and is
proportional to the ground states’ decoherence rate. What we
can observe in Figs. 3(a) and 3(b) is that the intrinsic linewidth
for lower- and higher-order terms is always narrower than

FIG. 3. Intensity correlation spectra for a laser linewidth:
(a) γ̄ /2π = 10 MHz and (b) γ̄ /2π = 0.01 MHz. The parame-
ters for the calculation are the same as those in Fig. 2. The
two vertical dotted lines represent the transparency window
�ωEIT.

�ωEIT because it is mainly dependent on the ground states’
decoherence.

These results encourage the search for an explicit ex-
pression for the correlation C(ω), in the same way that
Eq. (5) was evaluated in Ref. [18]. Our goal is to find an
expression for the intensity correlation written in terms of the
absorption and dispersion of the light fields, in the frequency
domain.

III. MAPPING THE ABSORPTION AND DISPERSION
TO THE CORRELATION SPECTRA

The perturbative expansion of the � matrix in Eq. (31),
together with the recursive evaluation of covariance matrices
given by Eq. (29a), shows how the first-order term, which
depends directly on the absorptive and dispersive response
of the atoms, establishes the leading term for the spectral
density. From that first response we can determine higher-order
corrections. Hence, by expressing the � matrix in terms of the
real and imaginary parts of the coherences, we can decompose
the spectral density explicitly in terms of absorption and
dispersion, as in the heuristic model in Eq. (5).

The matrix σ (0) defined in Eq. (30) is calculated from
the zero-order term 〈x(0)

st 〉 that has its stationary solution
given in Eq. (26a). It is convenient to shift to a new vec-
tor x̃ = (ρ(0)

11 ,ρ
(0)
22 ,Rep1,Imp1,Rep2, Imp2,ρ

(0)
12 ,ρ

(0)
21 ) explicitly

dependent on the absorption and dispersion of the fields. This
can be done by the transformation

x̃ = U
〈
x0

st

〉 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1

2
1
2 0 0 0 0

0 0 − i
2

i
2 0 0 0 0

0 0 0 0 1
2

1
2 0 0

0 0 0 0 − i
2

i
2 0 0

0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ
(0)
11

ρ
(0)
22

p1

p∗
1

p2

p∗
2

ρ
(0)
12

ρ
(0)
21

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(34)

This transformation is helpful to obtain the noise spectra for
each beam in terms of the absorption and dispersion associated
to each transition. The spectral density matrix given by Eq. (22)
can be evaluated from the expansion of covariances described
in Eq. (32). We begin by the evaluation of the covariances in
the rotating frame, using Eq. (19):

� σ (n)� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 σ
(n)
33 −σ

(n)
34 σ

(n)
35 −σ

(n)
36 0 0

0 0 −σ
(n)
43 σ

(n)
44 −σ

(n)
45 σ

(n)
46 0 0

0 0 σ
(n)
53 −σ

(n)
54 σ

(n)
55 −σ

(n)
56 0 0

0 0 −σ
(n)
63 σ

(n)
64 −σ

(n)
65 σ

(n)
66 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(35)
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resulting in a reduced number of relevant independent ele-
ments.

Now, using the transformation of Eq. (34) into the � matrix,
its expansion becomes

�̃ = U� � � U−1

=
∞∑

n=0

γ̄ n+1σ̃ (2n), (36)

where every �̃ij matrix element is explicitly written as
the perturbative corrections performed around the mean
value σ̃

(0)
ij , as described in Appendix B, in Eq. (B7). Each

term σ̃ (n) = U� σ (n) � U−1 takes the same form as the
matrix (35).

The noise spectra in Eqs. (24a)–(24c) are then
given by products of the expansion of the covari-
ances �̃ij by weighting factors that depend on the

analysis frequency ω:

SI (ω)11 = μ̄

6∑
i,j=3

αij (ω) �̃ij , (37)

SI (ω)22 = μ̄

6∑
i,j=3

βij (ω) �̃ij , (38)

SI (ω)12 = μ̄

6∑
i,j=3

νij (ω)�̃ij . (39)

A detailed calculation of the weighting coefficients is found in
Appendix B, where we present the detailed expression for the
noise power spectra for each field and their correlation.

If we keep only the expansion to lowest order, an explicit
expression for the normalized spectral correlation is

C(ω) = ν̃35(ω)Imp1Imp2 + ν̃46(ω)Rep1Rep2 + ν̃36(ω)Imp1Rep2 + ν̃45(ω)Imp2Rep1 + C12(ω)√
[α33(ω)Im2p1 + α44(ω)Re2p1 + C11(ω)][β55(ω)Im2p2 + β66(ω)Re2p2 + C22(ω)]

. (40)

This result is similar to the correlation function from the
heuristic model in Eq. (5). But, instead of having Imp1Imp2

and Rep2Rep1 with equal contributions to the correlation, a
weighting factor ν35(ω) and ν46(ω) modulates their contribu-
tion in Eq. (40).

Moreover, beyond the contribution from Imp1Rep2 and
Imp2Rep1, all possible cross terms from matrix (B7) will be
present in evaluation of SI

12, SI
11, and SI

22. The contribution
of the terms not explicitly shown in Eq. (40) is given by the
weaker but relevant contributions C11, C22, and C12 defined in
Eqs. (B18)–(B22).

In Fig. 4, we observe the effect of the perturbative correc-
tions taken into account in the evaluation of the normalized �̃ij

matrix elements, considering typical values of γ̄ /2π = 1 MHz
and �2 = 0. Figures 4(a), 4(b), and 4(c) show the effect
of perturbative corrections Im2pi , Re2pi and ImpiRepi ,
respectively, for the two beams i = 1,2. Figures 4(c) and 4(d)
show the perturbative corrections for Imp1Imp2 (Rep1Rep2)
and for the products Imp1Rep2 (Rep1Imp2). We may observe
that the lowest-order terms closely follow �̃ij /γ̄ .

Now, comparing the dispersive and the absorptive
responses, Figs. 4(a) and 4(b), shows that Im2pi ∼ Re2pi

for |δ| < �ωEIT. Now, for |δ| > �ωEIT, the atomic response
presents situations where the absorption overcomes the dis-
persion, or vice versa. The product ImpiRepi also plays a role
in the atomic response for each field, following a dispersive
profile in Fig. 4(c). The coefficients αij (ω), βij (ω), and νij (ω)
will determine the leading term in each specific situation.

On the other hand, the cross product Rep1Rep2 competes
with Imp1Imp2 for |δ| < �ωEIT as shown in Fig. 4(d). Only
the coefficients νij (ω) will determine the main contribution
for the induced correlation or anticorrelation. In the case of
|δ|/2π > 6 MHz, the absorptive (�̃35) and dispersive (�̃46)
terms are positive and contribute to C(ω) > 0.

Finally, Fig. 4(e) shows the cross products ImpiRepj that
present a dispersionlike profile. Such terms are absent in the

evaluation of g2(0). It is interesting to notice that the contribu-
tion of higher-order terms is important in flipping the sign of
�̃45 for |δ|/2π > 6 MHz. This term is responsible for invert-
ing the sign of the spectral correlation in Fig. 2(a) for higher
detuning, when higher-order terms are taken into account.

The coefficients αij (ω), βij (ω), and νij (ω) will determine
the effective contribution of the �̃ij matrix elements to the
noise spectra and their intensity correlation. Let us start by the
decomposition of the noise of each light beam. In Fig. 5(a),
we plot the noise spectra S11(ω) and S22(ω) evaluated with
terms up to order γ̄ 7 in �̃. In Figs. 5(b) and 5(c), we
plot the contribution of the product αij�ij associated to S11

and Figs. 5(d) and 5(e) show the products βij�ij associated
to S22.

Unlike the heuristic model of g2(0), where Im2pi and Re2pi

contribute equally to the noise of the beams, Figs. 5(b) and 5(e)
show that the dispersive response (�̃44 and �̃66) overcomes
the absorptive one (�̃33 and �̃55) since α44�̃44 > α33�̃33 and
β66�̃66 > β55�̃55, respectively, for |δ| < �ωEIT. In particular,
for |δ| ∼ �ωEIT the components α44�̃44 and β66�̃66 become
the main contributions to S11(ω) and S22(ω) in Fig. 5(a)
among all the terms. Nevertheless, we can notice that other
terms will play an important role for |δ| � �ωEIT, like the
contributions related to α46(β46), associated to Rep1Rep2

[Fig. 4(c)]. Moreover, for such detuning range, the absorptive
term β55�̃55 and dispersive term β66�̃66 present almost the
same contribution to the noise spectrum S22(ω), different from
S11(ω) where the dispersion given by α44�̃44 still overcomes
the absorption α33�̃33. Other important terms modulated by
α34 and β56, associated to ImpiRepi for i = 1,2, also present
a noticeable effect. Figures 5(c) and 5(d) show the remaining
coefficients αij �̃ij and βij �̃ij that define additional terms in
Eqs. (37) and (38). Although, individually they are apparently
relevant terms, their sum represents effectively a weaker
contribution with respect to the coefficients in Figs. 5(b)
and 5(e).
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FIG. 4. Comparing the �̃ij matrix elements at first order
(σ (0)

ij ) with higher-order terms in the perturbative expansion �̃ij =
γ̄ [σ (0)

ij + · · · + γ̄ 6σ
(7)
ij ]. (a) Absorptive and (b) dispersive response

for each beam. (c) Absorption × dispersion product for each beam.
(d) and (e) cross term products Imp1Imp2 (Rep1Rep2) and Imp1Rep2

(Rep1Imp2). The parameters for the calculation are the same as in
Fig. 2. The two vertical dotted lines represent �ωEIT.

In order to get a better understanding of the profile of the
spectral correlation C(ω), we analyze the intensity correlation
given by S12 [Eq. (39)] associated to the νij coefficients.
These coefficients weight the �̃ij matrix elements used in
evaluation of the intensity correlation shown in Fig. 6(a).
The effective contributions given by the products νij�ij are
presented in Figs. 6(b) and 6(c). Unlike the heuristic model
where the absorptive and the dispersive responses have the
same weight to the final correlation, Fig. 6(b) shows that, in
the frequency domain, the contribution from the dispersive
part ν̃46(ω)[Rep1Rep2 + · · · ] is significantly greater than the
absorptive response ν̃35(ω)[Imp1Imp2 + · · · ]. It also shows
that the contribution to the intensity correlation C(ω) in
Eq. (40) depends strongly on ν̃45(ω) associated to the product
Imp2Rep1, plotted in Fig. 4(d).

Aside from these differences between the g2(0) and
C(ω), the spectral correlation also presents contribution from

FIG. 5. Decomposing the noise spectra SI (ω)11 and SI (ω)22 from
Eqs. (37) and (38) in terms of the αij and βij coefficients, respectively.
The noise spectra in (a) are calculated up to order γ̄ 7 for analysis
frequency ω/2π = 2 MHz. (b), (e) Show the main coefficients αij

and βij , respectively. (c) Shows the weaker coefficients α55, α66, α56,
α35, α36, and α45. (d) Shows the weaker coefficients β33, β44, β34, β35,
β36, and β45. The parameters for the calculation are the same as those
in Fig. 2. The two vertical dotted lines represent �ωEIT.

ν44(ω)[Re2p1 + · · · ] and ν66(ω)[Re2p2 + · · · ], as shown
in Fig. 6(c). The coefficients ν33(ω), ν55(ω), ν34(ω), and
ν56(ω) present a weaker contribution with respect to other
coefficients, and are associated to correction C12 in Eq. (40).
The combined result leads to anticorrelation between the
two beams for |δ|/2π < 3 MHz. However, for δ = 0 the
only nonzero terms that effectively contribute to correlation
between the beams are �̃46, �̃44, and �̃66 [insets in Figs. 6(b)
and 6(c)]. Now, for |δ|/2π ∼ 3.5 MHz, the dispersive
term ν46�̃46 takes its maximum value becoming the main
contribution for a positive correlation C.

On the other hand, for detuning |δ| > � = (2π )6 MHz, the
competition among the nonzero terms leads to anticorrelation
between the light fields. However, it is worth noting that the
sign inversion of ν45(ω)[Imp2Rep1 + · · · ] near |δ| ∼ 5 MHz
in Fig. 6(b) determines the transition from correlation to
anticorrelation for C in Fig. 6(a). This particular term can
be understood as light being absorbed in the beam E2

(Imp2), which is on resonance (�2 = 0), and reemitted in
the frequency mode of the field E1, depending strongly on its
dispersion associated to Rep1. Therefore, we have nonresonant
Stokes transitions, contributing to anticorrelation.

IV. SIDEBAND RESONANCES BROADENING
THE CORRELATION SPECTROSCOPY

In this section, we investigate the intensity correlation for
different analysis frequencies. In Fig. 7, we compare the
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FIG. 6. (a) Correlation coefficient. (b), (c), (d) Plot the con-
tributing terms νij (ω)�̃ij to obtain the spectral density of the cross
correlation S12(ω) for �2 = 0 and ω/2π = 2 MHz. The two vertical
dotted lines represent �ωEIT.

coefficient C(ω) and g2(0) function for ω/2π = 2, 3, 4, and
5 MHz, considering a standard noisy laser of γ̄ /2π = 1 MHz.
In Fig. 7(a), we plot the correlation coefficient with �̃

FIG. 7. Intensity correlation spectra for a laser linewidth of
γ̄ /2π = 1 MHz at (a) first order γ̄ and (b) considering the perturba-
tive expansion up to γ̄ 7 in Eq. (40). It is considered ω′ = ω/2π = 2,
3, 4, and 5 MHz. The parameters for the calculation are the same as
those in Fig. 2. The two vertical dotted lines represent the transparency
window �ωEIT.

FIG. 8. Coefficients νij (ω) that weigh the �̃ij matrix elements to
obtain the spectral density of the cross correlation S12(ω) for �2 =
0 and ω/2π = 5 MHz. The two vertical dotted lines represent the
transparency window �ωEIT.

evaluated to first order in γ̄ , while in Fig. 7(b) they are
evaluated to the seventh order. Aside from the unphysical
result of C > 1 on resonance δ = 0, the general profiles present
reasonable similarities. One of them is the negative value for
the correlation in the range of the EIT, except for the narrow
structure, with the width of the inverse of the atomic coherence
between the ground levels. The main difference is that the
correlation is saturated in the linearized case, while a more
careful treatment shows its limiting values.

Important features that we observe for higher analysis
frequencies are the resolved resonances at δ = ±ω for ω/2π =
4 and 5 MHz, while for smaller analysis frequencies, there is a
broadening in the anticorrelation peak, when compared to the
response of g2(0) on the two-photon detuning. On the other
hand, for |δ| < 3 × �ωEIT ∼ (2π ) 6 MHz, the correlation
profile of C(ω) coincides with the g2(0) function (solid line) for
ω/2π = 5 MHz. That is, we analyze the intensity correlation
at a particular frequency, such that sideband resonances do
not influence the PN-AN process inside 3 × �ωEIT. It is
worth noting that for any analysis frequency considered, the
intrinsic linewidth of C(ω) is not affected. This guarantees
that the intrinsic linewidth measured in the frequency or the
time domain is the same, no matter what analysis frequency
is chosen [18,19]. Finally, evaluation of higher-order terms
results in broadened (especially for ω/2π = 4 MHz), and less
anticorrelated resonances for the sidebands.

In order to gain insight into the sideband resonances, we
decompose the correlation in terms of the atomic response as
in Sec. III. The νij (ω) coefficients are plotted in Fig. 8 for
ω/2π = 5 MHz, where the sideband resonances are resolved.
As in the case of Fig. 6, the main contributions for the
correlation are given by the dispersive terms �̃46 and �̃45

for δ 	= ω. However, at the sideband resonances δ = ±ω, the
contribution from both terms decreases, while the negative
contribution from the �̃44 and �̃66 remains, leading to
anticorrelation.

The decomposition in terms of the �̃ij matrix elements
and the coefficients νij (ω) in Figs. 4 and 8, respectively, show
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the independent contribution of the PN-AN process when the
carrier’s two-photon detuning is |δ| < �ωEIT and ω/2π = 4
and 5 MHz. For ω/2π � 3 MHz the sideband resonances
are not resolved, broadening the correlation profile in the
frequency domain for |δ| < �ωEIT.

V. CONCLUSIONS

The mapping between the intensity correlation and the
absorptive and dispersive properties of the atomic medium
under EIT condition was studied in the frequency domain.
A perturbative model was proposed providing analytical ele-
ments to describe such a mapping. We obtained an expression
for the correlation coefficient in terms of the absorption and
dispersion of the light fields analogous to the heuristic model
in Ref. [18]. We have also shown the explicit dependence
of the correlation coefficient on the laser linewidth as it
was observed in Ref. [24]. Since the perturbative parameter
corresponds to the laser linewidth, such a dependence
rises when higher-order terms are taken into account for
determining the correlation. It was shown that for low-phase
noise beams the first-order term describes completely their
spectral densities and the intensity correlation.

Moreover, we show that the intrinsic linewidth can be
measured by the correlation spectroscopy, independently of
the approach, i.e., in the time or frequency domain approach.
We demonstrated that for analysis frequency of the order of
the natural linewidth the correlation coefficient presents some
particular resonances due to sidebands of the input light fields.
In such condition, the correlation coefficient in Eq. (40) can
take the same form as the g2(0) function for detuning of the
order of the transparency window. The physical insight given
by the perturbative model can be experimentally studied by
gradually applying phase noise into coherent sources, showing
the transition from low-noise to high-noise regime.

The perturbative treatment presented here could be easily
extended to atoms with more than three levels interacting with
two noisy beams. The analytical solution could be applied, for
instance, to the five-level system in [22]. In such a kind of sys-
tem, magnetic fields are applied to the Zeeman structure, where
the frequency domain approach adopted here would show
a richer correlation spectrum compared to the time-domain
approach. Under certain conditions of magnetic field, the three
pairs of sideband resonances could be coupled among them.
Such kinds of system would have applications in a light-matter
interface for processing information in continuous variables.
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Quântica). The authors thank Professor P. Nussenzveig and
Dr. A. Kumar for fruitful discussions.

APPENDIX A: BLOCH EQUATIONS FOR A THREE-
LEVEL SYSTEM

From the Hamiltonian (8) we obtain the following Bloch
equations for the rapidly varying variables described by the
vector y = (ρ̃11,ρ̃22,ρ̃13,ρ̃31,ρ̃23,ρ̃32,ρ̃12,ρ̃21), such that

˙̃ρ11 = −i∗
1ρ̃13e

−i[ω1t+φ1(t)] + i1ρ̃31e
i[ω1t+φ1(t)]

+ �(1 − ρ̃11 − ρ̃22)/2, (A1)

˙̃ρ22 = −i∗
2ρ̃23e

−i[ω2t+φ2(t)] + i2ρ̃32e
i[ω2t+φ2(t)]

+ �(1 − ρ̃11 − ρ̃22)/2, (A2)

˙̃ρ13 =
(

−�

2
+ iω(31)

)
ρ̃13 + i1(1 − 2ρ̃11 − ρ̃22)ei[ω1t+φ1(t)]

− i2ρ̃12e
i(ω2t+φ2), (A3)

˙̃ρ23 =
(

−�

2
+ iω(32)

)
ρ̃23 + i2(1 − 2ρ̃22 − ρ̃11)ei[ω2t+φ2(t)]

− i1ρ̃21e
i[ω1t+φ1(t)], (A4)

˙̃ρ12 = −[γd − i(ω(31) − ω(32))]ρ̃12 + i1ρ̃32e
i[ω1t+φ1(t)]

− i∗
2ρ̃13e

−i[ω2t+φ2(t)], (A5)

where ω3i correspond to the energy differences between the
atomic states, i represent the Rabi frequencies, � is the
natural linewidth, and γd is the decoherence rate between the
ground states. We have also considered a closed system, which
satisfies the normalization ρ̃11 + ρ̃22 + ρ̃33 = 1.

In order to obtain a linear equation system without explicit
time dependence, we define the slowly varying variables

ρii = ρ̃ii , (A6)

ρi3 = ρ̃i3e
−i[ωi t+φi (t)], (A7)

ρ12 = ρ̃12e
−i[(ω1−ω2)t+φ1(t)−φ2(t)]. (A8)

The matrix representation of such transformation is given by

x(t) = e−iN1[ω1t+φ1(t)]e−iN2[ω2t+φ2(t)]y(t), (A9)

and the matrices N1 and N2 are defined as

N1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A10)
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N2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A11)

where [N1,N2] = 0. Therefore, with the vectors defined in Eq. (A9) and the matrices in Eq. (A11), the Bloch equations (A1)–(A4)
with their conjugates can be written as

dy(t)

dt
= −eiN1[ω1t+φ1(t)]eiN2[ω2t+φ2(t)]A3Nx(t) + y0, (A12)

where the interaction matrix A3N is defined as

A3N=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�/2 �/2 i∗
1 −i1 0 0 0 0

�/2 �/2 0 01 i∗
2 −i2 0 0

2i1 i1 (�/2 − iω(31)) 0 0 0 i2 0
−2i∗

1 −i∗
1 0 (�/2 + iω(31)) 0 0 0 −i∗

2
i2 2i2 0 0 (�/2 − iω(32)) 0 0 i∗

1−i∗
2 −2i∗

2 0 0 0 (�/2 + iω(32)) −i1 0
0 0 i2 0 0 −i∗

1 (γd − iω(21)) 0
0 0 0 −i∗

2 i1 0 0 (γd + iω(21))

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A13)

with ω(21) = ω(31) − ω(32) and

y0 = (�/2,�/2,−i1e
i(ω1t+φ1),i∗

1e
−i(ω1t+φ1),−i2e

i(ω2t+φ2),i∗
2e

−i(ω2t+φ2),0,0). (A14)

APPENDIX B: MAPPING THE SPECTRAL DENSITY WITH ATOMIC VARIABLES

With the help of the transformed atomic correlations �̃ given by Eq. (36), the spectral density matrix can be written as

S(ω) = 1

2π
[�L(ω) �̃ �R(−ω)], (B1)

where we defined

�L(ω) = (M + iω)−1 U−1, (B2)

�R(−ω) = U (M† − iω)−1. (B3)

Therefore, the matrix elements of the spectral density are

[S(ω)]kl =
6∑

i,j=3

Vkijl �̃ij , (B4)

where Vkijl = [�L(ω)]ki[�R(−ω)]j l . The sum excludes explicitly the elements with index i = 1, 2, 7, and 8 since

�̃1i = �̃i1 = 0, �̃2i = �̃i2 = 0, (B5)

�̃7i = �̃i7 = 0, �̃8i = �̃i8 = 0 (B6)

as a consequence of the matrix elements in Eq. (35).
Evaluation of �̃ stems from the recursive relation of the covariances given by Eq. (29a). The matrix elements of σ (0) represent

the the first-order atomic response induced by the light-atom interaction and, according to Eq. (30) and the transformation (36),
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it is written as

σ̃ (0) = 2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 Im2p1 −Imp1Rep1 Imp1Imp2 −Imp1Rep2 0 0
0 0 −Imp1Rep1 Re2p1 −Imp2Rep1 Rep1Rep2 0 0
0 0 Imp1Imp2 −Im p2Rep1 Im2p2 −Imp2Rep2 0 0
0 0 −Imp1Rep2 Rep1Rep2 −Imp2Rep2 Re2p2 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (B7)

We finally have a set of terms with leading contributions
from the coherence between levels 1 and 3:

�̃33 = γ̄

(
2 Im2p1 +

∞∑
n=1

γ̄ nσ̃
(2n)
33

)
,

�̃44 = γ̄

(
2 Re2p1 +

∞∑
n=1

γ̄ nσ̃
(2n)
44

)
, (B8)

�̃34 = γ̄

(
−2 Imp1Rep1 +

∞∑
n=1

γ̄ nσ̃
(2n)
34

)
,

another set with leading terms related to levels 2 and 3:

�̃55 = γ̄

(
2 Im2p2 +

∞∑
n=1

γ̄ nσ̃
(2n)
55

)
,

�̃66 = γ̄

(
2 Re2p2 +

∞∑
n=1

γ̄ nσ̃
(2n)
66

)
, (B9)

�̃56 = γ̄

(
−2 Imp2Rep2 +

∞∑
n=1

γ̄ nσ̃
(2n)
56

)
,

and a final set involving crossed terms of both coherences

�̃35 = γ̄

(
2 Imp1Imp2 +

∞∑
n=1

γ̄ nσ̃
(2n)
35

)
,

�̃46 = γ̄

(
2 Rep1Rep2 +

∞∑
n=1

γ̄ nσ̃
(2n)
46

)
,

�̃36 = γ̄

(
−2 Imp1Rep2 +

∞∑
n=1

γ̄ nσ̃
(2n)
36

)
, (B10)

�̃45 = γ̄

(
−2 Imp2Rep1 +

∞∑
n=1

γ̄ nσ̃
(2n)
45

)
.

Matrix (B7) contains all the necessary elements for calcu-
lating the g(2)(0) function of the heuristic model in Eq. (5). In
the frequency domain, the noise spectra in Eqs. (24a)–(24c)
are given by products of the expansion of the covariances �̃ij

by weighting factors that depend on the analysis frequency ω:

SI (ω)11 = μ̄

6∑
i,j=3

αij (ω) �̃ij , (B11)

SI (ω)22 = μ̄

6∑
i,j=3

βij (ω) �̃ij , (B12)

SI (ω)12 = μ̄

6∑
i,j=3

νij (ω)�̃ij , (B13)

where

αij (ω) = [V3ij3(ω) + V4ij4(ω) − V3ij4(ω) − V4ij3(ω)],

(B14)

βij (ω) = [V5ij5(ω) + V6ij6(ω) − V5ij6(ω) − V6ij5(ω)],

(B15)

νij (ω) = 1/2[V3ij6(ω) + V4ij5(ω) − V3ij5(ω) − V4ij6(ω)

+V6ij3(ω) − V6ij4(ω) + V5ij4(ω) − V5ij3(ω)].

(B16)

Noise power spectra are now evaluated for these expanded
terms as

SI
11(ω) = μ̄[α33(ω)�̃33 + α44(ω)�̃44+ + C11(ω)], (B17)

where the complementary coefficient C11 is defined

C11(ω) = α̃34�̃34 + α55(ω)�̃55 + α66(ω)�̃66

+ α̃56(ω)�̃56 + α̃35(ω)�̃35 + α̃46(ω)�̃46

+ α̃36(ω)�̃36 + α̃45(ω)�̃45, (B18)

with α̃ij (ω) = αij (ω) + αji(ω). These terms are related to
contributions from the polarization of the other transition and
cross terms. Their role is discussed in the main text.

Similarly, we have for the noise spectra for the second field

SI
22(ω) = μ̄[β55(ω)�̃55 + β66(ω)�̃66 + C22(ω)], (B19)

and complementary coefficients

C22(ω) = β̃56�̃56 + β33(ω)�̃33 + β44(ω)�̃44

+ β̃34(ω)�̃34 + β̃35(ω)�̃35 + β̃46(ω)�̃46

+ β̃36(ω)�̃36 + β̃45(ω)�̃45, (B20)

with β̃ij (ω) = βij (ω) + βji(ω).
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And, finally, for the correlation

SI
12(ω) = μ̄[ν̃35(ω)�̃35 + ν̃46(ω)�̃46

+ ν̃36(ω)�̃36 + ν̃45(ω)�̃45 + C12(ω)], (B21)

with ν̃ij (ω) = νij (ω) + νji(ω) and complementary coefficients

C12(ω) = ν33(ω)�̃33 + ν44(ω)�̃44 + νβ34(ω)�̃34

+ ν55(ω)�̃55 + ν66(ω)�̃66 + να56(ω)�̃56. (B22)

It is worth noting that elements �̃33, �̃44, and �̃34 describe
the atomic response with respect to the light beam E1 since
they are proportional to the absorption Imp1 and dispersion
Rep1. The elements �̃55, �̃66, and �̃56 represent the atomic
response with respect to field E2 according to its dependence
on Imp2 and Rep2. Finally, the cross terms �̃35, �̃46, �̃36,
and �̃45 describe the main elements that contribute to the
correlation C(ω).
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