
PHYSICAL REVIEW A 94, 012502 (2016)

Particle-hole configuration interaction and many-body perturbation theory: Application to Hg+
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The combination of configuration interaction and many-body perturbation theory methods is extended to
nonperturbatively include configurations with electron holes below the designated Fermi level, allowing us to
treat systems where holes play an important role. For example, the method can treat valence-hole systems like
Ir17+, particle-hole excitations in noble gases, and difficult transitions such as the 6s → 5d−16s2 optical clock
transition in Hg+. We take the latter system as our test case for the method and obtain very good accuracy (∼1%)
for the low-lying transition energies. The α dependence of these transitions is calculated and used to reinterpret
the existing best laboratory limits on the time dependence of the fine-structure constant.
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I. INTRODUCTION

The combination of configuration interaction and many-
body perturbation theory (CI+MBPT) is a precise and flexible
ab initio method to calculate atomic properties of few-valence-
electron atoms and ions [1]. It treats the valence-valence
electron correlations using CI, while core-valence correlations
are treated using MBPT by adding corrections to the radial
integrals in CI. However, several recent proposals have ne-
cessitated new methods of calculation in systems where holes
play an important role and cannot be treated perturbatively.
In this article we extend the CI+MBPT method to allow
for arbitrary numbers of particles and holes while retaining
the separation of correlation effects that allow us to apply
MBPT.

The CI+MBPT method was first developed to treat neutral
thallium as a three-valence-electron atom, which gave an
accuracy well below 1% for the first few excitation energies [1].
Since then, it has been remarkably successful in treating a wide
variety of two- and three-valence-electron atoms and ions and
even some with four (e.g., [2–5]) and five valence electrons (Cr
II [6]). Generally, as the number of valence electrons increases,
the method becomes less effective, and one must revert to
usual CI and estimate the core-valence correlations some other
way (see, e.g., [7]). This is due to ever-increasing “subtrac-
tion diagrams”: one wishes to use “spectroscopic” orbitals
calculated in the V N or V N−1 approximation, but the MBPT
expansion then contains large one-body diagrams representing
the difference between the Dirac-Fock potentials used to
calculate the orbital and that of the closed-shell core. A V N−M

approximation was recommended in [8] in order to simplify the
MBPT calculation for the core-valence correlations; however,
then one must sacrifice the quality of the initial orbital, which
can be problematic, particularly when treating open-shell
systems.

The problem of large numbers of valence particles becomes
even more acute when treating systems with nearly complete
shells. It is here that the particle-hole CI+MBPT method
presented in this paper can really help since in this case one
may take the Fermi level as being above the open shell and treat
the valence holes of the atom or ion using CI. Such systems
with holes include Ir17+ [9], proposed as an optical clock [10],
as well as less exotic species such as Ni II, which is seen
in quasar absorption spectra [11]. Currently, these systems are
treated as many-valence-electron systems using CI (e.g., [12]),

but the methods presented in this work should allow for more
accurate treatment.

The particle-hole CI+MBPT can also be used for calcu-
lating metastable states of noble gases. Previous works have
calculated low-lying spectra of noble gases using this type
of formalism [13–16]; however, the treatment presented here
is more flexible in that it allows for additional particle-hole
excitations and valence “spectators”.

This flexibility is a great strength of the particle-hole
CI+MBPT method; we can take into account important
excitations of electrons from below the Fermi level using either
CI or MBPT, depending on how important the contribution of
a shell is. As an example, consider the original CI+MBPT
system, neutral thallium [1]. In that work to get good accuracy
the 6s2 electrons had to be included in CI due to their strong
interaction with the valence electron. In effect, Tl was treated
as a three-valence-electron system, while MBPT was used to
get core-valence correlations with shells below 6s2. The cost
was the inclusion of subtraction diagrams since the valence
orbitals were calculated in the V N−1 approximation while
the V N−3 core was frozen at the CI level. With the current
approach, we could keep the Fermi level above the 6s2 shell
(i.e., using V N−1) and still treat the excitations from the 6s2

shell nonperturbatively using particle-hole CI.
In this paper we test our method by calculating low-lying

transitions in the Hg+ ion, important because laser-cooled
Hg+ ions are used for both microwave [17] and optical [18]
frequency standards. Calculations of energy levels, blackbody
radiation shifts, and oscillator strengths were previously
performed using both third-order relativistic many-body per-
turbation theory and the single-double all-order method [19],
but crucially, the optical clock transition was not accessible
using these methods. To lowest order the 6s → 5d−16s2 clock
transition can be described as a particle-hole excitation, with
the valence 6s electron being a spectator. It is precisely this
sort of system that our method is designed to treat.

One important use of the Hg+ optical clock is to constrain
potential drift in the value of the fine-structure constant,
α = e2/�c. Measurements of the frequency ratio of the 199Hg+

and Al+ optical atomic clocks were taken several times
over the course of a year [20]. The Hg+ clock frequency is
highly sensitive to the value of α, while the Al+ is relatively
insensitive. The resulting limit on α̇/α remains the tightest
laboratory constraint on variations of fundamental constants,
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but calculations of the α dependence of the Hg+ transition are
based only on configuration interaction calculations treating
the ion as an 11-valence-electron system [21,22]. In this work
we use the particle-hole CI+MBPT method to calculate the
transition frequencies and α dependence of the low-lying
transitions in Hg+, including the clock transition. We use this
to reinterpret the measurements of the Hg+/Al+ frequency
ratio to obtain updated laboratory limits on α̇/α.

This work is organized as follows. In Sec. II we introduce
the particle-hole CI formalism and compare it against the
usual “electron-only” CI for our Hg+ test case. As expected,
both methods give the same transition energies. We then add
core-valence correlations using MBPT in Sec. III, which shows
that only in the particle-hole formalism does the addition
of MBPT improve the results for Hg+. In Sec. IV we add
some additional MBPT diagrams representing valence-valence
correlations that arise in the particle-hole formalism. Finally,
in Sec. V we calculate the α dependence of the Hg+ transitions.
Atomic units (� = me = |e| = 1) are used throughout.

II. CONFIGURATION INTERACTION WITH HOLES

To start our calculation, we solve the self-consistent Dirac-
Fock equations for the core electrons,

ĥDF|m〉 = εm|m〉, (1)

where

ĥDF = cα · p + (β − 1)c2 − V Ncore (r). (2)

The potential V Ncore includes the nuclear potential (Z/r outside
the nucleus and with finite-size corrections within it) and the
electronic potential with both direct and exchange parts of
the core electrons included in the self-consistent Hartree-Fock
procedure. For the present Hartree-Fock calculation we include
78 core electrons in the configuration [Xe] 4f 14 5d10. Here all
shells are closed, but in general, we can sometimes obtain
better starting orbitals by including a partially filled closed
shell, as was done in previous works (e.g., [6,23]). However, we
must then include MBPT subtraction diagrams (see Sec. III).

We then generate a single-particle basis set |i〉 by diag-
onalizing a set of B splines over ĥDF [24]. The resulting
orbitals include core and valence orbitals and a large number
of virtual orbitals (pseudostates), which we reduce in number
by excluding those with the highest energy.

The many-electron basis is formed from configuration state
functions (CSFs) denoted below with capital letters |I 〉. Slater
determinants are first formed from the orbitals |i〉. All Slater
determinants with fixed angular momentum projection M

corresponding to a configuration are diagonalized over the
Ĵ 2 operator, giving us CSFs with fixed angular momentum J

and projection M .
The many-electron Hilbert space is separated into sub-

spaces P and its complement Q (P + Q = 1). CSFs in the P
space are included in the configuration interaction procedure
directly, while those in the Q space are treated using many-
body perturbation theory. In the CI method the many-electron
wave function ψ is expressed as a linear combination of CSFs

from only the subspace P:

ψ =
∑
I∈P

CI |I 〉. (3)

The coefficients CI are obtained from the matrix eigenvalue
problem ∑

J∈P
HIJ CJ = ECI , (4)

where HIJ is the matrix element of the exact Dirac-Coulomb
Hamiltonian operator H projected onto the model subspace
using the projection operator P̂:

P̂HP̂ =
∑

i

c α · pi + (β − 1)c2 + eiV
Ncore (ri)

+
∑
i<j

eiej

|r i − rj | . (5)

Here i and j run over the valence electrons and holes, and ei

is −1 if i is an electron state (above the Fermi level) and +1 if
it is a hole. The resulting energies E are therefore calculated
with respect to the Fermi level; that is, the closed-shell core
has E = 0.

We introduce a second quantization notation to separate H
into one- and two-body operators (see [2] for details):

H(1) =
∑
ij

{a†
i aj }〈i|ĥCI|j 〉, (6)

H(2) = 1

2

∑
ijkl

{a†
i a

†
j alak}〈ij |r−1

12 |kl〉. (7)

Here a
†
i and ai are electron creation and annihilation operators,

and the brackets {· · · } denote normal ordering with respect to
the closed-shell core.

In previous works all CSFs in the valence space P had
the same number of valence electrons. Our code, however,
allows for additional particle-hole pairs, provided that the total
fermion number is conserved. For example, our calculations
of Hg+ include CSFs based on configurations |6s〉, |5d−16s2〉,
and |5d−26s 6p2〉 (among many others). We express these
using second quantization with respect to the Fermi level;
the Wick contractions required to calculate matrix elements
HIJ were implemented in our atomic code AMBIT [23].

To test our code, we compare our particle-hole CI cal-
culation for Hg+ with a traditional CI calculation. To form
the set of P-space configurations used, we start with the
leading configurations |6s〉, |6p〉, |5d−16s2〉, |5d−16p2〉, and
|5d−16s 6p〉. From these we take single-electron excitations up
to 16spdf and allow an additional hole excitation in only the
5d shell. (The notation 16spdf refers to the highest principal
quantum number for each wave, in this case 1 – 16s, 2 – 16p,
etc. Note that higher orbitals are pseudostates.) We then allow a
second electron excitation up to 10spdf . For the traditional CI
calculation, where the 5d10 shell is taken as valence above the
Fermi level, this is equivalent to allowing single excitations
from the leading configurations up to 16spdf and double
excitations up to 10spdf , but ensuring at least eight electrons
remain in the 5d shell. The resulting CI matrices are rather
large; for example, the J = 5/2 odd-parity matrix includes
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TABLE I. Configuration interaction calculations of Hg+ using
traditional CI (electrons only) and the particle-hole CI. E is the
valence binding energy, and � is the excitation energy relative to
the 5d10 6s ground state. All energies are in cm−1.

Electrons only Electrons and holes

Level J E � E �

6s 2S 1/2 −9085835 0 −149653 0
5d−1 6s2 2D 5/2 −9047981 37854 −111840 37814

3/2 −9032845 52990 −96704 52949
6p 2P o 1/2 −9036118 49717 −100187 49466

3/2 −9027966 57869 −92112 57541
5d−1 6s 6p 5/2 −9006616 79219 −70704 78949
5d−1 6s 6p 7/2 −9001801 84034 −65907 83746

5/2 −9001291 84544 −65396 84257
3/2 −8999704 86131 −63846 85807

191 511 CSFs. However, the CI configuration set (P space)
cannot be said to be saturated even in this case.

We present the comparison in Table I. The particle-hole
method returns the single-electron binding energy of each
low-lying level. The electron-only CI method returns the
binding energy for 11 electrons (i.e., back to the Fermi level
below 5d10). Both methods should give exactly the same
level spacings; in fact, they are slightly different due to small
numerical errors in the integration routines. Thus it is here that
we see the first advantage of the particle-hole CI method:
it is numerically stable because it does not rely on large
cancellation of binding energies.

III. CI+MBPT

Our implementation of the CI+MBPT method [1] is
described in detail elsewhere [2]. Omitting mathematical
details, we write the exact Hamiltonian H in the subspace
P using the Feshbach operator, which yields the exact energy
when operating on the model function �P = P̂�:

[P̂HP̂ + �(E)]�P = E�P . (8)

We can then generate a perturbation expansion for � in the
residual Coulomb interaction, which to second order can be

written in matrix form as

�IJ =
∑
M∈Q

〈I |H |M〉〈M|H |J 〉
E − EM

, (9)

where I and J enumerate CSFs from the model subspace P .
The final equation of the CI+MBPT method can be expressed
as

∑
J∈P

(
HIJ +

∑
M∈Q

〈I |H |M〉〈M|H |J 〉
E − EM

)
CJ = ECI . (10)

Thus the method includes correlations with configurations
in the Q space by changing the matrix elements in the
P-space CI calculation. In practice, we simplify this procedure
by modifying the one- and two-particle radial integrals in
Eqs. (6) and (7). A diagrammatic technique for calculating
� is presented in [2] along with explicit expressions for the
radial integrals.

In Table II we compare CI+MBPT calculations using the
traditional CI method and the particle-hole method. In both
CI calculations we consider orbitals below 5d10 as frozen
(i.e., there are no configurations with holes in the 5s2, 5p6,
4d10, and 4f 14 shells or those below them). Correlations with
the frozen core are therefore treated using MBPT; excited
orbitals up to 30spdfgh are included in the MBPT diagrams.
�(1) calculations include MBPT modifications to the one-body
integrals of (6); �(1,2) includes MBPT in both one-body and
the two-body integrals (7), while �(1,2,3) also includes effective
three-body core-valence integrals that occur in the second
order of MBPT (see [23] for details).

Unlike in the pure CI calculations presented in Table I, there
is no reason in this case that the two calculations should give
the same result. Indeed, one of the purposes of this work is to
avoid the large subtraction diagrams in �(1) that are partially
canceled by terms in �(2) (see [6] for details). Subtraction
diagrams are not present in the particle-hole calculation since
in that case ĥCI = ĥDF and there are no off-diagonal matrix
elements of (6) (at least until MBPT corrections are included).
Table II shows that the accuracy of the calculation of low-lying
levels is improved by MBPT in the particle-hole calculation
but not in the traditional electron-only calculation.

TABLE II. CI+MBPT calculations of excitation energies for Hg+ using traditional CI (electrons only) and the particle-hole CI. Calculations
including MBPT in one-body and two-body integrals are labeled �(1) and �(1,2), respectively, while �(1,2,3) includes effective three-body
interactions. All energies are in cm−1.

Electrons only Electrons and holes

Level J CI �(1) �(1,2) �(1,2,3) �(1) �(1,2) �(1,2,3) Expt.

6s 2S 1/2 0 0 0 0 0 0 0 0
5d−1 6s2 2D 5/2 37814 17957 28432 32205 27197 34683 34721 35515

3/2 52949 30698 44362 48001 41736 50095 50027 50556
6p 2P o 1/2 49466 49328 49356 51137 53494 52010 51908 51486

3/2 57541 59358 55272 59952 62948 61297 61188 60608
5d−1 6s 6p 5/2 78949 60024 69157 74890 71945 78727 78975 79705
5d−1 6s 6p 7/2 83746 64567 74422 79825 77009 83164 83206 84212

5/2 84257 65021 75326 80413 77442 83606 83727 84836
3/2 85807 66882 76143 81850 79169 85142 85136 86178
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a α b

FIG. 1. One-body valence-valence subtraction diagram �
(1)
val .

IV. MBPT CORRECTIONS TO VALENCE-VALENCE
INTEGRALS

In previous implementations of CI+MBPT, the Q space
is defined to include all configurations with holes in the core.
Since the valence space does not include holes, this was a clear
delineation. Now that we can include configurations with holes
in the CI calculation, we must redefine the Q space. In this
work we take the Q space to include any configurations with
holes below the 5d10 shell (not including it) or with electron
excitations above the valence space.

The particle-hole CI+MBPT method then allows for an
additional type of diagram that has no additional core holes
but does have electron excitations outside the valence space.
At second order in the residual Coulomb interaction these
valence-valence diagrams occur in the one-body, two-body,
and effective three-body operators, as shown in Figs. 1–3. In
these diagrams the external lines marked a,b, . . . are valence
electrons or holes, while the internal lines marked α, β are
virtual electron orbitals outside the CI valence space. Diagrams
with external field lines [Figs. 1 and 2(b)] are known as
subtraction diagrams since the one-body external field operator
is ĥCI − ĥDF. In the current work these diagrams are zero since
ĥCI = ĥDF. Note that hole-hole diagrams, where the virtual
electron orbitals (α, β) are replaced with nonvalence holes,
are included already; for example, Fig. 3(f) in [2] is Fig. 2(a)
with α and β replaced with hole states.

Including valence-valence diagrams allows us to signifi-
cantly reduce the size of the CI calculation. Table III shows
the results of our smaller CI calculation in which, from
the same set of leading configurations used in Secs. II
and III, we allow double-electron excitations up to 10spdf and
single-hole excitations in only 5d (as before). In this case the
matrix size for the J = 5/2 odd-parity calculation is 57 879,
much smaller than in the previous calculations which included
additional single-electron excitations up to 16spdf .

Table III shows that including valence-valence diagrams
can bring smaller CI+MBPT calculations more in line with
the larger ones, although clearly this can overshoot the
experimental values. This may point to the possibility that a
“converged” CI calculation using second-order MBPT with no

b

a α c

β d

(a)

b

a α c

d

(b)

FIG. 2. Two-body valence-valence diagrams �
(2)
val . The subtrac-

tion diagram (b) represents four diagrams, with the complementary
diagrams obtained by reflection in the horizontal and vertical planes.

c

b

a d

α e

f

FIG. 3. Effective three-body valence-valence diagram �
(3)
val .

valence-valence diagrams might be similarly discrepant with
the experiment. In any case the results strongly suggest that
valence-valence diagrams can be of help in cases where the
CI matrix grows very rapidly and it is not possible to even
approach convergence.

V. DEPENDENCE ON THE FINE-STRUCTURE CONSTANT

We have calculated the dependence of the levels on the
fine-structure constant α, usually expressed with the q value
defined by

ω(α) = ω0 + qx, (11)

where x = (α/α0)2 − 1 and ω0 is the laboratory energy, with
α given by its present-day value α0. To calculate q we vary α

directly in the code and extract the numerical derivative over x.
Our results are presented in Table IV. The value quoted for

this work is the average of two methods: the large CI+�(1,2,3)

from Sec. III and the CI+�(1,2,3)+�
(2,3)
val calculation of Sec. IV;

both calculations give energies that are close to experiment and
q values that are highly consistent. The error quoted is roughly
half the difference between the two calculations: these should
be taken as only indicative errors.

Of particular interest is the 6s 2S1/2–5d−1 6s2 2D5/2 tran-
sition at ω = 35 515 cm−1, which is the reference transition
for the NIST Hg+ clock [18]. This transition was compared
with the 37 93 cm−1Al+ clock [25,26] several times over the
course of a year, and the frequency ratio νAl+/νHg+ was found
to vary by (−5.3 ± 7.9) × 10−17/yr [20]. With the q value
given in Table IV for the Hg+ clock transition and taking
the Al+ q value from Ref. [27], we find that the sensitivity
of the ratio to a fractional change in α is −2.861 (34).

TABLE III. Particle-hole CI+MBPT calculations of Hg+ using a
smaller basis for CI (10spdf ) and �(1,2,3) (third column). The effect
of adding �val is shown in the fourth and fifth columns, which add
�

(2)
val [Fig. 2(a)] and �

(2,3)
val [Figs. 2(a) and 3], respectively. All energies

are in cm−1.

Level J �(1,2,3) +�
(2)
val +�

(2,3)
val Expt.

6s 2S 1/2 0 0 0 0
5d−1 6s2 2D 5/2 32418 31940 35121 35515

3/2 47840 47201 50446 50556
6p 2P o 1/2 53279 53654 53693 51486

3/2 62671 63093 63188 60608
5d−1 6s 6p 5/2 79221 80806 85917 79705
5d−1 6s 6p 7/2 83211 83742 88486 84212

5/2 83877 84534 89031 84836
3/2 85018 85626 90558 86178
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TABLE IV. Calculated dependence on the fine-structure constant
q (cm−1).

E(cm−1) q (cm−1)

Level J Expt. This work Other

6s 2S 1/2 0 0
5d−1 6s2 2D 5/2 35515 −50667(600) −56670a

−52200b

3/2 50556 −35960(600) −44000a

−37700b

6p 2P o 1/2 51486 15907(600)
3/2 60608 28958(900)

5d−1 6s 6p 5/2 79705 −35788(400)
5d−1 6s 6p 7/2 84212 −34233(400)

5/2 84836 −33158(300)
3/2 86178 −32654(700)

aReference [21].
bReference [22].

Therefore we extract an updated limit on time variation of
α of α̇/α = (−1.8 ± 2.8) × 10−17/yr.

VI. CONCLUSION

We have presented a particle-hole CI+MBPT theory that
provides more flexibility than previous versions. In particular,

it should be able to accurately calculate systems that are better
treated with holes, access particle-hole excitations, and give
us the choice to treat correlations with filled core shells either
perturbatively using MBPT or nonperturbatively using CI. We
have applied the method to low-lying transition energies in
Hg+, including the optical clock transition, which to lowest
order is a particle-hole excitation.

The current limitation of our method is in the energy
denominators of Eq. (9). In keeping with our previous
CI+MBPT methods, we have employed Brillouin-Wigner
perturbation theory (see [2] for details), but this cannot be an
accurate treatment for all levels. Methods to treat the energy
denominators to higher order have been developed, such as
including ∂�/∂E [1] or simple addition of an offset in the
denominator [23,28], and these may improve our accuracy
in the future. The particle-hole CI formalism can also be
combined with other methods used to calculate core-valence
correlations, such as the all-order correlation potential [29,30]
or singles-doubles coupled-cluster [31] methods.
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