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Atomic orientation driven by broadly-frequency-modulated radiation: Theory and experiment
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We investigate magnetic resonances driven in thermal vapor of alkali-metal atoms by laser radiation broadly
modulated at a frequency resonant with the Zeeman splitting. A model accounting for both hyperfine and Zeeman
pumping is developed, and its results are compared with experimental measurements performed at relatively weak
pump irradiance. The interplay between the two pumping processes generates intriguing interaction conditions,
often overlooked by simplified models.
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I. INTRODUCTION

Optical pumping processes in atomic samples [1] have been
the subject of intensive theoretical and experimental studies
since the 1960s [2] and have been used in several applications,
including laser cooling [3], molecular spectroscopy [4], and
atomic magnetometry. Atomic magnetometers are nowadays
available as commercial devices, but further research is
presently being carried out to optimize the performance, as
well as to better understand phenomena and mechanisms
which subtly act in this kind of apparatus.

The interest in precise and sensitive magnetic field mea-
surements led to a revival of the research in magnetometry,
particularly in the optical-atomic sensors. Optical magnetome-
ters were recently subject to impressive advances in terms of
sensitivity. The possibility of absolute field measurements, the
low operation costs and power consumption, the robustness,
and the potential for miniaturization let these devices compete
with superconducting quantum interference devices, tradition-
ally regarded as state-of-the-art magnetometric sensors.

The typical working principle of an atomic optical mag-
netometer [5] is based on the preparation of an atomic state
using optical pumping and on the detection of its time evolution
driven by the magnetic field under measurement. Some recent
works on atomic magnetometry have addressed time-domain
operation techniques, where the atomic state is first prepared
and then is followed in its free evolution within the decay
time [6]. In contrast, most of the approaches reported in the
literature are based on a frequency-domain detection [7]. In
this case, a steady-state condition is reached by means of a
periodic regeneration of the atomic state to be analyzed. This
regeneration is obtained by applying an appropriate optical
radiation with some parameter periodically modulated in
resonance (or near resonance) with the evolution of the atomic
state. Experiments have been reported where the modulated
parameter of the pump radiation is its amplitude [8–10], its
polarization [11–14], or its optical frequency [15,16]. Different
macroscopic quantities have been chosen to be measured as
well, such as the absorption [12], the polarization rotation
[17–19], or (in similar experiments based on solid-state
samples) the fluorescence [20], all opening an indirect way
to follow the vapor magnetization.

Optical pumping is often applied in the regime of strong
intensity where power broadening and nonlinear dependence
on the laser intensity occur. Studies in the low-intensity regime
have also been reported [21].

Our study concerns a setup developed for precise atomic
magnetometry, which here is operated in a condition of weak
excitation intensity. The atomic sample is illuminated by two
collinear laser beams. One of them (modulated beam, MB in
the following) is frequency modulated and circularly polarized,
and the second one (detection beam, DB) is linearly polarized
with the polarization plane rotated by the time-dependent
circular birefringence of the sample. In other terms, the
MB induces a magnetic dipole that precesses at the Larmor
frequency, and the dipole component parallel to the beams is
monitored.

The MB is broadly modulated in frequency; thus both the
ground hyperfine states of the atomic vapor are excited with
nonvanishing rates. As far as we know, the application of
this method has never been investigated by other researchers.
Such broad modulation gives rise to an important interplay
between hyperfine and Zeeman pumping that has advantages
in optical magnetometry [22]. The proposed excitation scheme
not only simplifies the setup (the pump-repump scheme is often
applied as an alternative) but has the potential to significantly
increase the signal without increasing the magnetic-resonance
width, particularly at higher intensities, with obvious practical
implications.

In this work we address mainly the aspects related to the
wide MB frequency modulation, restricting the investigation
to a regime of relatively weak intensity, deferring the analysis
of the intense pumping to another study. We develop a
model considering the MB interaction with the whole level
structure of the D1 Cs transitions: a point which is often
overlooked in the literature. We obtain a modified version of
the Larmor equation for the magnetization created in a given
ground-state Zeeman multiplet. An analytical expression for
the magnetization amplitude, pointing out the dependence on
the MB modulation parameters, is found, and it matches very
well with the experiment.

This paper is organized as follows: in Sec. II we briefly
describe the experimental apparatus; in Sec. III the theoretical
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FIG. 1. Schematics of the setup. WFG, waveform generator; D1L,
pumping laser (MB) at 894 nm; D2L (DB), detection laser at 852 nm;
A, attenuator; C, single mode, polarization maintaining 2 × 2 fiber
coupler; L, lens, BS, beam splitter, Pol, polarizer; WP, multiorder
wave plate acting as quarter-λ plate for 894 nm and as a full-λ
plate for 852 nm; NF, neutral filter; Cs-Ne, cesium cell with buffer
gas; IF, interference filter stopping 894 nm; W, Wollaston analyzer;
BP, balanced polarimeter for polarization rotation detection, which
includes photo diodes and a differential transimpedance amplifier;
LIA, lock-in amplifier. In the monitor (MNT) channel, Cs (the cesium
vacuum cell) and FP (the Fabry-Pérot interferometer) are used to
monitor the radiation parameters.

model is reported. Finally, in Sec. IV we discuss and compare
the theoretical and the experimental results.

II. EXPERIMENTAL SETUP

A detailed description of the experimental setup is given
in Refs. [18,22]. Briefly, Cs vapor is contained in a sealed
cell, where buffer gas is added to counteract time-of-flight line
broadening of the magnetic resonances and to increase the
optical pumping effect. The Cs atoms are optically pumped by
a circularly polarized, near-resonant laser (MB) light at 894 nm
(D1 Cs line). The cell is at room temperature and in a highly
homogeneous magnetic field. A balanced polarimeter enables
the detection of the atomic precession, which causes the
polarization rotation of a linearly polarized beam (DB), nearly
resonant with the Fg = 4 to Fe = 3, 4, 5 group of transitions
belonging to the Cs D2 line. The setup contains two channels
(see Fig. 1), which in magnetometric applications [23–25] are
used to reject common-mode magnetic noise and to measure
local magnetic variations by means of a differential method.
In the present work one of the channels is used to detect the
atomic spin precession, while the other one (monitor, MNT) is
used for precise determination of the DB and MB intensities
and absolute frequencies. The DB radiation is attenuated down
to 10 nW and kept at a constant frequency, blue detuned by
about 2 GHz with respect to the D2 transition set starting
from Fg = 4. The MB radiation, which in magnetometric
applications was in the milliwatt range, here is attenuated down
to 100 nW, and its optical frequency is made time dependent
through a junction current modulation at a frequency matching

(or ranging around) the Larmor frequency. Both the MB and
DB have a circular beam spot about 1cm2 in size.

The optical frequency of the MB is monitored by the MNT
channel, where the light is sent to a fixed-length Fabry-Pérot
interferometer and to a secondary Cs cell without buffer gas.
Both the absorption and the interferometric signals are detected
by photodetection stages with a bandpass largely exceeding the
MB modulation frequency. The two diagnostics provide both a
relative and an absolute measure of the instantaneous detuning
of the MB frequency. The (fixed) DB optical frequency is mon-
itored as well, and it is passively stabilized within 100 MHz.

A sinusoidal signal modulates the optical frequency of
the MB at the Larmor frequency and references a lock-in
amplifier detecting the polarization rotation of the DB. The Cs
cell is placed in a bias magnetic field of about 600 nT resulting
from the partial compensation of the environmental field.
Such bias field results in a Cs magnetic resonance centered
at about 2 kHz. The amplitude of the magnetic resonance is
registered for various amplitudes of the modulation signal
and as a function of the mean MB optical frequency. To this
aim the MB optical frequency is slowly scanned by adding a
ramp to its modulation signal.

III. MODEL

To develop a theoretical model that describes the time evo-
lution of the monitored magnetization, we consider the whole
level structure of the 133Cs D1 line. With reference to Fig. 2,
the free Hamiltonian in the rotating-wave approximation frame

Δe

Δg

−δ

ωLASER ω0

Fg = 4

Fg = 3

Fe = 3

Fe = 4

FIG. 2. Simplified level scheme of the Cs D1 line. The frequency
of the Fg = 3 → Fe = 4 transition is labeled ω0. The instantaneous
detuning δ(t) of the MB is outlined. Notice that δ is varied by a large
amount so that the MB radiation can become resonant with each
transition. The DB radiation monitors the Fg = 4 magnetization; it is
resonant with the D2 line and is not shown.
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reads

H0 = �g �g4 + δ �e4 + (δ − �e) �e3, (1)

where the projector �g4 is defined as
∑

M |Fg = 4,M〉〈Fg =
4,M|. Similar expressions hold for the other projectors.

To express the interaction with the laser field it is better to
adopt a block-matrix notation,

Hint =

⎛
⎜⎜⎜⎜⎝

0 0 W
†
e4,g4 W

†
e4,g3

0 0 W
†
e3,g4 W

†
e3,g3

Wg4,e4 Wg4,e3 0 0

Wg3,e4 Wg3,e3 0 0

⎞
⎟⎟⎟⎟⎠, (2)

where each matrix element is a submatrix defined using
the projectors. For instance, W

†
e4,g4 = −�e4 d · ε �g4 E0,

Wg4,e4 = −�g4 d · ε∗ �e4 E0, etc. Here ε is the laser polar-
ization versor, E0 is the amplitude of the laser electric field,
and d is the atomic dipole moment.

We need all these blocks in our model because the
laser modulation can be very broad and during the periodic
frequency sweep both the ground states may be resonantly
excited.

The density operator has a similar block-matrix form,

ρ =

⎛
⎜⎝

ρe4 ρe4,e3 ρe4,g4 ρe4,g3

ρe3,e4 ρe3 ρe3,g4 ρe3,g3

ρg4,e4 ρg4,e3 ρg4 ρg4,g3

ρg3,e4 ρg3,e3 ρg3,g4 ρg3

⎞
⎟⎠. (3)

The blocks are defined in the manner described above. The
diagonal blocks ρe4,ρe3,ρg4, and ρg3 contain both the level
populations and the Zeeman coherences. The blocks ρe4,e3 =
ρ
†
e3,e4 and ρg4,g3 = ρ

†
g3,g4 represent the hyperfine coherences,

while the remaining blocks represent the optical coherences.
We assume that the hyperfine coherences can be neglected

(secular approximation), and with standard methods we write
the Bloch equation:

ρ̇ = −i[H0 + Hint,ρ] + LD ρ, (4)

where the Liouvillian LD takes into account the effects
of relaxation processes like spontaneous emission and/or
collisions.

As the magnetization is monitored by the DB tuned in
the vicinity of the Fg = 4 → Je = 3/2 transition, the signal
is substantially given by the |Fg = 4〉 state. We assume that
the effect of the DB is very weak and its contribution to
the Hamiltonian can be neglected. Hence the Bloch equation
(4) contains only the MB interaction. To some extent, this
approximation is relaxed in the following (see the Appendix).

After some algebra and introducing the irreducible compo-
nents [2,26]

ρg4 =
2 Fg4∑
k=0

k∑
q=−k

mk,q Tk,q(g4) (5)

in the hypothesis of the weak-laser-power regime, we find the
final equation for the ground-state Fg = 4 orientation:

ẋ = i
ωL√

2

⎛
⎝−√

2(cos θ + γ ) sin θeiφ 0
sin θe−iφ −√

2γ sin θeiφ

0 sin θe−iφ
√

2(cos θ − γ )

⎞
⎠ x

+P (t)

⎛
⎝0

1
0

⎞
⎠ = A x + P (t)w, (6)

where the vector x is defined as x = (m1,−1,m1,0,m1,1).
The model produces equations for both the magnetization

(orientation) and the alignment; however, in this work we
discuss only the dynamics of the orientation.

The pumping rate P (t) is reported in the Appendix with
full derivation details. Notice that Eq. (6) is essentially
equivalent to the Larmor equation with an additional forcing
term, because Mx ∝ (m1,1 − m1,−1), My ∝ i(m1,1 + m1,−1),
and Mz ∝ m1,0.

The Larmor frequency is ωL = gFgμBB. In our experiment
ωL is in the kilohertz range, while the relaxation rates
(longitudinal and transverse) are in hertz range, so in Eq. (6)
we used a single rate γ . The geometry considered in the model
is sketched in Fig. 1.

The matrix of coefficients in Eq. (6) can be diagonalized by
a Wigner rotation [27] matrix U so that

U † AU = AD =

⎛
⎜⎝

−iωL − γ 0 0

0 −γ 0

0 0 iωL − γ

⎞
⎟⎠, (7)

and the full solution is

x(t) = UeAD tU † x(0) + U

∫ t

0
eAD(t−t ′)P (t ′)dt ′ U †w. (8)

After a time interval much longer than 1/γ , the free solution
fades away, and the steady-state orientation xss is determined
by the last term. Introducing the Fourier components of the
pumping term

P (t) =
+∞∑

n=−∞
Pne

i n� t , (9)

where � ≈ ωL is the modulation frequency, one has

xSS =
+∞∑

n=−∞
Pn

(
U

1

i n� − AD

U †
)

w ei n�t . (10)

We are interested in the z component of the magnetization,
so after some straightforward algebra we find

MSS
z (t) ∝ Re(P0C0) +

+∞∑
n=1

[Re(PnCn + P−nC−n) cos n�t

− Im(PnCn − P−nC−n) sin n�t]

≡ a0 +
∑

n

[an cos n�t + bn sin n�t], (11)
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where

Cn = sin2 θ

2

(
1

i n� + γ + iωL

+ 1

i n� + γ − iωL

)

+ cos2 θ

i n� + γ
. (12)

In the experiment, the lock-in amplifier detects the ampli-
tude of the first harmonic (n = 1), so we have to evaluate the

term
√

a2
1 + b2

1. The coefficients Pn satisfy P−n = P ∗
n for each

n. Additionally, for odd values of n we have P−n = P ∗
n =

−Pn, meaning that for n = 1 we can assume P1 = iR1 and
P−1 = −iR1 (R1 is a real quantity reported in the Appendix).

Using the condition � ≈ ωL and θ = π/2, φ = 0 (given by
the experimental conditions), after some algebra one finds

A1 ≡
√

a2
1 + b2

1 = 1

γ 2 + (� − ωL)2
|R1|. (13)

Equation (13) has a clear physical meaning: at low laser power
the response of the system is factored out. The first factor gives
the usual resonant behavior when the modulation frequency �

is swept over the magnetic resonance line. The second term
R1 contains the details of the laser frequency modulation and
the level structure of the D1 lines.

The optical frequency of the MB is sinusoidally modulated
at the magnetic resonance frequency, so that � � ωL and the
laser detuning δ from the D1 Fg = 3 −→ Fe = 4 transition
(see also Fig. 2) is

δ(t) = δ0 + � sin ωLt. (14)

It follows that R1 is a function of both δ0 and �. Moreover it
depends also on the width of the D1 one-photon transition
G = 
/2 + 
c + 
D , where 1/
 is the radiative lifetime
of the excited D1 multiplet, 
c represents the broadening
due to collisions, and 
D is the Doppler broadening. Due
to the presence of buffer gas, the excited D1 states get
depolarized with an additional rate 
′

c, which we added as a
phenomenological dependence in R1 in a normalized form,
r = 
′

c/
. Finally, to model the influence of the DB, a
parameter α, describing a global population imbalance of the
two ground hyperfine states, is also introduced.

The Appendix contains a full derivation and discussion of
the explicit form of R1, as well as a detailed definition of the
parameter α.

IV. RESULTS

In this section we report experimental measurements
obtained in different regimes and compare them with the
theoretical profiles.

Besides atomic constants, the model contains several
parameters (δ0, �, r , and G) fixed by the experimental
conditions and only one quantity, α, which is a free parameter.
In our conditions 
 ≈ 5 MHz, and the broadening due to
collisions is dominant, as 
c ≈ 500 MHz at 90 Torr of He
and 
D ≈ 200 MHz; thus we use G = 0.5 GHz in almost all
the simulations.

Concerning r , it has been known since the 1960s [28,29]
that the collisions with the buffer-gas atoms are effective in
depolarizing the D2 excited states, while perturbing weakly the
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FIG. 3. Comparison of theoretical and experimental signals as a
function of δ0/�g in a regime of small modulation. For both plots the
following values have been used in the model: 2� = 0.5 GHz, r =
0.5, α = 0.25, �e = 1.1 GHz, and �g = 9.2 GHz. The plots show
magnetic resonance amplitudes as obtained with (a) low buffer-gas
pressure (2 Torr Ar) and (b) high buffer-gas pressure (90 Torr Ne).
Correspondingly, G = 200 MHz and G = 500 MHz are used in the
simulations. In (b) we also report for comparison the model output
obtained with α = 0.

D2
1P1/2 states. Moreover, our theoretical results do not depend

strongly on the value of r , and we have assumed r = 0.5 in all
the simulations.

The only free parameter, α, is chosen to obtain the best
correspondence between the measured and simulated signals.
As shown below, a value of α ≈ 0.25 leads to a good
comparison, a clear indication that, in spite of its very low
power, DB has a not negligible influence.

As for the modulation amplitude �, it has to be compared
to �g , and three regimes can be identified: small (2� 
 �g),
intermediate (2� ≈ �g), and large (2� � �g) modulation
amplitudes. In the following we discuss these three regimes.

Figure 3 shows the signal obtained for � = 0.5 GHz. As
predicted by Eq. (A15), the four D1 transitions give eight
peaks in R1, separated into two groups around the positions of
the two hyperfine ground states, corresponding to δ0/�g ≈ 0
and δ0/�g ≈ 1. These peaks are well resolved in conditions
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FIG. 4. Comparison of theoretical and experimental signals as a
function of δ0 in the intermediate regime. The following values have
been used: G = 0.5 GHz, 2� = 5.6 GHz, 
′

c/
 = 0.5, α = 0.25,
�e = 1.1 GHz, and �g = 9.2 GHz.

of small collisional broadening, as can be seen in Fig. 3(a).
Here the experimental signal is recorded with a lower buffer-
gas pressure giving a nominal 
c ≈ 18 MHz, so to compare
we used the value G = 200 MHz. Increasing the collisional
broadening up to 0.5 GHz, some peaks overlap, as can be seen
in Fig. 3(b).

In all the plots, we normalize to 1 the height of the
leftmost peaks, both measured and simulated. The value of
α is chosen in such a way to reproduce the rightmost peak’s
height matching the experimental observation. With α = 0
the right peak is four times higher than the first one [see the
green dashed line in Fig. 3(b)]. Good agreement between the
measured and simulated resonance amplitudes is found for
α ≈ 0.25.

It is remarkable that when the MB is mainly resonant with
the Fg = 3 transitions (e.g., δ0 ≈ −�), the recorded signal
has a peak value comparable with the one obtained with
δ0 ≈ �g , in spite of the fact that the measured quantity is
the magnetization in the Fg = 4 ground state. At δ0 ≈ −�,
the MB causes a strong hyperfine pumping towards the
Fg = 4 state. Thus, despite the fact that the laser is not in
resonance with the Fg = 4 sublevels, a high degree of Zeeman
pumping is observed. Thus the leftmost peak appearing in the
plot corresponds to an interaction condition where the MB
produces a high-amplitude magnetic resonance while weakly
perturbing the hyperfine ground state where the magnetization
is induced. This interaction regime has been successfully used
(in a regime of stronger MB intensity) for high-sensitivity
magnetometry [22].

As shown in Fig. 4, the model reproduces with good
accurateness the signal behavior also in the intermediate
regime where 2� ≈ �g . In this case, the MB may resonantly
excite either one or both of the ground states simultaneously,
which happens for δ0/�g ≈ 1/2. Good agreement between
the theoretical and experimental results is obtained while
keeping the same values of the parameters. In this case the
eight components merge into four peaks of comparable height
and nearly symmetric shape.

0.0

0.5

1.0

1.5

2.0

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5
δ0/Δg

FIG. 5. Comparison between theoretical and experimental sig-
nals as a function of δ0 in the regime with 2� � �g . The following
values have been used: G = 0.5 GHz, 2� = 20.0 GHz, 
′

c/
 = 0.5,
α = 0.20, �e = 1.1 GHz, and �g = 9.2 GHz.

The results corresponding to the third regime, where
2� exceeds �g , are shown in Fig. 5. Here some technical
limitations prevent the possibility to extend the scan at higher
values of δ0, so that the rightmost peak corresponding to
Leg [see Eq. (A3d)] is not recorded. The leftmost peak
has a maximum at δ0 ≈ −�, according to what is expected
from Eq. (A3). The peaks observed experimentally have an
asymmetric shape more evident at large values of �; this
feature is well reproduced by the model. On the other hand,
similar to what appears in Fig. 3, some discrepancies emerge
more visibly at δ0 ≈ �g . There is experimental evidence that
the DB, in spite of its very weak intensity, is responsible for
these minor deviations: those discrepancies actually depend
on the intensity and on the detuning of DB, becoming more
evident under conditions of stronger interaction.

V. CONCLUSION

A model is developed to describe the behavior of magnetic
resonances measured in cesium vapor in an experiment where
a weak-intensity laser radiation tuned to the D1 transitions
is broadly frequency modulated. Such modulation makes the
laser-atom interaction occur in a condition where both the
hyperfine ground levels are excited. In the approximation
of weak intensity, a multipole expansion analysis enables
an accurate evaluation of the measured quantity that is the
time-dependent magnetization of atoms in the Fg = 4 state.
A comparison with the experiment is made in three regimes,
where the modulation depth is smaller than, comparable to,
or larger than the ground-state hyperfine splitting. Good cor-
respondence is found, and the model reproduces satisfactorily
the recorded features with the requirement of tuning only
one free parameter (α). This parameter is phenomenologically
introduced to account for an imbalance in the populations of
the Fg = 3 and Fg = 4 states that is induced by the detection
radiation.
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APPENDIX: DERIVATION OF THE PUMPING TERM

Rewriting Eq. (4) for each block of ρ and assuming the
adiabatic approximation [30] for the optical coherences, for
instance, we find

ρe4,g4 = i

G + i(δ − �g)
[ρe4,e4 W

†
e4,g4 − W

†
e4,g4 ρg4,g4] (A1)

and similar expressions for the other optical coherences, which
we do not report explicitly. In (A1) G is the width of the D1

one-photon transition determined as G = 
/2 + 
c (1/
 is
the lifetime of the excited D1 multiplet, and 
c represents
additional broadening due to collisions). Finally, δ is the
laser detuning from the Fg = 3 → Fe = 4 transition (see also
Fig. 2).

Substituting expressions like (A1) in the equations for the
diagonal blocks of ρ, we find

ρ̇e4 = −
ρe4 + Lcoll(ρe4)

− i[D0W
†
e4,g3Wg3,e4 + DgW

†
e4,g4Wg4,e4,ρe4]

−{L0W
†
e4,g3Wg3,e4 + LgW

†
e4,g4Wg4,e4,ρe4}

+ 2L0W
†
e4,g3 ρg3 Wg3,e4 + 2LgW

†
e4,g4 ρg4 Wg4,e4,

(A2a)

where Lcoll takes into account the collision effects in the
excited state. We assume that Lcoll is diagonal and quenches
the multipoles with k � 1 (see below).

Similarly, one obtains

ρ̇g4 = −γρg4 − i[−μ · B,ρg4]

− i[DgWg4,e4W
†
e4,g4 + DegWg4,e3W

†
e3,g4,ρg4]

−{LgWg4,e4W
†
e4,g4 + LegWg4,e3W

†
e3,g4,ρg4}

+ 2LgWg4,e4 ρe4 W
†
e4,g4

+ 2LegWg4,e3 ρe3 W
†
e3,g4 + Rs.e. (A2b)

Analogous expressions are obtained for the other diagonal
blocks of ρ. From Eq. (A2) we can infer that the laser gives
a Hamiltonian contribution (the term with the commutator) as
well as a relaxation (the term with the anticommutator) to the
dynamics of the excited- and ground-state multiplets. In (A2)
we have introduced the abbreviations

1

G + iδ
= L0 − iD0, (A3a)

1

G + i(δ − �e)
= Le − iDe, (A3b)

1

G + i(δ − �g)
= Lg − iDg, (A3c)

1

G + i(δ − �g − �e)
= Leg − iDeg, (A3d)

and Rs.e. represents the spontaneous emission contributions,
whose explicit expressions in terms of irreducible components
(see below) are reported by Dumont [31]. In addition, we
neglect the excited-state dynamics due to the magnetic field

and add a phenomenological relaxation constant γ in the
ground state.

To proceed further we assume the low-laser-power limit
and completely unpolarized ground states

W → ηW, (A4a)

W † → ηW †, (A4b)

ρe4 = η2ρ
(2)
e4 + O(η4), (A4c)

ρe3 = η2ρ
(2)
e3 + O(η4), (A4d)

ρg4 =
(

1

2
− α

)
�g4

2Fg4 + 1
+ η2ρ

(2)
g4 + O(η4), (A4e)

ρg3 =
(

1

2
+ α

)
�g3

2Fg3 + 1
+ η2ρ

(2)
g3 + O(η4), (A4f)

where η is a very small parameter quantifying the approxima-
tion. Here the factors 1/2 ± α (−1/2 � α � 1/2) account, in
a phenomenological way, for the pumping effects of the DB.
When α = 0, the DB is an ideal probe laser not disturbing
the ground-state dynamics. A positive value of α denotes an
increase of the Fg = 3 global population and a decrease of the
Fg = 4 one. A negative value of α would denote the opposite.
Introducing the population imbalance in such a simplified way
corresponds to neglecting the Zeeman sublevel structure of the
ground states and the details of their interaction with the DB:
in other words, α �= 0 reproduces only a global population
imbalance between the two hyperfine ground states while
excluding any polarization effect.

To proceed it is better to introduce the irreducible compo-
nents [2,26] of each density matrix block

ρ
(2)
g4 =

2Fg4∑
k=0

k∑
q=−k

(
ρ

(2)
g4

)
k,q

Tk,q(g4), (A5)

where the irreducible tensor operators

Tk,q(g4) = √
2k + 1

∑
M

(−1)Fg4−M

(
Fg4 Fg4 k

M q − M −q

)

× |Fg4M〉〈Fg4M − q| (A6)

are expressed using the Wigner 3j coefficients. Similar
expressions can be written for the remaining blocks.

The effect of collisional damping in the excited state is
modeled as

[
Lcoll

(
ρ

(2)
e4

)]
k,q

= −
′
c (ρ(2)

e4 )k,q k � 1. (A7)

The ground-state feeding by spontaneous emission de-
scribed by Rs.e. in Eq. (A2b) assumes a simple form for the
irreducible components [31],

[Rs.e.(e → g)]k,q = ξk(Je,Fe,Jg,Fg) (ρe)k,q , (A8)
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where

ξk(Je,Fe,Jg,Fg) = (2Je + 1)(2Fg + 1)(2Fe + 1)(−1)Fe+Fg+k+1


{
Fe Fg 1

Jg Je I

}2{
Fg Fg k

Fe Fe 1

}
. (A9)

After some algebra Eq. (A2b) becomes

d

dt

(
ρ

(2)
g4

)
k,q

∣∣∣∣
LASER

=
(

1

2
− α

)
Lg

9

[
− (Wg4,e4W

†
e4,g4)k,q + ξk(e4 → g4)


′
c

(W †
e4,g4Wg4,e4)k,q

]

+
(

1

2
− α

)
Leg

9

[
− (Wg4,e3W

†
e3,g4)k,q + ξk(e3 → g4)


′
c

(W †
e3,g4Wg4,e3)k,q

]

+
(

1

2
+ α

)
1

7

[
L0

ξk(e4 → g4)


′
c

(W †
e4,g3Wg3,e4)k,q + Le

ξk(e3 → g4)


′
c

(W †
e3,g3Wg3,e3)k,q

]
. (A10)

Using standard methods (see [26]), the irreducible components of W W † and W †W can be worked out:

(Wgi,ej
W †

ej ,gi
)k,q = E2

0〈Fej
||d||Fgi

〉2(−1)Fej
−Fgi

{
1 1 k

Fgi
Fgi

Fej

}
(−1)qEk,−q, (A11a)

(W †
ej ,gi

Wgi,ej
)k,q = E2

0〈Fej
||d||Fgi

〉2(−1)Fgi
−Fej

{
1 1 k

Fej
Fej

Fgi

}
(−1)qEk,−q . (A11b)

The reduced matrix element of the dipole can be rewritten as [32]

〈Fej
||d||Fgi

〉 ≡ 〈(JeI )Fej
||d||(JgI )Fgi

〉

= (−1)Je+I+Fgi
+1

√
(2Fej

+ 1)(2Fgi
+ 1)

{
Fej

1 Fgi

Jg I Je

}
〈Je||d||Jg〉,

(A12)

while the polarization tensor Ek,q is constructed from the laser polarization vector as

EK,Q = (−1)K+Q
√

2K + 1
1∑

q,q ′=−1

(
1 1 K

q q ′ Q

)
(ε∗)−q ε−q ′ , (A13)

which for circular σ+ polarization becomes

Ek,q = −δq,0

(
1√
3
δk,0 + 1√

2
δk,1 + 1√

6
δk,2

)
. (A14)

Putting this all together, Eq. (A10) becomes

d

dt

(
ρ

(2)
g4

)
1,q

∣∣∣∣
LASER

= −
√

15

20736
E2

0〈Je||d||Jg〉2 1

1 + r
[(1 − 2α)(29 + 48r) Lg

+ 21(1 − 2α)(25 + 16r)Leg − 171(1 + 2α)L0 − 27(1 + 2α)Le]δq,0, (A15)

where r = 
′
c/
. Dropping the constant (irrelevant at this order of approximation) in front of the expression, this is exactly

the P (t) function used in Eq. (9). The time dependence arises from the laser modulation; that is, in Eq. (A3) the substitution
δ → δ0 + � sin �t .

The Fourier coefficients Pn of Eq. (9) have an analytical form. In fact redoing the steps of [33], one finds (n � 0)

P (0)
n ≡ �

2π

∫ 2π/�

0
e−i n � t L0(t)dt = 1

2π

∫ 2π

0
e−i n θ G

G2 + (δ0 + � sin θ )2
dθ

= 1

2

∫ +∞

−∞
Jn(z�)ei z δ0e−G |z|dz =

{
Re(In) n even,

iIm(In) n odd,
(A16)

where

In ≡
∫ +∞

0
Jn(z�)ei z δ0e−G zdz = 1

�n

[
√

(G − iδ0)2 + �2 − (G − iδ0)]n√
(G − iδ0)2 + �2

(A17)
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FIG. 6. Typical profile obtained from the excitation of a single
transition. The peaks are located in correspondence with δ0 ≈ ±�

for G/� � 1. At larger values of G the peaks broaden and start
shifting in opposite directions.

and the last step follows from formula (6.611) of [34]. So the
first-harmonic coefficient reads [see also Eq. (13)]

R
(0)
1 = − 1

�
Im

⎛
⎝G − iδ0

�

1√
1 + (

G−iδ0
�

)2

⎞
⎠, (A18)

which can be rewritten using the dispersive and absorptive
profiles

D(δ0) = δ0 − �

(δ0 − �)2 + G2
− δ0 + �

(δ0 + �)2 + G2
, (A19a)

L(δ0) = 1

(δ0 − �)2 + G2
+ 1

(δ0 + �)2 + G2
(A19b)

as

R
(0)
1 = − 1√

2�
sgn(−δ0)

[√
1 + �

G2 + 3�2/4

G2 + �2

(
D(δ0) + �2

4G2 + 3�2
L(δ0)

)
− 1 − (�/2)D(δ0)

]1/2

. (A20)

This is the contribution of L0(t) that is the Fg = 3 → Fe = 4 line, and it is shown in Fig. 6.
Similar expressions hold for the other transitions, and adding all of them together with the coefficients of Eq. (A15), we obtain

the whole R1, which contains the dependence from the laser modulation parameters.
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