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We consider a finite one-dimensional Heisenberg XYZ spin chain under the influence of a dissipative Lindblad
environment obeying the Born-Markovian constraint in presence of an external magnetic field with closed and
open boundary conditions. We present an exact numerical solution for the Lindblad master equation of the
system in the Liouville space. The dynamics and asymptotic behavior of the nearest-neighbor and beyond-
nearest-neighbor pairwise entanglements in the system are investigated under the effect of spatial anisotropy,
temperature, system size, and different initial states. The entanglements in the free spin system exhibit nonuniform
oscillatory behavior that varies significantly depending on the system size, anisotropy, and initial state. The
xy spatial anisotropy dictates the asymptotic behavior of the different entanglements in the system under the
influence of the environment regardless of the initial state. Higher anisotropy yields higher steady-state value of the
nearest-neighbor entanglement whereas a complete isotropy wipes it out. The longer range entanglements respond
differently to the anisotropy variation. The anisotropy in the z direction may enhance the entanglements depending
on the interplay with the magnetic field applied in the same direction. As the temperature is raised, the steady state
of the short-range entanglements is found to be robust within very small nonzero temperature range that depends
critically on the spatial anisotropy. Moreover, the end to end entanglement transfer time and speed through the
open boundary chain vary considerably based on the degree of anisotropy and temperature of the environment.
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I. INTRODUCTION

Quantum entanglement plays a vital role in the static and
dynamic behavior of many-body systems [1]. It is considered
as the physical resource responsible for manipulating the
linear superposition of the quantum states in quantum systems.
Entanglement, and its derivatives, show scaling behavior as the
physical system experiences a quantum phase transition [2].
Particularly, it is considered as a crucial resource in quantum
information processing fields such as quantum teleportation,
cryptography, and quantum computation where it provides
the physical basis for implementing the different needed
algorithms [3]. Therefore, creating, quantifying, transferring,
and protecting entanglement in quantum states of multiparticle
systems are the focus of interest of both theoretical and
experimental research. However, quantum entanglement is
very fragile due to the induced decoherence caused by the
inevitable coupling of the quantum system to its surrounding
environment [4,5]. The main effect of decoherence is to
randomize the relative coherent phases of the possible states
of the quantum system diminishing its quantum aspects. It is
considered as one of the main obstacles toward realizing an
effective quantum computing system. Offering a potentially
ideal protection against environmentally induced decoherence
is found to be a very difficult task. The decoherence in the sys-
tem causes sweeping out of entanglement between the different
parties of the system. Therefore, monitoring the entanglement
dynamics in the considered system helps us understand the
behavior of the decoherence as well.
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The Heisenberg interacting spin systems have been a focus
of interest for their own sake as they describe the novel
physics of localized spins in magnetic systems as well as
for their successful role in representing many of the physical
systems that are very promising candidates for quantum
information processing such as the solid-state systems [6–8],
NMR [9,10], optical lattices [11,12], electronic spins [13],
and superconducting arrays [14]. Entanglement properties and
dynamics in Heisenberg spin chains in the absence of dissi-
pative environments have been studied intensively [15–22].
There have been several interesting works that focused on the
dynamics of a system of interacting qubits, represented by the
Heisenberg spin model, coupled to dissipative environments.
Particularly, the problem of two qubits coupled to dissipative
environments has been intensively studied. Analytic and
numerical solutions were provided for a two-qubit XY system
in an external magnetic field coupled to a population relaxation
environment as well as a thermal environment [23]. It was
shown that the system reaches a steady-state value though
it is coupled to a population relaxation environment, which
causes decoherence, provided that the spatial anisotropy of
the system is maintained. The steady-state value may vanish
as the temperature of the thermal environment is raised. The
anisotropic two-qubit XYZ Heisenberg model in an inhomo-
geneous magnetic field coupled to a population relaxation
environment at zero temperature was investigated too, both
analytically and numerically [24]. It was demonstrated that
the two-qubit system reaches a steady state starting from an
initial separable state as long as the anisotropy of the spin
coupling in the x and y direction is nonzero regardless of the
value of the coupling in the z direction. The spin relaxation
in a two-qubit Ising system under a single spin-flip inducing
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environment was investigated and the relaxation rates were
calculated [25].

The one-dimensional multiqubit chains, N > 2, coupled to
dissipative environments were investigated as well at different
degrees of anisotropy, magnetic-field strength, and tempera-
tures [26–33]. Of most relevance, the time evolution of the con-
currence of the nearest-neighbor spins in a one-dimensional XX
spin chain in the absence of any external magnetic fields cou-
pled to thermal and dephasing environments were studied [29].
It was shown that in all cases the entanglement vanishes within
a finite time that depends on the system-environment coupling
parameter and temperature. The dynamics of entanglement in
the Ising and isotropic (XXX) one-dimensional spin chains has
been investigated [28] using the numerical stochastic approach
by applying the quantum state diffusion theory [34], which
reduces the needed huge storage space from 22N to 2N for
N interacting spins. They focused on the influence of noise
during short periods of time. The effect of the initial state
of the system on the time evolution behavior under coupling
with the environment was considered and it was shown that
most of the time the main effect of the noise is to reduce the
amplitude of the large oscillation of the entanglement. An Ising
one-dimensional spin system in an external magnetic field
with two nonvanishing components in the x and z directions
and coupled to a Markovian environment was investigated
using stochastic calculations too [31]. One particular work
of special interest considered a one-dimensional chain of
superconducting Josephson qubits with experimentally real-
istic conditions [27]. The effect of the environmental noise
on the entanglement in the chain was tested. The influence
of the noise was introduced as a set of bosonic baths such
that each one of them is coupled to a single qubit. It was
shown that this noise environment causes a significant change
to the entanglement dynamics of the Josephson qubits. In
the limiting case when the internal degrees of freedom of
the baths were traced out the system behaves as an Ising
spin chain coupled to a Born-Markovian environment with
an asymptotic steady-state entanglement. Other recent works
have investigated the entanglement dynamics in spin systems
under different environmental and external effects and focused
on the entanglement and information transfer through the
system [35–38].

In this paper, we investigate the time evolution and
transfer of quantum entanglement in a finite one-dimensional
Heisenberg XYZ spin-1/2 chain with nearest-neighbor spin
interaction under the influence of dissipative Lindblad envi-
ronment in presence of an external magnetic field at zero
and finite temperature. We consider both cases of closed
and open boundary spin chains with maximum number of
seven spins. We provide an exact numerical solution of
the Lindblad master equation of the system. In the closed
boundary case, we show how the nearest-neighbor (nn) and
beyond-nearest-neighbor entanglement (nnn, nnnn,...) as well
as the one-tangle τ1 and the overall bipartite entanglement τ2

in the free (isolated) system evolve in time in a nonuniform
oscillatory form that changes significantly depending on the
initial state of the system, the number of spins, and the degree
of spatial anisotropy but disappears in the presence of the
environment. Also, we investigate the asymptotic steady state
of the entanglement at the different ranges in the system under

the influence of the environment at zero temperature and show
how it varies strongly and differently based on the degrees
of anisotropy of the spin coupling strength, leading to either
a vanishing or a constant steady-state value. We emphasize
the important role played by the interplay between the spin
coupling in the z direction and the external magnetic field
applied in the z direction. We explore the robustness of the
quantum effects and the steady state of the entanglement at
finite temperature and its critical dependence on the degree
of anisotropy. We study the end to end entanglement transfer
through the open boundary chain starting from an initial state
with a maximum entanglement at one terminal of the chain
and disentanglement over the rest of it. We discuss how
the entanglement transfer time, speed, and residue through
the chain vary depending on the degrees of anisotropy, the
temperature, and the separation from the maximally entangled
end. This paper is organized as follows. In the next section, we
present our model and calculations. In Sec. III, we study the
time evolution of the entanglement in Heisenberg spin chains
with closed boundary condition in the absence and presence
of the Lindblad environment at zero and finite temperature. In
Sec. IV, we investigate the entanglement transfer in a Heisen-
berg chain with open boundary condition under the influence of
thermal and dissipative environments. We conclude in Sec. V.

II. MODEL

We consider a one-dimensional system of N spin-1/2
particles with nearest-neighbor coupling J in an external
magnetic field in the z direction B. The system is described by
the Heisenberg Hamiltonian

H = (1 + γ )

2
J

N∑
i=1

Sx
i Sx

i+1 + (1 − γ )

2
J

N∑
i=1

S
y

i S
y

i+1

+ δJ

N∑
i=1

Sz
i S

z
i+1 +

N∑
i=1

BzSz
i , (1)

where Sα
i = 1

2 σα
i (α = x, y, or z) and σα

i are the local spin- 1
2

operators and Pauli operators, respectively (for convenience
we set � = k = 1). When we apply the periodic boundary
condition we set SN+1 = S1. γ and δ are the anisotropy
parameters which determine the relative strength of the spin
coupling in the x, y, and z directions. We study different
classes of the Heisenberg spin system by changing the values
of the parameters γ and δ such as the Ising (γ = 1 and
δ = 0), XX (γ = 0 and δ = 0), XXX (γ = 0 and δ = 0.5),
XYZ (γ = 0.5 and δ = 0.5), etc. The system is subject to an
external homogeneous static magnetic field B = Bz ẑ = ω ẑ in
the z direction, where ω represents the magnitude of effective
applied external magnetic field as well as the energy gap of
each spin.

The dynamics of an isolated quantum system is described
by the time evolution of its density matrix ρ(t) according to the
Liouville equation ρ̇(t) = −i[H,ρ]. But for an open quantum
system that is interacting with its environment, the Liouville
equation has to be modified to account for the dissipative
effects of the environment on the system. If the system and
the environment satisfy the conditions of weak coupling as
well as short relaxation time within the environment excitation

012341-2



ENTANGLEMENT DYNAMICS IN HEISENBERG SPIN . . . PHYSICAL REVIEW A 94, 012341 (2016)

modes, the Born-Markovian approximation can be applied
and the time evolution of the system is best described by
the Lindblad master equation [39,40], which preserves the
Hermiticity and unit trace of the density matrix and guarantees
positive continuous evolution of the system under the effect of
the environment, defined by

ρ̇(t) = −i[H,ρ] + Dρ, (2)

where Dρ is the extra term that describes the dissipative
dynamics and is represented in the Lindblad form as

Dρ = −1

2

∑
k=1

{[Lkρ,L
†
k] + [Lk,ρL

†
k]}, (3)

where the Lindblad operator Lk represents all the effects of
the considered environment on the system site k, where the
environment is assumed to couple to each site independently
of the other sites and therefore is represented by

Lk = 11 ⊗ 12 ⊗ · · · ⊗ Lk ⊗ · · · ⊗ 1N . (4)

For Q- dimensional Hilbert space, the density operator is
represented by a Q by Q matrix, but it is more conve-
nient to work in the Liouville space, where it is repre-
sented as a vector with Q2 elements, �ρ = (ρ11,ρ12,ρ13, . . . ,

ρ1Q, . . . ,ρ21,ρ22, . . . ,ρ2Q, . . . ,ρQQ). In fact, the selected or-
der of the elements is not important but has to be preserved
once chosen. The main idea here is to reformulate Eq. (2) to
take the matrix equation form

�̇ρ(t) = (L̂H + L̂D) �ρ = L̂ �ρ, (5)

where L̂H and L̂D are superoperators acting on the vector
ρ in the Liouville space, where the first one represents the
unitary evolution due to the free Hamiltonian while the second
represents the dissipation process. The matrix elements of ρ̇

are defined as

ρ̇j l(t) = −i
∑
m,n

(
LH

jl,mn + LD
jl,mn

)
ρmn, (6)

where the tetrahedral matrices LH and LD are given by

LH
jl,mn = Hjmδln − δjmHnl, (7)

and

LD
jl,mn = i

2

∑
k

[2(L†
k)nl(Lk)jm − (L†

kLk)jmδln − δjm(L†
kLk)nl].

(8)

Now the whole problem of evaluating the time evolution of
the density matrix has been reduced to seeking the solution
of the standard matrix equation (5) which can be achieved
once we find the set of all eigenvalues {λ1,λ2,λ3, . . . ,λQ2} and
eigenvectors {�η1,�η2,�η3, . . . ,�ηQ2} of the Q2 × Q2 tetrahedral
matrix L, and as a result the density vector becomes

�ρ(t) =
Q2∑
i=1

Ai �ηi eλi t , (9)

where the coefficients Ai are determined from the initial
conditions of the evolution process. Once the density (vector)
matrix has been calculated as a function of time, we can
evaluate the entanglement in the chain as explained below.

For a one-dimensional chain with N spin-1/2 particles, the
dimension of the Hilbert space is 2N and the dimension of the
tetrahedral matrices is 22N which, even for a small number of
spins, is extremely large and requires a huge computational
storage that is more than what can be handled by most of the
available computing systems and represents a real challenge
in such type of problems.

For the Heisenberg spin chain described by the Hamilto-
nian (1), the effect of the dissipative and thermal environment
is given by the local Lindblad operator [27,40,41]

Lk = �

{
(n̄ + 1)

2
S−

k + n̄ S
†
k

}
, (10)

where S+ and S− are the spin raising and lowering operators,
S± = Sx ± iSy . � is a phenomenological parameter that
determines the strength of the coupling between the envi-
ronment and the system and is assumed to be the same for
all spins. The thermal parameter n̄ is proportional to the
temperature of the environment. Obviously, in Eq. (10), the
first term induces the dissipation process whereas the second
one causes excitation. As mentioned before, for Eq. (2) to
represent a good approximation for the time evolution of
the system, certain restrictions have to apply to the system
parameters, the coupling parameter between the system, and
the environment � as well as the relaxation time scale of the
environment dynamics should be small compared to that of the
system dynamics manifested by the parameter ω representing
the spin precession frequency around the z axis. As a result,
we consider values of � and J such that � and J � ω.

We adopt the concurrence as a measure of the bipartite
entanglement in the system, where Wootters [42] has shown
that for a pair of two-state systems i and j , the concurrence
Ci,j , which varies between 0 to 1, can be used to quantify the
entanglement between them and is defined by

Ci,j (ρi,j ) = max{0,ε1 − ε2 − ε3 − ε4}, (11)

where ρi,j is the reduced density matrix of the two spins
under consideration, εi’s are the eigenvalues of the Hermitian
matrix R ≡ √√

ρi,j ˜ρi,j
√

ρi,j with ˜ρi,j = (σy ⊗ σy)ρ∗
i,j (σy ⊗

σy), and σy is the Pauli matrix of the spin in the y direction.
In addition to the concurrence, which quantifies the

entanglement between any two spins in the system in a
pure or mixed state, it is very insightful to evaluate and
study two other measures of entanglement, τ1 and τ2. The
one-tangle τ1 = 4 det ρ1 is a measure of the multipartite
entanglement in pure states of quantum systems, where ρ1

is the single-site reduced density matrix. It quantifies the
entanglement between a single spin and the rest of the entire
system. On the other hand, τ2 is a measure of the global
pairwise entanglement in the system and is defined as the
sum of the squared pairwise concurrences, between a single
spin, for instance i, and every other spin in the system,∑

j �=i C2
i,j [43,44]. The ratio R = τ2/τ1 � 1 was introduced

as a measure of the fraction of the total entanglement
attributed to the pairwise correlations within the system [45].
Therefore, the behavior of the three quantities τ1, τ2, and R

may provide very crucial information about the system state
such as factorization (τ1 = τ2 = 0), vanishing of bipartite
entanglement in the presence of multipartite entanglement
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FIG. 1. Time evolution of (a) τ1, τ2, and R, (b) C12, (c) C13 and C14

in the free (� = 0) Ising system starting from an initially disentangled
state, where N = 7.

(τ2 = 0, τ1 �= 0), or quantum phase transitions (anomalous
behavior of R). We study the dynamics of these different
quantities in the free Heisenberg system. Although τ1 and
R are not defined for mixed states of the system, in the
presence of the environment, yet it is very useful to evaluate
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FIG. 2. Time evolution of (a) τ1, τ2, and R, (b) C12, C13, and C14,
(c) C15, C16, and C17 in the free (� = 0) Ising system starting from
an initial maximally entangled state, where N = 7.

τ2. Studying the behavior of τ2 and comparing it with that
of the nearest-neighbor bipartite entanglement C12 provides
not only information about the global pairwise entanglement
in the system but also how the beyond nearest-neighbor
entanglements are behaving. There are cases where C12

may vanish whereas τ2 assumes a finite value. We study
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FIG. 3. Time evolution of the free Ising system (� = 0) starting from an initial (a) disentangled state; (b) maximally entangled state; and
the free XX system starting from an initial (c) disentangled state; (d) maximally entangled state, where N = 5. The legend is as shown in
panel (a).

the time evolution of the system using the standard basis
{|↑↑ · · · ↑〉,|↑↑ · · · ↓〉, . . . ,|↑↓ · · · ↓〉, . . . ,|↓↓ · · · ↓〉} and
starting from different initial typical states: a separable (dis-
entangled) state, |ψs〉 = |↑↑ · · · ↑〉; a partially entangled (W
state), |ψw〉= 1√

N
(|↑↓ · · · ↓〉 + |↓↑ · · · ↓〉 + · · · + |↓↓ · · · ↑〉),

and a maximally entangled state, |ψm〉 =
1√
2
(|↑↓〉 + |↓↑〉)|↓↓ · · · ↓〉.

III. DYNAMICS OF ENTANGLEMENT IN CLOSED
BOUNDARY SPIN CHAINS

A. Free system

It is very enlightening to start our study by considering the
entanglement dynamics in the free (isolated) Heisenberg spin
chains before considering the environment effect, which is
described by the Hamiltonian (1). In general, for convenience
we consider the time evolution of the system in terms of
the dimensionless time T = ω t . In Fig. 1, we depict the
time evolution of the entanglement in the closed boundary
seven-spins free Ising system starting from a completely
disentangled (separable) state. The one tangle τ1 and the
overall bipartite entanglement τ2 between spin 1 and the rest

of the chain is illustrated in Fig. 1(a), where they show beatlike
oscillatory behavior with very close magnitudes compared to
each other and this is why their ratio R = τ2/τ1 is limited
between about 0.95 and 0.99 as can be seen in the inner panel of
the figure. This indicates that the entanglement in the system is
mainly of a pairwise nature. The time evolution of the bipartite
entanglement C12 is very similar to that of τ1 and τ2 but with a
bigger amplitude as expected as shown in Fig. 1(b). The time
evolution of the longer range entanglements C13 and C14 are
illustrated in Fig. 1(c), where they show a simple nonuniform
oscillatory behavior with about half the amplitude of C12. The
entanglements C15, C16, and C17 were found to show the same
exact behavior of C14, C13, and C12 respectively as expected
in a closed boundary chain. The great resemblance between
the behavior of τ1, τ2, and C12 is caused by the fact that C12 is
the main contributor to τ2 and τ1 is mainly of a pairwise nature
(R ≈ 1). The closed boundary free Ising chain starting from
a maximally entangled state is considered in Fig. 2, where
it shows a different behavior from the previous case. The
entanglement functions τ1 and τ2 show sustainable nonuniform
oscillatory behavior, with no beating, that is very close for the
two except when their magnitudes decrease significantly and
their ratio R changes over wider range between about 0.2 and 1
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FIG. 4. Time evolution of the free XY system (� = 0) starting from an initial (a) disentangled state; (b) maximally entangled state; and
the free XYZ system starting from an initial (c) disentangled state; (d) maximally entangled state, where N = 5. The legend is as shown in
panel (a).

as shown in Fig. 2(a). As can be noticed, when the multipartite
entanglement decreases significantly the contribution of the
pairwise correlations becomes minimum. In Figs. 2(b) and 2(c)
we plot the bipartite entanglements C12, C13, C14, C15, C16,
and C17. They all show nonuniform oscillatory behavior, where
interestingly the (nnn) entanglement C13 profile looks exactly
like that of C17 but not like C16 as one may have expected
for a closed boundary chain. The same applies to C14 which
is exactly the same as C16 (not C15 as one would expect).
This means that the maximum entanglement that was initially
created between spins 1 and 2 is propagating through the
chain in both directions starting from spins 1 and 2 as a
single source. Comparing the results in Figs. 1 and 2, one can
notice how the initial state causes a great deal of difference
on the entanglement dynamics through the entire spin chain.
Starting from a maximally entangled state leads to much higher
amplitude of entanglement oscillation among all spins and
much smaller frequency.

In Figs. 3(a) and 3(b) we consider the Ising chain again
but with only five spins to examine the size effect, where we
focus on the time evolution of τ1, τ2, and R. The oscillation of
the system entanglement starting from a disentangled state is

losing much of its beatlike character although the amplitude
is almost the same as for N = 7 and the ratio R is closer
to 1 with narrower range as shown in Fig. 3(a). The time
evolution of the same system starting from an initial maximally
entangled state is illustrated in Fig. 3(b). As one can see,
the oscillation of the entanglements τ1 and τ2 become more
uniform compared with the N = 7 case and also the range
of R is narrower. In Figs. 3(c) and 3(d), we test the effect of
removing the anisotropy (between X and Y ) by considering
the XX system. The initial state of the system is significantly
affecting the system dynamics where the initial separable state,
as shown in Fig. 3(c), causes the system to stay separable
forever whereas the initial maximum entangled state, depicted
in Fig. 3(d), leads to an oscillation, similar to what we have seen
in Fig. 3(b) but with perfect coincidence between τ1 and τ2.
Therefore removing the anisotropy from the system leads to an
entanglement that is entirely due to pairwise correlations. The
behavior of the partial anisotropic system, XY , is illustrated in
Figs. 4(a) and 4(b), where it looks very similar to the Ising
case but with a smaller range of variation of the ratio R.
In Figs. 4(c) and 4(d) we test the effect of anisotropy not
only in the X and Y directions but also in the Z direction
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state in (a) and (b) and an entangled W state in (c) and (d) respectively at different temperatures n̄ = 0, 0.05, and 0.1, where N = 7. The legend
is as shown in panel (a).

by considering the XYZ system. It is clear that adding an
interaction in the z direction is not changing the behavior
of the system significantly compared with the XY model. The
main change is the appearance of a node in the envelope of
the oscillation in the initial separable state case. Obviously,
the system size has a significant effect on the entanglement
oscillation profile; when the system contains only two spins
the entanglement oscillation is perfectly sinusoidal as is
well known. Adding more spins makes every spin in the
system interact and get entangled with more than one spin
simultaneously, causing a nonuniformity of the entanglement
oscillation, which increases with the system size.

B. Coupling to a thermal dissipative environment

In this section we study the dynamics of entanglement
in different closed boundary Heisenberg spin chains, with
different degrees of spatial anisotropy, coupled to a Lindblad
environment at zero and finite temperatures, starting from dif-
ferent initial states. In this paper, we set up the system param-
eters such that ω = 1, � = J = 0.05ω, and the temperature
parameter 0 � n̄ � 0.1(∼ 41 mK), unless otherwise stated.
We focus here on the time evolution of the nearest-neighbor

bipartite entanglement between the two spins 1 and 2 as well
as τ2 between spin 1 and the rest of the chain, which gives
a very good insight of how the overall bipartite entanglement
and the beyond nearest-neighbor entanglement are behaving.
We start with the Ising system, in Figs. 5(a) and 5(b), where
we show the time evolution of C12 and τ2 respectively starting
from an initially separable state. As one can see, both C12

and τ2 start with zero initial value and stay zero for some
time before suddenly rising up and increasing monotonically
to reach a steady-state value. To ensure that the final state
is a sustainable steady state, we plot the first derivative of
τ2 versus time in the inner panel of Fig. 5(b), which shows
a sudden peak at around T ≈ 100 before decaying to zero
T ≈ 240. It is very clear how devastating is the temperature
effect on the steady-state value of the entanglement, where
having a value of n̄ = 0.05 reduces the steady-state value
significantly compared with n̄ = 0 whereas n̄ = 0.1 keeps the
system disentangled at all times. In Figs. 5(c) and 5(d), the
system starts from an initial partially entangled state, the w

state. As a result the entanglement C12 at zero temperature,
shown in Fig. 5(c), starts with an initial nonzero value but
decays with time until it vanishes but immediately revives
again and increases monotonically reaching a steady state. As
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the temperature increases, n̄ = 0.05, the entanglement death
period increases and the steady-state value decreases. For
higher temperature, n̄ = 0.1, the entanglement never revives
again from its zero value. Interestingly, the behavior of τ2, as
illustrated in Fig. 5(d), is not exactly the same as C12, where
at zero temperature τ2 decays as the system evolves, but never
drops to zero, before rising up and reaching a steady state.
This indicates that the beyond-nearest-neighbor entanglement
sustains a nonzero value despite that the nearest-neighbor
entanglement vanishes. The effect of the finite temperature
on τ2 is similar to that on C12 as can be concluded from the
inner panels. The first derivative of τ2 shows a rapid oscillation
before reaching the zero value which is suppressed as the
temperature is raised. In Fig. 6, we study the time evolution of
the entanglement in the Ising system starting from an initial
maximally entangled state. The overall dynamics of C12 and
τ2 is very close to what was observed when the system started
from the W state except that the changes are sharper. More
importantly, the steady-state values of C12 and τ2 do not change
in the three different cases of the Ising system, in Figs. 5 and 6,
where different initial states of the system were considered.
Nevertheless, the behavior of the first derivative of τ2 varies

considerably based on the initial amount of entanglement
prepared in the system, becoming very smooth as the initial
entanglement is increased as can be noticed in the inner panels
in Figs. 5 and 6. During the transition process of τ2 from zero
to a steady-state value, the derivative lasts for different periods
of time before reaching a zero value. The period is longest for
an initial disentangled state. This stems from the fact that the
system needs longer time and big rapid changes starting from
a separable state to build up entanglement and reach a nonzero
steady-state value. These needs are reduced as the initial
amount of entanglement contained in the system is increased.

In Fig. 7, we consider the partially anisotropic XY system
starting from two different initial states, separable in (a) and
(b) and Maximally entangled in (c) and (d). The behavior of the
entanglement C12 and τ2 are similar to that of the Ising system
with one main difference, which is a much smaller steady-state
value for C12 and τ2. Also we have tested the effect of the spin
coupling in the z direction, by considering 0 < δ � 1, and
particularly in the XYZ system. We did not find any noticeable
change in either the dynamics of the system or the steady-state
values as a result of this coupling for the set of parameter
values that we are adopting here. The completely isotropic
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XXX system is explored in Fig. 8, which shows a significantly
different profile from the Ising and the XY systems. As one can
see in Fig. 8(a), when the system starts from an initial separable
state, both C12 and τ2 start with and sustain a zero value as
the system evolves in time at zero and finite temperatures. In
Fig. 8(b), the time evolution of τ2 is monitored in the XXX
system starting from the W state. As can be seen, τ2 starts
with a value of about 0.5 and decays rapidly as the time elapses
but ends up vanishing completely without any revival. As the
temperature increases, the vanishing of entanglement becomes
sharper and earlier in time as can be concluded from the inner
panels in Fig. 8(b). A very similar behavior of C12 and τ2 is
observed as the XXX system starts from an initial maximally
entangled state following the same dynamical behavior and
ending up with a zero value, as illustrated in Figs. 8(c)
and 8(d). Again testing the effect of spin coupling in the z

direction, by studying the XX or XXZ systems, there were no
noticeable changes, compared with the XXX system, either in
the dynamics of the systems or the asymptotic values they
reach. Clearly, the isotropic system reaches asymptotically a
state with zero entanglement regardless of the initial amount

of entanglement, as a result the behavior of the first derivative
of τ2 is very smooth across the transition period indicating that
the system does not go through any critical changes as it loses
its entanglement content, contrary to what has been observed
in the anisotropic systems.

In Fig. 9, we examine the system size effect by studying the
time evolution of the entanglement in chains with different
total number of spins. In Fig. 9(a), we depict the time
evolution of τ2 for an Ising chain starting from an initial
disentangled state at zero temperature for three different chain
sizes (N = 3, 5, and 7). As can be noticed, the behavior of the
entanglement dynamics converges very rapidly as N increases
and the difference between the two cases of (N = 5 and 7)
is quite small, which indicates a very small effect played
by the system size as N becomes 5 or higher. The time
evolution of C12 in an XYZ chain with different sizes starting
from a disentangled state at finite temperature, n̄ = 0.05, is
considered in Fig. 9(b). The behavior of C12 is very similar to
that of τ2, in Fig. 9(a), showing a rapid convergence and an
almost same steady-state value for N = 5 and 7. In Fig. 9(c) we
again examine the Ising system size at finite temperature but
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starting from partially entangled state whereas in Fig. 9(d)
we depict τ2 of the XX model starting from a maximally
entangled state at zero temperature. The behavior of the
entanglements C12 and τ2, as illustrated Figs. 9(c) and 9(d),
confirms our conclusion from Figs. 9(a) and 9(b). Interestingly,
the system size in the presence of the environment is not
playing the same important role as in the free system case.
The environment does not only suppress the oscillation of the
free system but also reduces significantly the effect of adding
more spins to the system by diminishing the beyond-nearest-
neighbor entanglements maintaining the same steady-state
value.

In Fig. 10, the asymptotic (steady state) behavior of the
entanglement in the γ -δ space of the XYZ Heisenberg five-spin
chain is explored, where the steady-state value of C12 and
C13, at time T = 300, is depicted versus the anisotropic
parameters γ and δ. The asymptotic value was found to be
independent of the initial state of the system. Interestingly, the
steady-state value of the entanglement, at zero temperature,
shows a monotonic linear decay profile as the anisotropic
parameter γ decreases and it vanishes at γ = 0 as shown in
Fig. 10(a), whereas the parameter δ shows no effect on the

steady-state value. The entanglement C13 shows a completely
different behavior, as illustrated in Fig. 10(b), where it sustains
a value of zero for γ = 1 up to γ ≈ 0.5 before rising up to
reach a maximum value at γ ≈ 0.25, then it decays again
until completely vanishing at γ = 0. Obviously, the robustness
of the entanglement C13 against the decohering effect of the
environment is not highest at maximum anisotropy, contrary
to C12. As the temperature increases, the entanglement C12

decreases but chains with higher γ (anisotropy) is more robust
to thermal excitation whereas chains with low anisotropy lose
their entanglement completely, as can be noticed in Fig. 10(c)
where n̄ = 0.05, but as the temperature is raised further, the
Heisenberg chains become fully disentangled regardless of
their degree of anisotropy. As we concluded before and as can
be noticed in Figs. 10(a)–10(c), the anisotropic parameter δ

has no noticeable effect on the entanglement dynamics; the
reason is the overwhelming magnetic field in the z direction
compared with the component of the spin coupling J in the
same direction. To clarify this point, in Fig. 10(d), we have
applied a greater value of J , 0.1 instead of 0.05, and as can
be seen in the contour plot of the entanglement C12 versus γ

and δ, the entanglement steady-state value slightly increases
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as δ is increased, which means higher δ would enhance the
value of the entanglement. To further investigate the effect
of thermal excitations on the asymptotic steady state of the
Heisenberg chains, we depict the asymptotic values of the
entanglements C12 and C13 versus the anisotropy parameter
γ and the temperature parameter n̄ in Fig. 11. The results
confirm our observations from the previous figure, where the
(nn) entanglement C12 is more robust to thermal excitation
in the completely anisotropic system and less as the degree
of anisotropy decreases until it becomes very fragile in the
isotropic system, as shown in Fig. 11(a). Also the (nnn)
entanglement C13, explored in Fig. 11(b), shows robustness
for approximately 0 < γ � 0.5 with its peak at γ ≈ 0.25.
This indicates that while the completely anisotropic system
(γ = 1) enjoys a very robust nearest-neighbor entanglement,
its beyond nearest-neighbor entanglement is not and vice versa
for the partially anisotropic system (0 < γ < 0.5), if we ignore
the role of the parameter δ. The entanglements C14 and C15

were found to show exactly the same behavior as C13 and C12

respectively as would be expected for a closed boundary spin
chain.

IV. END TO END ENTANGLEMENT TRANSFER IN OPEN
BOUNDARY SPIN CHAINS

A. Free system

The entanglement transfer through open boundary spin
systems has been always the focus of interest as it plays
an important role in implementing the different algorithms
in quantum computing systems. In this section, we start by
investigating the entanglement dynamics and transfer in one-
dimensional free Heisenberg spin chains with open boundary
condition. The system is initially prepared in a state with two
spins (1 and 2) at one end of the chain maximally entangled
with each other and are completely disentangled from the rest
of the spins in the chain, which are also disentangled from
each other. We start with the Ising seven-spin system, which
is explored in Figs. 12(a) and 12(b). The (nn) entanglement
C12 starts at t = 0 with a value of 1 but decays to zero before
reviving and showing a nonuniform oscillatory behavior. The
longer range entanglements C13, C14, C15, C16, and C17,
illustrated in Figs. 12(a) and 12(b), start with a zero value
at t = 0 before rising up at later times; the longer the range
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FIG. 14. The dynamics of the entanglements C12, C13, C14, C15, C16, and C17 starting from a maximally entangled state in the Ising system
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panels illustrate the rise up of entanglement while the right ones illustrate its death. In (b) the inner panel shows both of the rise up and death
of entanglement.

of the entanglement is the longer it takes to rise up as shown
in the inner panels of Figs. 12(a) and 12(b). In Figs. 12(c)
and 12(d), we turn to the entanglement dynamics in the XX
system, which shows one significant difference from what we
have observed in the Ising system; the (nnn) entanglement C13

starts to rise up immediately at t = 0 but the other long-range
entanglements are delayed, but not for as long as they were in
the Ising system, as shown in the inner panels of the figure.
Right after the different start all the entanglements, nearest
neighbor and beyond, show very a close profile of oscillation
to that of the Ising case. So the entanglement dynamics in
these cases are asymptotically very close. To test the effect
of the spin coupling in the z direction on the entanglement
transfer dynamics, we explore the XXZ chain in Figs. 13(a)
and 13(b) and the XXZ chain in Figs. 13(c) and 13(d). Clearly,
there is a good resemblance between the rise up of the beyond-
nearest-neighbor entanglement in the XX and XXZ systems but
asymptotically they have different oscillation profile. On the
other hand, the XYZ system has C13 rising up immediately

from zero but the other longer range entanglements rise up
much later compared with the previous cases with very strong
oscillation and also show a different asymptotic oscillation
profile. Comparing the entanglement dynamics and transfer
through the open and closed boundary free spin chains with
only two spins (1 and 2) initially maximally entanglement
reveals interesting observations. In the Ising chain with closed
boundary, illustrated in Fig. 1, the amplitude of the nearest-
neighbor entanglement C12 is clearly higher than that of the
beyond-nearest-neighbor entanglements C13 and C14 (which
have the same exact behavior as C17 and C16 respectively as
explained before). On the other hand, in the open free Ising
chain the amplitude of C12 is close to that of the beyond-
nearest-neighbor entanglements. This contrast is attributed to
the fact that the initial source of the entanglement in the open
chain is located at one end of the chain and propagates in one
direction to the other end, whereas in the closed chain case
the initial entanglement splits and propagates in two opposite
directions at the same time, as we explained before.
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FIG. 15. The dynamics of the entanglements C12, C13, C14, C15, C16, and C17 starting from a maximally entangled state in the XX system
in presence of the environment (� = 0.05) at n̄ = 0 in (a) and (b) and n̄ = 0.01 in (c) and (d), where N = 7. The left inner panels illustrate the
rise up of entanglement while the right ones illustrate its death.

B. Entanglement transfer in presence of the environment

Now we turn to examine the effect of the dissipative
environment and thermal excitations on the entanglement
transfer through the open boundary Heisenberg spin chains.
We start with the Ising system at zero temperature in Figs. 14(a)
and 14(b), where as can be noticed the (nn) entanglement
C12 starts from a maximum value of 1 and decays very
rapidly to 0 before reviving again to reach a steady-state
value of about 0.0123. The (nnn) entanglement C13 is not
created at T = 0 but a very short time later, T ≈ 1.5, and
rises up as shown in the left inner panel in Fig. 14(a); it
reaches a maximum value, C ≈ 0.08, before decaying again
and vanishing at around T = 130 as shown in the right inner
panel of Fig. 14(a). The (nnnn) entanglement C14 shows a very
similar behavior to that of C13, where it starts at a later time
T ≈ 16 with a strong oscillation reaching a maximum value of
about 0.0045, then decaying and vanishing at about the same
time as C13, which is presented in the right inner panels of
Fig. 14(a). The (nnnn) entanglement C15 starts at even latter
time T ≈ 78, as illustrated in Fig. 14(b), and increases to reach
a maximum value before decaying and vanishing at T ≈ 104.
The entanglements beyond C15 are zero and never rise up.

The effect of the finite temperature, n̄ = 0.01, on the Ising
system is tested in Figs. 14(c) and 14(d). The overall behavior
of the entanglements C12, C13, and C14 is very close to the
zero-temperature case; the main changes are the reduction in
the maximum values of the entanglements and the vanishing
times of C13, C14 become different from each other and earlier
than before. The entanglement functions C15, C16, and C17

never rise up from zero as the temperature is raised as can be
noticed in Fig. 14(d). Of course, as the temperature is raised
further all the entanglements vanish.

The entanglement transfer in the XX spin chain is explored
in Fig. 15. Contrary to the Ising case, at zero temperature,
the (nnn) entanglement C13 starts to rise up immediately
at t = 0 with no delay, as illustrated in Fig. 15(a) and the
left inner panel, but the other far entanglements, C14, C15,
and even C16 and C17 start up later on one after the other
as shown in Figs. 15(a) and 15(b). But all entanglements
decay asymptotically and vanish. As the temperature is raised,
n̄ = 0.01, illustrated in Figs. 15(c) and 15(d), the (nnn)
entanglement C13 still rises up at t = 0 whereas C14 and C15

are created later and C16 and C17 remain zero at all times.
There is a significant change in the behavior of entanglement
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FIG. 16. The dynamics of the entanglements C12, C13, C14, C15, C16, and C17 starting from a maximally entangled state in the XYZ system
in presence of the environment at n̄ = 0 in (a) and (b) and n̄ = 0.01 in (c) and (d), where N = 7. In (a) and (c), the left inner panels illustrate
the rise up of entanglement while the right ones illustrate its death. In (b) the inner panel shows both of the rise up and death of entanglement.

transfer in the XYZ system, depicted in Fig. 16, the (nnn)
entanglement C13 at zero temperature reaches a steady state
asymptotically, exactly like the (nn) entanglement C12, as
shown in Fig. 16(a). The steady state of C13 vanishes as the
temperature is raised, n̄ = 0.01, contrary to that of C12, which
shows more robustness as illustrated in Fig. 16(c). The time
evolution of the longer range entanglements C15, C16, and
C17 is shown in Fig. 16(d), where they never rise up from
zero. Clearly, the degrees of anisotropy not only play a major
role in controlling the entanglement transfer dynamics in the
Heisenberg spin chains but also affect the different pairwise
entanglements in different ways. In order to further examine
the effect of the anisotropy of the system at zero temperature,
we plot the value of the entanglements C12, C13, C14, and
C15, at T = 300 in the γ -δ space of Heisenberg spin system in
Fig. 17, for N = 5. In general, the asymptotic behavior of the
entanglements C12 and C13 looks very close to what has been
observed in the closed boundary case except for a few small
changes. As can be noticed in Fig. 17(a), the nn entanglement
C12 decreases monotonically as γ decreases reaching zero at
γ = 0 whereas the δ parameter has no noticeable effect on C12.
The (nnn) entanglement C13 shows a different behavior where

it starts with a zero value, at γ = 1, and sustains this value
up to γ ≈ 0.72 (not γ ≈ 0.5 as in the closed boundary case)
before increasing to reach a maximum value at γ ≈ 0.42 then
it decreases again to reach a zero value at γ = 0, as illustrated
in Fig. 17(b). There is a quite small effect on C13 due to the
variation in the parameter δ, where the entanglement value
increases monotonically (but very slightly) as δ increases. In
Figs. 17(c) and 17(d), there are only nonzero values for C14

and C15 at γ = 0 and varies as δ is varied with a maximum
value around δ = 0.5 for C14 and δ = 0.75 for C15. In fact,
the behavior of C12 and C13 do not change at later times so
what is shown in Figs. 17(a) and 17(b) are their asymptotic
steady-state values, which is not the case for C14 and C15

as they vanish at later time and never revive again. To test the
entanglement robustness against thermal excitation at different
degrees of anisotropy, we depict the values of entanglements
C12, C13, C14, and C15 at T = 300 versus both the anisotropic
parameter γ and the temperature parameter n̄ in Fig. 18.
The resistance of the (nn) entanglement C12 to the thermal
effects decreases as the degree of anisotropy of the system
decreases as shown in Fig. 18(a) in a very similar fashion
to the closed boundary case. On the other hand, the (nnn)

012341-16



ENTANGLEMENT DYNAMICS IN HEISENBERG SPIN . . . PHYSICAL REVIEW A 94, 012341 (2016)

0

0.5

1

0

0.5

1
0

0.005

0.01

0.015

δ

(a)

γ

C
12

0

0.5

1

0

0.5

1
0

1

2

3

x 10
−5

δ

(b)

γ

C
13

0

0.5

1

0

0.5

1
0

1

2

3

4

x 10
−14

δ

(c)

γ

C
14

0

0.5

1

0

0.5

1
0

2

4

6

8

x 10
−14

δ

(d)

γ

C
15

FIG. 17. The asymptotic behavior of (a) C12, (b) C13, and the value of (c) C14, (d) C15 (at T = 300) in γ -δ space of the Heisenberg XYZ
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temperature, where N = 5.

entanglement C13 shows no resistance at high anisotropy
values but rises up at γ ≈ 0.72 reaching a maximum value
at γ ≈ 0.42 before vanishing again at γ = 0 as can be seen
in Fig. 18(b), where it survives within n̄ < 0.01. The (nnnn)
and (nnnnn) entanglements C14 and C15, plotted in Figs. 18(c)
and 18(d), exist only with a quite small value in the close
vicinity of γ = 0 and n̄ = 0, which means these concurrences
may survive only in the isotropic system very close to zero
temperature. At later times, T > 300, the profiles of C12 and
C13 do not change, whereas C14 and C15 vanish. Therefore,
the quantum character and entanglement may persist in the
Heisenberg spin chains even at nonzero temperature based
mainly on the degree of spatial anisotropy in the system. The
comparison of the entanglement dynamics and asymptotic
behavior through the open boundary chain with that of the
closed boundary chain in the presence of the environment
shows that though the early dynamics of the system may
differ, because of the way the entanglement is distributed
and propagates, the asymptotic behavior in both cases has
no remarkable difference. Therefore, the environment and
temperature impact over a long period of time on both systems
are the same.

V. CONCLUSIONS

We considered a finite one-dimensional Heisenberg spin
chain with nearest-neighbor spin interaction under the influ-
ence of a dissipative Lindblad environment in the presence of
an external magnetic field at finite temperature. We considered
both cases of closed and open boundary spin chains with
maximum number of seven spins. We presented an exact
numerical solution for the Lindblad master equation of the
system in Liouville space. We were mainly interested in inves-
tigating the effect of the spatial anisotropy, thermal excitations,
system size, and initial-state entanglement content on the time
evolution and asymptotic behavior of the nearest-neighbor,
beyond-nearest-neighbor, and global pairwise entanglements.
We fixed the values of the other parameters in the system such
as the spin-spin coupling, the system-environment coupling
and the magnetic-field strength in accordance with the Born-
Markovian approximation.

In the closed boundary free Heisenberg spin chain, in
the absence of the environments, the nearest-neighbor and
beyond-nearest-neighbor entanglement as well as the one-
tangle τ1 and the global bipartite entanglement τ2 were found to
evolve in time in a nonuniform oscillatory form that changes
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significantly depending on the initial state, system size, and
the degree of spatial anisotropy. The oscillatory behavior of
the entanglement in the spin chain is suppressed once the
system is coupled to the environment. The time evolution of
the entanglement at different ranges under the influence of
the environment at zero temperature is substantially decided
by the degree of spatial anisotropy in the spin-spin coupling
in the x and y directions regardless of the entanglement
content in the initial state. The anisotropy in the z direction
may play an important role in enhancing the entanglements
depending on the interplay with the magnetic field applied in
the same direction, where strong magnetic field diminishes
its effect. The anisotropy influences the entanglement at
different ranges in different ways. Particularly, the asymptotic
steady-state value of nearest-neighbor entanglement increases
with higher anisotropy and vanishes for a completely isotropic
system. In contrary, the next-nearest-neighbor entanglement
is zero at complete anisotropy in x and y and reaches its
maximum value at intermediate degree of anisotropy before
vanishing again in the perfect isotropic case. The steady state of
the nearest-neighbor and next-nearest-neighbor entanglements
shows robustness against temperature up to very small nonzero
temperature, which varies considerably depending on the
degree of anisotropy. No significant size effect was observed

for N � 5 in the presence of the environment. The end to end
entanglement transfer through the chain with open boundaries
was considered with a focus on both the early dynamics and
the asymptotic behavior. We studied the entanglement transfer
starting from a maximally entangled pair of spins at one end,
which is initially disentangled from the rest of the mutually
disentangled spins. The entanglement transfer time and speed
through the chain vary depending on the degrees of anisotropy
and the separation from the entangled pair for both of the
free and environment-coupled systems. Higher anisotropy
and temperature in the coupled system reduces the speed
of the entanglement transfer considerably. The asymptotic
behavior of the entanglements in the open boundary chain
is also primarily decided by the degree of anisotropy and the
temperature in a very similar pattern to the closed boundary
chain case.
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