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Although superconducting systems provide a promising platform for quantum computing, their networking
poses a challenge because they cannot be interfaced to light, the medium used to send quantum signals through
channels at room temperature. We show that mechanical oscillators can mediate such coupling and light can be
used to measure the joint state of two distant qubits. The measurement provides information on the total spin of
the two qubits such that entangled qubit states can be postselected. Entanglement generation is possible without
ground-state cooling of the mechanical oscillators for systems with optomechanical cooperativity moderately
larger than unity; in addition, our setup tolerates a substantial transmission loss. The approach is scalable
to the generation of multipartite entanglement and represents a crucial step towards quantum networks with
superconducting circuits.
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I. INTRODUCTION

Superconducting systems [1,2] are among the best can-
didates for future quantum computers, owing to on-chip
integration, scalability, precise control, and strong nonlineari-
ties. Recent experiments demonstrated their fast initialization
[3–5], observation and stabilization of their quantum trajecto-
ries [6–10], quantum error correction [11–13], and entangle-
ment generation through parity measurements [14–16].

Scalable approaches towards quantum computers and net-
works [17] based on superconducting systems will require
links between superconducting qubits to bridge long distances
through room-temperature environments while preserving
coherence and entanglement. Such quantum-coherent links,
based on light, have been demonstrated for single atoms,
atomic ensembles, and artificial atoms (such as solid-state
impurities and quantum dots) [18–21]. Roch et al. have
made the first step towards similar networks with super-
conducting systems by entangling two qubits in separate
cavities connected by a 1.3-m low-loss electrical wire at
cryogenic temperature [16,22,23]. Extending this approach
to room-temperature channels poses a significant challenge
owing to lack of coupling to light, which can transmit quantum
information over long distances.

Various auxiliary systems have been suggested as solu-
tions for this issue by mediating the interaction between
superconducting qubits and light. One approach relies on
atomic, molecular, or solid-state impurity spins, exploiting
their magnetic and optical dipole moments [24–29]; spin
waves in ferromagnetic materials can use similar principles
in coupling superconducting systems to light [30–32]. Re-
cently, mechanical oscillators attracted attention as transducers
between microwave circuits and light [33–36], and great
experimental progress has been reported in this direction
[37–39]. Optomechanical transducers benefit from the ver-
satile interactions of mechanical oscillators with light through
radiation pressure [40] and with microwave circuits via
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electrostatic [41–44] or magnetic forces [45,46]. The progress
towards optomechanical transducers is paralleled by advances
in coupling superconducting qubits with mechanical oscilla-
tors [47–51], but it remains a challenge to identify simple,
efficient schemes for integrating superconducting qubits and
light in a single, hybrid system. Theoretical proposals so far
[52–54] considered sophisticated time-dependent protocols
that involve complex control schemes and require an unprece-
dented coupling strength (corresponding to optomechanical
cooperativities of several hundred in the example studied in
Ref. [53] and up to thousands in the proposal by Stannigel et al.
[54]) between mechanical oscillators and electromagnetic
fields.

We demonstrate that entangled states of superconducting
qubits can be generated by continuous homodyne detection of
light. Our scheme, shown in Fig. 1, works in analogy to the
technique established by Roch et al. in the microwave domain
[16] but employs an optical channel at room temperature. Since
our strategy builds on established experimental techniques, it
is straightforward, though challenging, to implement it in a
practical realization. The use of light instead of microwaves as
a link between the qubits greatly enhances the distance over
which the qubits can become entangled; our work thus presents
a crucial step towards quantum networks of superconducting
circuits. The generalization of the experiment of Roch et al. to
the optical domain is, however, highly nontrivial and requires
a systematic investigation of new sources of decoherence—
thermal mechanical noise and optical transmission losses have
to be addressed. Such an analysis is complicated since the
Hilbert space dimensions involved are too large, prohibit-
ing even numerical Monte Carlo simulations; an alternative
approach, based on adiabatic elimination of the complex
transducer dynamics [55], is necessary.

Compared to earlier proposals, our strategy requires no
time-dependent control. This simplicity leads to modest
requirements on the system parameters; optomechanical co-
operativity moderately larger than unity suffices, presenting
an improvement of two to three orders of magnitude from
previous proposals [53,54]. Thanks to resonant driving, side-
band resolution is not necessary; furthermore, the transducer
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FIG. 1. Schematic of the setup. Each of two qubits (e.g., super-
conducting transmon qubits, shown as black circuits) interacts with
a mechanical oscillator (nanobeam, shown in yellow) that, in turn,
couples to an optical mode. The optical resonators (blue toroids) are
unidirectionally coupled; the output of the first (top) cavity enters the
second (bottom) one. Homodyne measurement at the output of the
second cavity provides information about the joint state of the two
qubits and can be used to postselect an entangled state.

acts as a force sensor in which light is used to detect the
state-dependent force the qubit exerts on the mechanical
oscillator. The scheme is surprisingly resilient to photon
losses—transmittance of 20% suffices for entanglement gen-
eration in the case study detailed below. Finally, our theoretical
treatment is completely general, admitting a broad range
of experimental implementations—including superconducting
transmon or flux qubits and magnetic sublevels of nitrogen-
vacancy centers [56]—with current technology.

We present the main idea in Sec. II and discuss possible
experimental platforms in Sec. III. In the second half of the
paper, we discuss technical details of the scheme: We derive
effective equations of motion for the qubits in Sec. IV and
discuss numerical methods in Sec. V. Finally, we conclude in
Sec. VI.

II. RESULTS

A. Optomechanical transducer as a force sensor

First we analyze a single node of the system shown in
Fig. 1. A single qubit interacts dispersively with a mechanical
oscillator (as shown, e.g., in Refs. [49,50]) via the Hamiltonian
Hint = −Fxσz = �χ (b + b†)σz. The oscillator [with position
operator x = √

2xzpf(b + b†)] feels a force with magnitude
F = �χ/

√
2xzpf and direction that depends on the state of the

qubit; conversely, the qubit experiences a frequency shift χ

per displacement in zero-point fluctuation xzpf = √
�/2meffωm

(meff is the effective mass and ωm the angular frequency
of the oscillator). The position of the mechanical oscillator
is then measured optically using a resonantly driven cavity
field: In an optomechanical measurement, the mechanical
displacement determines a phase shift on light as described
by the Hamiltonian Hom = �g(a + a†)(b + b†) (a denotes
the annihilation operator of the optical field) [40]. Thus,
we can infer the force from homodyne detection of the
phase quadrature of the cavity output. The (shot-noise-limited)

sensitivity of an optomechanical force sensor at Fourier fre-
quency ω is given by the spectral density of added force noise
S2

F (ω) = κx2
zpf/[8g2χ2

m(ω)], where κ is the cavity linewidth

and χm(ω) = [meff(ω2
m − ω2) − imeffγω]

−1
is the mechanical

susceptibility [40,57] (γ is the width of the mechanical
resonance). The forces ±F corresponding to the qubit states
|0〉, |1〉 can be distinguished by measuring for time

τmeas = S2
F (ω)

F 2
= κω2

m

16χ2g2
. (1)

In the last step, we took into account that the qubit exerts a
quasistatic force and the optomechanical force measurement
concerns frequencies ω � ωm and χm(ω) � 1/meffω

2
m. The

measurement time τmeas needs to be shorter than the lifetime
of the qubits whose decoherence we divide in two parts: the
intrinsic lifetime (characterized by the relaxation and dephas-
ing lifetimes T1,2) and decoherence due to the interaction with
the transducer.

To compare the measurement time with the intrinsic
lifetime, we consider a transmon qubit with T1,2 ≈ 20 μs.
For qubit-mechanical coupling χ = 2π × 5 MHz [49,50], the
required force sensitivity SF = F

√
τmeas ∼ 0.5 fN

√
Hz, which

is a challenging but achievable precision. We can estimate
the mechanically induced decoherence from the force the
oscillator exerts on the qubit, f (ω) = χx(ω)/

√
2xzpf , with

x(ω) = χm(ω)fth(ω); here fth(ω) with spectrum S2
th(ω) =

2γmeff�ωmn̄ is the thermal force acting on the mechanical
oscillator and n̄ � kBT/�ωm is the mean occupation of
the oscillator in thermal equilibrium at temperature T . The
mechanical-dephasing rate of the qubit is given by the spectral
density of the force f at ω � ωm,

	mech = S2
f (ω) = 2χ2

ω2
m

γ n̄. (2)

Comparing the dephasing time τdeph = 1/	mech (associated
with the mechanically induced dephasing) with the measure-
ment time τmeas, we see that the measurement dominates
for large optomechanical cooperativity, C = 4g2/κγ n̄ > 1

2 ;
in this regime, thermal noise does not limit the mea-
surement of the qubit state. Yet, the cooperativity cannot
be too large since measurement backaction would start to
disturb the qubit state and this simple model would break
down.

B. Generation of entanglement by measurement

With an intuitive understanding of a single system, we
now analyze two nodes connected via a unidirectional optical
link; cf. Fig. 1. In this setup, the homodyne current reveals
the total spin of the qubits σ 1

z + σ 2
z . The states |01〉, |10〉

give rise to the same measurement signal; if we prepare the
qubits in the state |+〉|+〉 with |+〉 = (|0〉 + |1〉)/√2 and the
measurement outcome is 〈σ 1

z + σ 2
z 〉 = 0, the qubits end in

the entangled state |
+〉 = (|01〉 + |10〉)/√2 [16,22,23,58].
We expect that entanglement can be prepared efficiently
under the conditions discussed above, T1,2 > τmeas and
C > 1

2 .
We check this expectation rigorously using a conditional

master equation [59,60] that describes the evolution of the
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state ρ(t) of the entire system conditioned on the homodyne
measurement current I (t) (we put � = 1 in the following),

dρ = −i[H,ρ]dt + Lqρdt

+
2∑

j=1

γ {(n̄ + 1)D[bj ] + n̄D[b†j ]}ρdt

+ κD[a1 − a2]ρdt + √
κH[(a1 − a2)eiφ]ρdW, (3)

Idt = √
κ〈(a1 − a2)eiφ + H.c.〉dt + dW. (4)

The Hamiltonian H = Hint + Hmech + Hom + Hcasc, where
Hint = χ [(b1 + b

†
1)σ 1

z + (b2 + b
†
2)σ 2

z ] accounts for coupling of

the qubits to the mechanical oscillators, Hmech = ωm(b†1b1 +
b
†
2b2) is the free mechanical Hamiltonian, Hom = g[(a1 +

a
†
1)(b1 + b

†
1) + (a2 + a

†
2)(b2 + b

†
2)] gives the optomechanical

coupling, and Hcasc = iκ(a1a
†
2 − a2a

†
1)/2—together with the

Lindblad term κD[a1 − a2]ρ—describes the cascaded cavity
dynamics [61]. Furthermore,Lqρ denotes intrinsic qubit relax-
ation and dephasing with lifetimes T1,2, the Lindblad terms are
given by D[O]ρ = OρO† − 1

2 (O†Oρ + ρO†O), and the last
term, with H[O]ρ = (O − 〈O〉)ρ + ρ(O† − 〈O†〉), accounts
for the effect of continuous homodyne measurement; dW is
Wiener increment with mean value E(dW ) = 0 and variance
E(dW 2) = dt . Finally, in Eq. (4), φ is the local oscillator
phase.

Equation (3) cannot be integrated directly, either analyti-
cally or numerically. Even simulations of quantum trajectories
would need to include prohibitively large Hilbert space
dimensions owing to the thermal occupation numbers (tens
to hundreds in the examples below) of the two mechanical
oscillators. Instead, we adiabatically eliminate the linear,
Gaussian dynamics of the transducer from Eq. (3) [55]; see
Sec. IV for technical details. Provided that the qubit coupling
χ is slow on the time scale of the dynamics of the transducer
(dominated, in the examples below, by the optical decay rate
κ), we obtain an effective equation for the reduced state ρq of
the two qubits,

dρq = Lqρqdt + L1ρqdt + L2ρqdt

+
√

	measH
[
σ 1

z + σ 2
z

]
ρqdW, (5)

which can be treated both numerically and analytically
and which reveals the role of individual parameters of
the transducer. Here L1ρq = 	mech

∑
j D[σ j

z ]ρq describes
mechanically induced dephasing of the qubits and L2ρq =
	measD[σ 1

z + σ 2
z ]ρq accounts for the measurement backaction.

The measurement and dephasing rates are given by

	meas = 16
χ2g2

κω2
m

, 	mech = χ2γ

ω2
m

(2n̄ + 1), (6)

in perfect agreement with the simple argument of force sensing
(with 	meas = τ−1

meas); cf. Eqs. (1) and (2). We assume that the
measurement phase φ is properly optimized (in the limit of
weak optomechanical coupling, this optimization corresponds
to detection of the phase quadrature, φ = π/2). Finally, the
measurement current provides information on the total spin of

the qubits,

Idt = 2
√

	meas
〈
σ 1

z + σ 2
z

〉
dt + dW. (7)

Last but not least, we can also include optical losses.
Photon loss between the two systems affects only the first
qubit and leads to its dephasing (like mechanical noise does);
losses after the second system influence both qubits equally
and limit the detection efficiency. Although limited detection
efficiency does not introduce additional decoherence of the
qubits, it necessitates longer measurement times for which
other decoherence processes will degrade the state. We can
include these effects, as well as any asymmetry in system
parameters, in the master equation (5); see Sec. IV for details.

III. IMPLEMENTATIONS

The discussion so far was completely general and did not
assume any specific realization. In this section, we discuss
several possible implementations, as shown in Fig. 2: The most
promising realization relies on superconducting transmon
qubits coupled to mechanical motion using a mechanically
compliant gate capacitor [44,49]. For this setup, we integrate
the effective master equation (5) and show that entanglement
can indeed be generated under the conditions derived above.
Later, we briefly treat two further setups in which these
requirements can be met: first, flux qubits with mechanical
oscillators forming a part of the qubit loop [45] and, second,
solid-state-spin qubits—such as magnetic levels of nitrogen-
vacancy centers—that can interact with mechanical oscillators

(c)

(d)

(b)

(a)

FIG. 2. Possible experimental realizations of the proposed
scheme. Transmon qubits can interact with mechanical oscillators
via position-dependent gate capacitance. The mechanical oscillator
can be formed by a nanobeam that interacts with the near field of a
toroidal optical resonator (a) or a membrane used as an end mirror
or in the middle of a Fabry-Perot cavity (b). Mechanical oscillators
can further be integrated into the circuit of a flux qubit (c). Other
solid-state qubits—such as magnetic sublevels of a nitrogen-vacancy
centers—can be used as well, exploiting magnetic coupling to
cantilevers (d). Superconducting circuits are indicated in black, a
nitrogen-vacancy center in red, mechanical oscillators in yellow, and
optical modes in blue.
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TABLE I. Suggested experimental parameters for the systems shown in Fig. 2. We consider transmon qubits (Sec. III A) coupled to either
nanobeams or vibrating membranes, flux qubits (Sec. III B), and nitrogen-vacancy centers (Sec. III C). We assume the systems are cooled to
20 mK temperature.

Transmon

Quantity Nanobeam Membrane Flux qubit NV center

Qubit coupling (kHz), χ/2π 5800 3700 2400 50
Mechanical frequency (MHz), ωm/2π 8.7 1.0 2.3 2.0
Effective mass (pg), meff 3.8 30 000 10 25
Mechanical quality, Qm 5 × 104 5 × 105 105 104

Mechanical decay (Hz), γ /2π 170 2 22 200
Thermal occupation, n̄ 48 420 185 210
Optical quality, Qopt 5 × 106 107 107 2 × 108

Optical decay (MHz), κ/2π 39 19 19 1
Bare optomechanical coupling (Hz), g0/2π 300 25 65 20
Optomechanical coupling (kHz), g/2π 900 140 450 300
Driving power (μW), P 138 300 370 90
Optomechanical cooperativity, C 10 5 10 8.5
Measurement rate (kHz), 	meas/2π 150 230 190 0.9
Force sensitivity (aN/

√
Hz), SF 130 1900 38 18

Displacement sensitivity (am/
√

Hz), Sx 11 1.6 18 4.1
Schematic figure 2(a) 2(b) 2(c) 2(d)

via magnetic fields [62–65]. We list experimental parameters
of these systems in Table I.

A. Transmon qubits

The first implementation uses superconducting transmon
qubits that interact with mechanical oscillators via mechan-
ically compliant gate capacitors Cg = Cg(x) [41,44,49]. We
describe the qubit using its canonical operators—the charge n

and the phase ϕ across the qubit island—and write the total
Hamiltonian as [49]

H = 4EC(n − n0)2 − EJ (�) cos ϕ − E−(�) sin ϕ

+ωmb†b + χ (n0 − n)(b + b†). (8)

Here EC denotes charging energy, n0 is the charge induced by
gate voltage Vg , and we express the Josephson energy using
the sum and difference of the Josephson energies of the two
junctions EJ1,2; the Josephson energy is controlled using an
external flux �,

EJ (�) = (EJ1 + EJ2) cos

(
π

�

�0

)
, (9a)

E−(�) = (EJ1 − EJ2) sin

(
π

�

�0

)
. (9b)

Finally, the coupling rate for a parallel-plate capacitor [41]

χ = 2EC

CgVg

e

xzpf

d
, (10)

where e is the elementary charge and d the distance between
the capacitor and the mechanical oscillator.

Considering only the first two levels of the transmon
generally gives a free Hamiltonian with a non-negligible
transversal component, which after diagonalization translates
into transversal coupling between the qubit and the mechanical
oscillator, χx(b + b†)σx . Nevertheless, for flux � = �0/2 and

equal Josephson energies EJ1 = EJ2, the corresponding terms
in the Hamiltonian (8) are identically zero and the qubit
Hamiltonian has only the longitudinal component,

H = ωq

2
+ ωmb†b + χ (b + b†)σz. (11)

Small discrepancies between the Josephson energies do not
pose a problem; the resulting transversal coupling is weak and
can be neglected in the rotating-wave approximation.

The mechanical oscillator can take the form of a nanobeam
which interacts with the evanescent field of a microtoroidal
cavity [66,67]; see Fig. 2(a). In such a system, the opto-
and electromechanical parts of the system are well spatially
separated and photon absorption will not heat the supercon-
ducting circuit. Alternatively, we can use a vibrating membrane
forming an end mirror or placed in the middle of a Fabry-Perot
cavity; such designs have been used in recent experimental
demonstrations of microwave-to-optical conversion [38,39];
cf. Fig. 2(b). The system of Andrews et al. [38] is particularly
relevant, since it uses the second harmonic mode of a
membrane-in-the-middle setup; the optical and microwave
field interact with different antinodes of the motion, which
minimizes optical heating of the superconducting circuit.

1. Nanobeam mechanical oscillators

We consider a silicon nitride beam of length l = 70 μm
that is w = 400 nm wide and t = 100 nm thick. The gate
capacitor and the microtoroid both lie at an antinode of the
second harmonic mode of frequency ωm/2π ≈ 8.7 MHz with
effective mass meff = 3.8 pg and zero-point motion xzpf =
16 fm. If one-third of the beam is covered by a superconductor,
the gate capacitance Cg = 275 aF for a beam-circuit distance
dq = 75 nm. For a typical charging energy EC = 5 GHz and
gate voltage Vg = 10 V, the qubit coupling χ/2π ≈ 5.8 MHz.
Note that coupling rate comparable with the mechanical
frequency has recently been demonstrated [50].
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For the optomechanical system, we consider a beam-toroid
distance of dom = 50 nm and a toroid with radius r = 30 μm,
resulting in bare optomechanical coupling of about g0/2π ≈
300 Hz. Driving the optical resonator with the power

P = 1

2
�

2πc

λ
κ

(
g

g0

)2

≈ 138 μW (12)

for linewidth κ/2π = 39 MHz (toroidal whispering gallery
resonators can have decay rates an order of magnitude smaller
[66]), we can reach optomechanical coupling g/2π ≈ 900 kHz
and a measurement rate 	meas/2π ≈ 150 kHz, corresponding
to a measurement time of about 1 μs. Such a measurement is
strong enough to be performed within the coherence time of
transmon qubits which is typically around 10 to 20 μs [14,16].

2. Entanglement generation with nanobeam oscillators

We study entanglement generation with the nanobeam
mechanical oscillators in Fig. 3. To this end, we consider the
following protocol for entanglement generation: Measuring for
time T , we accumulate the total signal J (T ) = ∫

dtI (t). We
then compare this signal with a predefined postselection cutoff
ν and keep the state if and only if |J (T )| < ν. Two parameters
are of interest to us: the entanglement of the resulting state and
the success probability, i.e., the probability of the signal being
smaller than the cutoff. We discuss the protocol in more detail
in Sec. V and derive a simplified model that enables us to find

FIG. 3. Entanglement generation with the nanobeam optome-
chanical transducer of Fig. 2(a). In panel (a) we show the time
dependence of the concurrence for success probability Psucc = 0.1
(solid blue line) and Psucc = 0.5 (dashed green line). In the bottom
panels, we plot the concurrence (optimized over the measurement
time) versus optical transmission τ between the two nodes. In (b) we
plot the concurrence for several detection efficiencies [η = 1 (solid
blue line), η = 0.8 (dashed green line), η = 0.6 (dotted red line),
η = 0.4 (dot-dashed magenta line), and η = 0.2 (thin black line)]; in
(c) the plotted curves represent different success probabilities [Psucc =
0.1 (solid blue line), Psucc = 0.3 (dashed green line), and Psucc = 0.5
(dotted red line)]. We consider qubit coupling χ = 2π × 5.8 MHz,
mechanical frequency ωm = 2π × 8.7 MHz and quality Qm = 5 ×
104, optical decay rate κ = 2π × 39 MHz, optomechanical coupling
g = 2π × 900 kHz, and temperature 20 mK (corresponding to
thermal occupation n̄ = 48); we assume the intrinsic relaxation and
coherence lifetimes of the qubits T1,2 = 20 μs. Furthermore, we use
the values τ = η = 1 for panel (a), Psucc = 0.1 for (b), and η = 1
for (c).

the resulting state analytically without generating quantum
trajectories. In Fig. 3(a), we plot the concurrence [68] of the
final state as a function of time. At early times, t < τmeas/2,
the measurement is inconclusive owing to overlap of signals
corresponding to different outcomes, resulting in strongly
mixed postselected states. Next the concurrence reaches its
maximum around t ∼ τmeas and then steadily decays because
of dephasing and relaxation of the qubits. In the following, we
thus use the optimum value as a figure of merit characterizing
the scheme.

In Fig. 3(b), we analyze how optical losses affect the
concurrence. We investigate transmission losses between
the two nodes (horizontal axis), as well as finite detection
efficiency (individual curves in the plot, see the figure caption
for more details). Remarkably, entanglement can be generated
with up to 80% loss; it is possible to generate entanglement
in the presence of higher losses if the qubit lifetimes and
optomechanical cooperativity are increased. Finally, in panel
(c), we study transmission losses in combination with success
probability. While larger success probability generally leads
to a smaller concurrence, it has little effect on the transmission
loss for which the concurrence reaches zero.

3. Oscillating membranes

Next we consider a membrane-in-the-middle optomechan-
ical system, similar to Ref. [38] with membrane dimensions
1 × 1 mm and second harmonic frequency of ωm/2π =
1 MHz placed dq = 500 nm from the gate capacitor with
capacitance Cg = 60 fF. In such a system, qubit-mechanical
coupling χ/2π = 3.7 MHz can be achieved. With a modest
optomechanical system with coupling g/2π = 140 kHz and
decay rate κ/2π = 19 MHz, the effective measurement rate
can reach a value of 230 kHz.

B. Flux qubits

For measurements with flux qubits, we consider the system
proposed in Ref. [45]; see Fig. 2(c). A mechanical oscillator
forms a part of the qubit loop and the persistent current through
the loop Ip together with an external magnetic field B0 act
with a qubit-state-dependent Lorentz force on the oscillator.
The coupling rate is given by

χ = B0Ipleffxzpf, (13)

where leff is the effective length of the mechanical oscillator.
For a 12-μm-long bridge, the mechanical frequency ωm/2π =
2.3 MHz, effective mass meff = 10 pg, and coupling rate
χ/2π = 2.3 MHz. The bridge can form one end of a Fabry-
Perot cavity; with coupling rate g/2π = 450 kHz and optical
decay rate κ/2π = 19 MHz, the effective measurement rate
	meas/2π = 190 kHz. Since flux qubits have shorter lifetimes
than transmons (typically around 5 μs), weaker entanglement
can be generated in such a system. Moreover, integration of
the mechanical oscillator into the superconducting circuit as
well as the optomechanical Fabry-Perot cavity will lead to
absorption heating of the circuit.
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C. Nitrogen-vacancy centers

The protocol is not limited to superconducting systems.
Here we study entanglement of the magnetic sublevels of
electron spins in nitrogen-vacancy centers using the transducer
schematically depicted in Fig. 2(d). The qubit interacts with
a cantilever that has a magnetic tip and that serves as
an end mirror of a Fabry-Perot optical cavity. In such a
system, magnetomechanical coupling χ/2π = 50 kHz can
be expected [54,62]. For a mechanical frequency ωm/2π =
2 MHz, optomechanical coupling g/2π = 300 kHz, and opti-
cal linewidth κ/2π = 1 MHz (thus requiring extremely high-
quality Fabry-Perot resonator), the effective measurement rate
is about 	meas/2π = 0.9 kHz, requiring qubit lifetime on the
order of milliseconds; such values of the magnetomechanical
coupling, cavity decay rate, and dephasing lifetime put
substantial requirements on the fabrication of the system.

Alternatively, other kinds of solid-state spins can be used.
For instance, the coherence lifetime of phosphorus donors in
silicon can reach several seconds [69]; with such systems,
we can relax the requirements on the magnetomechanical
coupling and the optical decay. If we consider the values
χ/2π = 10 kHz, κ/2π = 10 MHz (with other parameters
same as before), the qubit measurement rate 	meas/2π = 3 Hz,
corresponding to a measurement time of about 50 ms.

IV. DERIVATION OF EFFECTIVE EQUATIONS
OF MOTION

In this section, we derive the effective master equation (5)
that describes the dynamics of the qubits. We start with a
single node and show how we can adiabatically eliminate the
mechanical and optical degrees of freedom. Then we discuss
two such systems connected with a directional optical link;
after treating an idealized system, we analyze the role of
various imperfections, specifically, the presence of optical loss
and asymmetry in the parameters of the two transducers.

A. Single-qubit readout

We start from the stochastic master equation for a qubit
coupled to a single transducer (i.e., a single optomechanical
system),

dρ = −i[H,ρ]dt + Lqρdt + γ {(n̄ + 1)D[b] + n̄D[b†]}ρdt

+ κD[a]ρdt + √
κH[aeiφ]ρdW, (14)

with the Hamiltonian H = χ (b + b†)σz + ωmb†b + g(a +
a†)(b + b†). To adiabatically eliminate the mechanical and
optical degrees of freedom, we consider the equation of motion
of the transducer

dρT = −i[ωmb†b + g(a + a†)(b + b†),ρT ]dt

+ γ {(n̄ + 1)D[b] + n̄D[b†]}ρT dt + κD[a]ρT dt

+ √
κH[aeiφ]ρT dW, (15)

where the subscript T indicates that the density matrix ρT

describes the state of the transducer. Since the dynamics is
linear, the state ρT is fully described by the first and second
statistical moments of the canonical operators, which we

collect in the vector

r = 1√
2

[a + a†, − i(a − a†),b + b†, − i(b − b†)]T ; (16)

we are particularly interested in the covariance matrix with
elements

	ij = 〈[ri − 〈ri〉,rj − 〈rj 〉]+〉
= tr{[ri − 〈ri〉,rj − 〈rj 〉]+ρT }. (17)

The covariance matrix of the conditional state of the transducer
obeys the Riccati equation [55]

	̇c = A	c + 	cAT + 2N

− 2(	cc − σm)(	cc − σm)T , (18a)

A =

⎛
⎜⎝

−κ/2 0 0 0
0 −κ/2 −2g 0
0 0 −γ /2 ωm

−2g 0 −ωm −γ /2

⎞
⎟⎠, (18b)

N = diag

[
κ

2
,
κ

2
,γ

(
n̄ + 1

2

)
,γ

(
n̄ + 1

2

)]
, (18c)

c = κ√
2

(cos φ, − sin φ,0,0)T , (18d)

m = κ√
2

(sin φ, cos φ,0,0)T , (18e)

σij = −i[ri,rj ]; (18f)

on the other hand, the unconditional state of the transducer
follows the deterministic master equation

ρ̇u
T = −i

[
ωmb†b + g(a + a†)(b + b†),ρu

T

]
+ γ {(n̄ + 1)D[b] + n̄D[b†]}ρu

T + κD[a]ρu
T (19)

and the corresponding covariance matrix obeys the Lyapunov
equation

	̇u = A	u + 	uAT + 2N. (20)

We use the superscripts c and u to distinguish the covariance
matrix of the conditional and unconditional state.

The effective stochastic master equation for the qubit is (we
assume summation over i, j , and k) [55]

dρq = Lqρqdt + 1
2A−1

ij 	u
jk[si,[sk,ρq]]dt

+ i

2
A−1

ij σjk[si,[sk,ρq]+]dt

+H[i�T s]ρqdW, (21a)

� = (	c − iσ )Q−T c + A−1(	cc − σm), (21b)

Q = A − 2(	cc − σm)cT , (21c)

s = (0,0,
√

2χ,0)T . (21d)

We thus need to solve the Riccati and Lyapunov equations
(18a) and (20); these equations can be solved analytically in
the limit of weak optomechanical coupling, g < κ , which
corresponds to shot-noise-limited readout, but we omit the
resulting expressions for brevity. Plugging everything in, we
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find the effective equation

dρq = Lqρqdt + (	meas + 	mech)D[σz]ρqdt

+
√

	measH[σz]ρqdW, (22)

where the measurement and dephasing rates 	meas, 	mech are
given in Eq. (6).

B. Two-qubit measurement

The dynamics of two cascaded systems are described by
the equation

dρ = −i[H,ρ]dt + Lqρdt + κD[a1 − a2]ρdt

+ γ {(n̄ + 1)(D[b1] + D[b2]) + n̄(D[b†1] + D[b†2])}ρdt

+ √
κH[(a1 − a2)eiφ]ρdW, (23)

with the Hamiltonian

H =
2∑

j=1

[
χσ j

z

(
bj + b

†
j

) + ωmb
†
j bj + g

(
aj + a

†
j

)(
bj + b

†
j

)]

+ i
κ

2

(
a1a

†
2 − a2a

†
1

)
. (24)

Apart from local dynamics of the two nodes—given by the
square bracket in the Hamiltonian (24) and by the dissipation
of the qubits and the mechanical oscillators—there is the uni-
directional coupling of the optical cavities. This effect appears
in the last term of the Hamiltonian (24) and in the Lindblad
and measurement terms D[a1 − a2]ρ, H[(a1 − a2)eiφ]ρ. (The
minus sign in these terms is due to the choice of the relative
phase between the two cavity fields; see the discussion below.)
We assume that the two qubit-oscillator-cavity systems are
characterized by the same frequencies, coupling constants,
and decoherence rates.

Adiabatic elimination of the mechanical and optical degrees
of freedom can be done in complete analogy with the single-
qubit readout and the effective two-qubit equation is

dρq = Lqρqdt + 	mech
{
D

[
σ 1

z

] + D
[
σ 2

z

]}
ρqdt

+ 	measD
[
σ 1

z + σ 2
z

]
ρqdt

+
√

	measH
[
σ 1

z + σ 2
z

]
ρqdW. (25)

The relative phase between the two qubits in the measurement
and two-qubit dephasing terms is set by the phase between the
two cavities and can be controlled by applying an additional
phase shift to the light field between the cavities. The relevant
choices are σ 1

z + σ 2
z [which can be used to generate the

entangled state |
+〉 = (|01〉 + |10〉)/√2] and σ 1
z − σ 2

z [with
which the state |�+〉 = (|00〉 + |11〉)/√2 can be prepared];
we can obtain the latter measurement from the former by

applying a π shift between the cavities, a2 → −a2. Any other
phase results in the signals from the two qubits appearing in
different quadratures.

With optical losses in the system, the overall dynamics are
described by the equation

dρ = −i[H,ρ]dt + Lqρdt + κ1(1 − τ )D[a1]ρdt

+
2∑

j=1

γj {(n̄j + 1)D[bj ] + n̄jD[b†j ]}ρdt

+D[
√

κ1τa1 − √
κ2a2]ρdt

+√
ηH[(

√
κ1τa1 − √

κ2a2)eiφ]ρdW, (26)

where the Hamiltonian

H =
2∑

j=1

[
χjσ

j
z

(
bj + b

†
j

) + ωm,jb
†
j bj

+ gj

(
aj + a

†
j

)(
bj + b

†
j

)]
− i

2

√
κ1κ2τ

(
a
†
1a2 − a

†
2a1

)
. (27)

Here τ ∈ (0,1] is the transmittance of the channel between
the two cavities (including optical losses in the first cavity)
and η ∈ (0,1] is the detection efficiency (it includes any
optical losses in and after the second cavity); moreover,
we now assume different parameters for the two qubits,
mechanical oscillators, and optical cavities. The effective
two-qubit equation of motion becomes

dρq = Lqρqdt +
[

16(1 − τ )
χ2

1 g2
1

κ1ω
2
m,1

+ χ2
1 γ1(2n̄1 + 1)

ω2
m,1

]

×D
[
σ 1

z

]
ρqdt + χ2

2 γ2(2n̄2 + 1)

ω2
m,2

D
[
σ 2

z

]
ρdt

+D
[√

16τ
χ2

1 g2
1

κ1ω
2
m,1

σ 1
z +

√
16

χ2
2 g2

2

κ2ω
2
m,2

σ 2
z

]
ρqdt

+√
ηH

[√
16τ

χ2
1 g2

1

κ1ω
2
m,1

σ 1
z +

√
16

χ2
2 g2

2

κ2ω
2
m,2

σ 2
z

]
ρqdW.

(28)

For a total-spin measurement, we require that both qubits be
measured at the same rate, τχ2

1 g2
1/κ1ω

2
m,1 = χ2

2 g2
2/κ2ω

2
m,2; in

most implementations, we can tune one of the couplings (the
qubit coupling is usually tuneable using external fields, similar
to the optomechanical coupling). Here we consider tuning the
coupling of the second qubit, χ2 = √

τχ1, since enhancing
any of the coupling strengths in the first node would increase
the dephasing rate of the first qubit. The resulting equation of
motion is then

dρq =
2∑

j=1

(
1

T1
D[σ j

−] + 1

T2
D

[
σ j

z

])
ρqdt +

[
16(1 − τ )

χ2g2

κω2
m

+ χ2γ (2n̄ + 1)

ω2
m

]
D

[
σ 1

z

]
ρqdt

+ τχ2γ (2n̄ + 1)

ω2
m

D
[
σ 2

z

]
ρdt + 16τ

χ2g2

κω2
m

D
[
σ 1

z + σ 2
z

]
ρqdt +

√
16τη

χ2g2

κω2
m

H
[
σ 1

z + σ 2
z

]
ρqdW
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=
2∑

j=1

(
1

T1
D[σ j

−] + 1

T2
D

[
σ j

z

])
ρqdt + [(1 − τ )	meas + 	mech]D

[
σ 1

z

]
ρqdt

+ τ	mechD
[
σ 2

z

]
ρqdt + τ	measD

[
σ 1

z + σ 2
z

]
ρqdt +

√
τη	measH

[
σ 1

z + σ 2
z

]
ρqdW, (29)

where the mechanical coupling rate of the first and second
qubit is χ ,

√
τχ and 	meas, 	mech are given in Eq. (6);

moreover, we wrote the intrinsic qubit decoherence explicitly
using relaxation and dephasing processes with corresponding
lifetimes T1,2. Individual tuning of the coupling rates (both
χ and g) can also be used to compensate other differences
between the systems arising during manufacture, such as the
difference in optical decay rates or mechanical frequencies.

V. NUMERICAL METHODS

Here we discuss details of the postselection procedure and
our approach to approximating the resulting state. We start
from the conditional master equation, which we write as

dρ = γ−{D[σ 1
−] + D[σ 2

−]}ρdt + γ1D
[
σ 1

z

]
ρdt

+ γ2D
[
σ 2

z

]
ρdt + 	D

[
σ 1

z + σ 2
z

]
ρdt

+
√

η	H
[
σ 1

z + σ 2
z

]
ρdW, (30a)

Idt = 2
√

η	
〈
σ 1

z + σ 2
z

〉
dt + dW. (30b)

We assume that both qubits relax at the same rate, whereas
their dephasing rates differ. (This situation describes two iden-
tical qubits coupled to light via optomechanical transducers
with optical losses between them.) Now we prepare the qubits
in the state |ψ0〉 = (|0〉 + |1〉)(|0〉 + |1〉)/2 and measure for
time T , accumulating the signal

J (T ) =
∫ T

0
Idt. (31)

If J (T ) ≈ 0, the expectation value 〈σ 1
z + σ 2

z 〉 = 0 and the
qubits are in the entangled state |
+〉 = (|01〉 + |10〉)/√2
(assuming all decoherence channels are negligible compared
with the measurement), whereas for J (T ) � 0 they are in the
state |11〉 [|00〉 for J (T ) � 0]. Choosing a postselection cutoff
ν, we keep the state if |J (T )| � ν and discard it otherwise.

To get a deeper understanding of the dynamics, we adopt
the following simplified approach: We assume that the system
first evolves according to the unconditional master equation

ρ̇ = γ−
{
D[σ 1

−] + D[σ 2
−]

}
ρ + γ1D

[
σ 1

z

]
ρ + γ2D

[
σ 2

z

]
ρ

+ 	D
[
σ 1

z + σ 2
z

]
ρ (32)

from time t = 0 to time t = T . Afterwards, we perform a fast,
strong measurement, which returns the result J (T ). Finally,
using the cutoff ν, we either keep or discard the state; we ask
how strong the entanglement in the final state is. This approach
is generally not valid since nonlinearity in the measurement
term H[σ 1

z + σ 2
z ]ρ = (σ 1

z + σ 2
z )ρ − tr{(σ 1

z + σ 2
z )ρ}ρ + H.c.

mixes the three subspaces corresponding to the measure-
ment outcomes, 〈σ 1

z + σ 2
z 〉 = 2 (spanned by the state |00〉),

〈σ 1
z + σ 2

z 〉 = 0 (spanned by |01〉, |10〉), and 〈σ 1
z + σ 2

z 〉 = −2

(spanned by |11〉), which are independent in the uncondi-
tional dynamics (assuming weak relaxation of the qubits).
Nevertheless, if the measurement is strong enough (so that
the intersubspace coherences quickly decay), this treatment
well approximates the true stochastic dynamics which can
otherwise be studied only using quantum trajectories.

Formally, we solve the deterministic master equation
Eq. (32) with the initial condition ρ(t = 0) = |ψ0〉〈ψ0|;
although this equation can be solved analytically, we omit
the solution for brevity. The qubits then interact with the
measurement apparatus (initially in the vacuum state), which
we project on an eigenstate of the measurement operator and
obtain the unnormalized state

ρ̃x = 〈x| exp(−iμSzp)ρ(T ) ⊗ |0〉〈0| exp(iμSzp)|x〉. (33)

Here Sz = (σ 1
z + σ 2

z )/2, p is the phase quadrature of the
measurement apparatus, and μ is the measurement strength,
which we evaluate from the classical signal in Eq. (31):
Each of the projections 〈Sz〉 = 0, ± 1 gives rise to normally
distributed signals J (T ) with mean value 4

√
η	〈Sz〉T and

variance T . The measurement apparatus is a bosonic mode and
its interaction with the two-qubit system leads to displacement
of this mode; the measurement strength is given by the mean
(for 〈Sz〉 = 1) renormalized by the square root of the variance
and by factors coming from the definition of the amplitude
quadrature x = (a + a†)/

√
2, so that μ = 2

√
η	T .

The unnormalized projected state ρ̃x can be expressed
using phase-quadrature representation for the measurement
apparatus

ρ̃x = 1

(2π )3/2

∫
dp exp

[
−p2

4
+ i(x − μSz)p

]
ρ(T )

×
∫

dp′ exp

[
−p′2

4
− i(x − μSz)p

′
]

=
√

2

π

1∑
S,S ′=−1

e−(x−μS)2
PSρ(T )PS ′e−(x−μS ′)2

= D(x)ρ(T )D(x); (34)

here PS is the projector onto the subspace with 〈Sz〉 = S and

D(x) = 4

√
2

π
diag

[
e−(x−μ)2

,e−x2
,e−x2

,e−(x+μ)2]
. (35)

Integrating over the interval x ∈ (−ν,ν), we obtain the
postselected state

ρf =
∫ ν

−ν
dxρ̃x

tr
{ ∫ ν

−ν
dxρ̃x

} ; (36)

the normalization factor gives the success probability of the
postselection procedure, Psucc = tr{∫ ν

−ν
dxρ̃x}. Although it is
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FIG. 4. Comparison of the analytical model (dashed red line)
with numerical simulations (solid blue line). In the first row [panels
(a)–(c)], we consider system parameters γ− = 0.1	, γ1 = γ2 = 0.2	,
η = 0.6; in the second row [panels (d)–(f)], the parameters are
γ− = 0.1	, γ1 = 	, γ2 = 0.3	, η = 1; and for the last row [panels
(g)–(i)], we use the parameters γ− = 0.8	, γ1 = γ2 = 0, η = 1.
The success probability Psucc = 0.1 for the first column [panels
(a),(d),(g)], Psucc = 0.3 for the second column [panels (b),(e),(h)],
and Psucc = 0.5 for the last column [panels (c),(f),(i)].

possible to express the final density matrix analytically, the
resulting expression is too cumbersome to be presented here.

We compare the analytical model with numerical simula-
tions in Fig. 4. As expected, the analytical model breaks down
when the relaxation rate becomes large and the nonlinearity
of the measurement term starts to play a role [panels (g)–(i)].
Furthermore, the analytical model and the numerical simula-
tions start to deviate for higher success probability [panels (c),
(f), and (i)]. This behavior is, however, a result of a different
data analysis procedure: The analytical model evaluates entan-
glement of the average state obtained by postselection but the
numerical simulations reveal the average entanglement that
we can recover. In the extreme case of a perfect measurement
(i.e., dynamics described by the stochastic master equation
dρ = 	D[σ 1

z + σ 2
z ]ρdt + √

	H[σ 1
z + σ 2

z ]ρdW ) and success
probability 100% (corresponding to discarding the measure-
ment record), the average state is a mixture of all possible
measurement outcomes,

ρ = 1

4
|00〉〈00| + 1

2
|
+〉〈
+| + 1

4
|11〉〈11|

= 1

4

⎛
⎜⎝

1 0 0 0
0 1 1 0
0 1 1 0
0 0 0 1

⎞
⎟⎠, (37)

which is a separable state. In simulations, on the other hand,
the maximally entangled state |
+〉 is generated with 50%
probability and the average entanglement is equal to 0.5 ebit.

We can treat the measurement of spin difference σ 1
z − σ 2

z

similarly. In this case, the entangled state |�+〉 = (|00〉 +
|11〉)/√2 can be generated from the initial state |ψ0〉. We

FIG. 5. Comparison of the total spin measurement (solid blue
line) with the measurement of the spin difference (dashed red line).
(a) Decoherence dominated by dephasing, γ1 = γ2 = 0.2	, γ− =
0.05	, Psucc = 0.2. (b),(c) Comparable dephasing and relaxation,
γ1 = γ2 = 0.1	, γ− = 0.3	, Psucc = 0.1 (b), Psucc = 0.5 (c). For all
plots, the detection efficiency η = 1.

compare this measurement with the total-spin measurement
in Fig. 5. When dephasing dominates the decoherence [panel
(a)], the two strategies fare equally since dephasing affects both
cases similarly. When the qubit relaxation cannot be neglected,
the success probability decides which measurement is prefer-
able. For small success probabilities [panel (b)], it is beneficial
to measure the total spin σ 1

z + σ 2
z ; with this measurement, only

states in the relevant subspace (spanned by the states |01〉,
|10〉) are postselected. Although a similar statement is true
also for the spin-difference measurement (where the relevant
subspace is spanned by |00〉, |11〉), the ground-state population
contains also contributions from the decayed odd-parity states
|01〉, |10〉, which reduce the concurrence. The measurement
of the spin difference is, however, a better choice if the
success probability is large [panel (c)]; in such a situation,
the total-spin measurement mixes all three subspaces and
the entanglement is reduced. There is, nevertheless, a little
difference between the two strategies for times up to the
optimal measurement time, independent of the chosen success
probability.

VI. CONCLUSIONS

We proposed a method to entangle superconducting qubits
using optomechanical transducers and continuous homodyne
measurements on the optical output. We require only strong
optomechanical cooperativity, C = 4g2/(κγ n̄) > 1

2 , and suf-
ficiently long qubit lifetimes; ground-state cooling of the
mechanical oscillators or resolved-sideband regime is not
necessary. Owing to the topology of the scheme, where a single
light beam travels through the optical cavities in a cascaded
manner, more nodes can be added to generate multipartite
entanglement. Although the presented setup works only
with postselection, deterministic entanglement generation is
possible with feedback [70].

The main advantage of the scheme, however, is its
similarity to existing experiments. Parity measurements are
an established method for generation of entanglement in
circuit QED [14,16]; optomechanical force sensing is a
well-understood measurement strategy with a broad range of
applications [71–76]. Together, these techniques can extend
quantum communication with superconducting circuits from a
cryogenic environment to room temperature. Their connection
is, however, a difficult task—optomechanical force detection
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usually estimates classical forces; the question of whether the
quantum coherence of the source of such forces can survive
during the measurement did not received enough attention.
By showing that thermal noise and optical losses play a
surprisingly small role in measurement-induced generation of
entanglement of superconducting qubits, we answered this
question in the affirmative.
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[8] G. de Lange, D. Ristè, M. J. Tiggelman, C. Eichler, L. Tornberg,
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