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Asymptotic role of entanglement in quantum metrology
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Quantum systems allow one to sense physical parameters beyond the reach of classical statistics—with
resolutions greater than 1/N , where N is the number of constituent particles independently probing a parameter.
In the canonical phase-sensing scenario the Heisenberg limit 1/N2 may be reached, which requires, as we show,
both the relative size of the largest entangled block and the geometric measure of entanglement to be nonvanishing
as N → ∞. Yet, we also demonstrate that in the asymptotic N limit any precision scaling arbitrarily close to the
Heisenberg limit (1/N2−ε with any ε > 0) may be attained, even though the system gradually becomes noisier and
separable, so that both the above entanglement quantifiers asymptotically vanish. Our work shows that sufficiently
large quantum systems achieve nearly optimal resolutions despite their relative amount of entanglement being
arbitrarily small. In deriving our results, we establish the continuity relation of the quantum Fisher information
evaluated for a phaselike parameter, which lets us link it directly to the geometry of quantum states, and hence
naturally to the geometric measure of entanglement.

DOI: 10.1103/PhysRevA.94.012339

I. INTRODUCTION

Quantum metrology is a vivid topic of research both at
the theoretical and experimental levels [1–3]. With the help
of quantum systems consisting of particles that independently
sense a parameter of interest one may attain sensing resolutions
beyond the reach of classical statistics—beyond the so-
called standard quantum limit (SQL) [4]. This limit states
that the mean-squared error (MSE) of estimation may at
best scale inversely to the number of particles employed,
i.e., as 1/N . Quantum mechanics allows one to beat the
SQL and in the canonical phase-sensing scenario reach a
1/N2 resolution—the Heisenberg limit (HL)— a quantum
enhancement of precision that limitlessly improves with
N [5]. Spectacularly, quantum metrology schemes have been
experimentally demonstrated to allow for enhanced sensing
of phaselike parameters in optical interferometry [6], e.g., in
gravitational-wave detection [7], but also in atomic-ensemble
experiments of spectroscopy [8] and magnetometry [9], as well
as in atomic clocks [10].

Quantum enhancement in metrology is only possible thanks
to the interparticle entanglement exhibited by the quantum
system employed [11]. In fact, resolutions beyond classical
limits have been used to prove the existence of large-scale
entanglement in real atomic systems [12]. The main obstacle in
such experiments is the noise, which destroys the entanglement
and impairs the sensitivity [13]. For the attained precision to
preserve the superclassical scaling, the number of entangled
particles, or, formally, the entanglement producibility [14] (or
depth [15]) must grow with the system size [16]. On the other
hand, by studying the ultimate resolutions attainable with noisy
quantum systems, it has been shown that generic uncorrelated
(independently disturbing the particles) noise types limit the
quantum enhancement to a constant factor [17]. In terms of
entanglement properties, such SQL-like sensitivities can then
be reached for arbitrary large N by grouping the constituent

particles into separate entangled blocks of finite size [18].
Although the protection of entanglement is thus of the highest
priority for the superclassical precision scaling to be preserved,
there also exist states that possess all their particles (genuinely)
entangled but nonetheless are useless for metrology [19].
Moreover, the nature of entanglement that is essential for
metrological purposes remains unclear, as by employing
large-scale but yet undistillable entanglement (which could
be considered of the weakest type [20]) one may still attain
the HL resolution in phase sensing [21].

In this work, we connect the key metrological performance
quantifier—the asymptotic scaling of precision—with the
entanglement properties as quantified relatively to the size
of the system employed. To this end, we first establish a
continuity relation for the quantum Fisher information (QFI),
which allows us to connect the metrological properties of

FIG. 1. Quantum phase-sensing protocol—designed to most pre-
cisely sense fluctuations of a phaselike parameter ϕ around its
given value. The system is prepared in an N -particle entangled
state ρN obtained from |ψ〉⊗N by the preparation map �N that
also incorporates noise. ϕ is encoded on each particle by a unitary
Uϕ and the final state ρN

ϕ is measured. The procedure is repeated
sufficiently many times (ν � 1) to construct most accurate parameter
estimate ϕ̃.
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quantum states to their geometry. Thanks to the derived
continuity, we are able to upper bound the QFI by the
geometric measure of entanglement (GME) [22]. As a result,
we demonstrate that, although to attain the exact HL both
the relative size of the largest entangled block and the GME
must be asymptotically nonvanishing, any precision scaling
arbitrarily close to HL, 1/N2−ε with ε > 0, is achievable
despite both these entanglement quantifiers decaying with
N → ∞.

II. PRELIMINARIES

A. Metrology protocol

We consider the noisy phase-sensing protocol depicted
in Fig. 1, which allows us to unambiguously approach the
problem. We encode the parameter unitarily, so that the
asymptotic precision scaling can be actually improved [17],
and independently on each particle, so that the quantum-
enhanced scaling is firmly constrained between SQL and HL
(1/N and 1/N2) and attributed solely to the entanglement
properties of the quantum state of the system [23]. On the other
hand, for any entanglement quantifier to be comparable with
the asymptotic precision scaling it must be scale independent,
i.e., it cannot grow with N when considering a sequence of
states of the same type [24]. Hence, a notion of entanglement
size may only be quantified relatively to the total system size,
while the entanglement amount must not change by simply
increasing N . We define adequately both such notions below,
but let us already stress that the latter we find to be naturally
emergent by relating the metrological properties of quantum
states to their geometry.

We follow the frequentist approach to estimation, which
applies in the regime of sufficiently many independent protocol
repetitions (ν � 1 in Fig. 1), while sensing small parameter
fluctuations around its certain known value [25]. Then, the
MSE, �2ϕ̃, of any (consistent and unbiased) estimator, ϕ̃,
of the parameter is ultimately lower limited by the quantum
Cramér-Rao bound [26]:

�2ϕ̃ � 1

νFQ
[
ρN

ϕ

] , where FQ
[
ρN

ϕ

]
:= Tr

{
ρN

ϕ L
[
ρN

ϕ

]2}
(1)

is the quantum Fisher information (QFI) for a given N -particle
state ρN

ϕ with ϕ standing for the true parameter value. L[ρN
ϕ ] is

the symmetric logarithmic derivative operator unambiguously
defined via ∂ϕρN

ϕ = (L[ρN
ϕ ]ρN

ϕ + ρN
ϕ L[ρN

ϕ ])/2 [27].
In the customary phase-sensing protocol of Fig. 1 the

estimated parameter is encoded onto the system state ρN

via ρN
ϕ = U⊗N

ϕ ρNU †⊗N
ϕ with Uϕ = e−ihϕ and h being some

fixed single-particle Hamiltonian. Without loss of generality
we assume the operator norm of h to fulfill ‖h‖ � 1/2, so
that the single-particle QFI generally satisfies FQ[ρ1

ϕ] � 1. As
the parameter encoding is unitary, in what follows we may
write the QFI for given h as FQ[ρN ] := FQ[ρN

ϕ ] manifesting
its independence of ϕ [3]. Moreover, as the QFI is additive and
convex [3], it must then fulfill FQ[ρN

sep] � N for any separable
ρN

sep. Hence, this proves that the SQL can be surpassed indeed
only when the quantum state ρN exhibits entanglement [11].

FIG. 2. Hierarchy of convex sets SN
k containing all k-producible

states. The set SN
N contains all states acting on H⊗N , while SN

1 is its
subset of separable states. Shaded region is the set SN

l \ SN
l−1 of states

with the relative size of largest entangled block: RLEB = l/N .

B. Entanglement quantifiers

In order to quantify the relative size of entanglement
contained in a given ρN of Fig. 1, we use the notion of
producibility [14] (also termed entanglement depth [15]). An
N -particle pure state is termed k-producible if it can be written
as |ψN 〉 = ⊗M�N

m=1 |ψm〉 with each |ψm〉 consisting of at most
k particles. This directly extends to mixed states: a mixed
state ρN is k-producible if it is a convex combination of
pure k-producible states [14]. Hence, for an N -particle Hilbert
space H⊗N , the convex sets of all k-producible states, which
we denote by SN

k , form a hierarchy [SN
1 ⊂ SN

2 ⊂ · · · ⊂ SN
N ]

that we schematically depict in Fig. 2. Note that SN
1 is

just the set of fully separable states, SN
N is the set of all

states acting on H⊗N , while SN
N \ SN

N−1 contains ones that
are genuinely entangled—they do not admit any form of
separability. Crucially, the concept of producibility allows
us to define for any N -particle state ρN

(l) that is l-producible
but not (l − 1)-producible, i.e., ρN

(l) ∈ SN
(l) := SN

l \ SN
l−1, the

relative size of the largest entangled block (LEB) of particles as
RLEB := l/N . Thus, RLEB is the ratio of the size of the largest
subgroup of particles that are entangled to the total particle
number. When describing the precision scaling attained by
metrology protocols, one deals with the N → ∞ limit. Note
that in such an asymptotic regime the LEB may be divergent
despite RLEB vanishing with N . Hence, if one was to associate
the entanglement size with the number of particles being
entangled via LEB, in many situations it would be infinite
for N → ∞. In contrast, RLEB adequately then takes values
within the interval [0,1] depending on the sequence of states
considered.

On the other hand, in order to quantify the amount of
entanglement exhibited by ρN in Fig. 1, we employ the
geometric measure of entanglement (GME) that is defined for
pure states as EG[|ψN 〉] := 1 − max|φN 〉∈SN

1
|〈φN |ψN 〉|2 [22].

Its definition naturally generalizes to mixed states through the
convex-roof construction [22]:

EG[ρN ] := inf
{pi ,|ψN

i 〉}

∑
i

pi EG
[∣∣ψN

i

〉]
(2)

with the infimum taken over all ensembles {pi,|ψN
i 〉} such

that ρN = ∑
i pi |ψN

i 〉〈ψN
i |. However, one may show that

definition (2) may be equivalently obtained by employing
the Uhlmann fidelity, F (ρ,σ ) := Tr

√√
σρ

√
σ [28], so that

EG[ρN ] = 1 − maxσN∈SN
1

F 2(ρN,σN ) [29]. Crucially, thanks
to its geometrical formulation, the GME is independent of the
particle number N . In particular, it effectively measures the
distance to separable states independently of the Hilbert space
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dimension. To see this, note that the GME obeys the following
inequality:

1 −
√

1 − EG(ρN ) � min
σN∈SN

1

T (ρN,σN ) �
√

EG(ρN ), (3)

which directly follows from the Fuchs-van de Graaf relation
between fidelity and trace-distance, T (ρ,σ ) := ‖ρ − σ‖1/2,
of quantum states [30]. In particular, for any sequence of states
{ρN } that is bounded away from the set of fully separable
states, in the sense that minσN∈SN

1
T (ρN,σN ) � c with some

constant c > 0, the GME is also bounded away from zero as
EG(ρN ) � c2. On the other hand, the vanishing GME of a
sequence {ρN } implies that its elements must converge to the
set of separable states as N → ∞. As a result, the GME may
have been used to demonstrate, e.g., that typical states—by
exhibiting high GME—have high entanglement [31].

III. RESULTS

A. Continuity of QFI

Our first result is the continuity relation for the QFI, which
will later allow us to naturally connect the GME of a state
with its metrological properties. More precisely, exploiting the
purifications-based definition of QFI [17], we upper bound in
Appendix A the difference of QFIs for any two quantum states
via their geometrical separation, in particular, via their fidelity,
trace, or Bures distance. In the special case of one of the states
being pure, we additionally tighten the corresponding bound
utilizing the convex-roof-based definition of QFI [32]. The
result may be summarized by the following inequality holding
for any two ρN,σN ∈ B(H⊗N ) (see Appendix A for the proof):

|FQ[ρN ] − FQ[σN ]| � ξ
√

1 − F (ρN,σN )2 N2, (4)

where F (ρ,σ ) is again the Uhlmann fidelity, while ξ = 8 for
general quantum states and ξ = 6 if one of them is pure.

Let us first stress the general power of the continuity
relation (4) when used for comparing metrological properties
between multipartite states. It straightforwardly follows from
Eq. (4) that for any pair ρN,σN (see also Appendix A):

FQ[ρN ] � FQ[σN ] + ξ
√

2 T (ρN,σN ) N2 (5)

with T (ρ,σ ) denoting the trace distance as before. Hence,
Eq. (5) directly implies that given a sequence of states {σN }
that do not attain the HL, i.e., FQ[σN ]/N2 → 0 with N , any
other sequence {ρN } that consists of states those successively
converge to {σN }, so that T (ρN,σN ) → 0 with N , cannot
attain the HL either. In particular, recalling that separable
states do not allow for any quantum-enhanced sensitivity,
no sequence of states tending to the set of fully separable
states SN

1 may attain the HL. On the other hand, taking
in contrast {ρN } in Eq. (5) as the reference sequence that
attains the HL, i.e., FQ[ρN ]/N2 → c > 0 with N , Eq. (5)
proves that any other sequence {σN } must also attain the
HL, as long as ξ

√
2 T (ρN,σN ) → c′ < c while N → ∞.

For instance, choosing as reference the optimal GHZ states,
which yield FQ[ψN

GHZ] = N2 and, hence, c = 1 (ξ = 6), we
see that any other sequence of states {σN } that maintain their
T (ψN

GHZ,σN ) < 1/72 with N must also follow the HL. This
is consistent with recent profound methods, which focus on

Dicke-state sequences and imply T (ψN
GHZ,σN ) <

√
3/2 to be

sufficient in case of GHZ states [33].
Surprisingly, Eq. (5) opens an interesting possibility: there

may exist two sequences of states, which asymptotically
converge despite contrasting metrological properties. Consider
a sequence of states {σN } such that FQ[σN ] ∼ Nα for
sufficiently large N , yielding a 1/Nα asymptotic resolution
with 0 < α < 2 (possibly even sub-SQL). Equation (5) does
not exclude the existence of another sequence {ρN } with
T (ρN,σN ) → 0 for N → ∞ that nonetheless attains any
improved precision scaling 1/N2−ε with 0 < ε < 2 − α. All
that Eq. (5) imposes is that {ρN } approaches {σN } slow enough,
so that T (ρN,σN ) � 1/N2ε as N → ∞. In the context of
entanglement, there may thus exist sequences approaching
the set of separable states but preserving precision scaling
arbitrarily close to HL. We later provide examples of such
sequences.

B. Relating QFI to entanglement

We first recall the result of [16] relating the notions of QFI
and k producibility: for any k-producible state σN ∈ SN

k , the
QFI is upper bounded as

FQ[σN ] �
⌊

N

k

⌋
k2 +

(
N −

⌊
N

k

⌋
k

)2

� k N, (6)

where �x� := floor[x]. The above bound importantly implies
that for states with fixed producibility k (independent of N )
the quantum enhancement is limited to a constant factor [16].
Hence, for a superclassical precision scaling to be possible the
preparation map �N in Fig. 1 must output states such that their
producibility constantly rises with increasing N .

On the other hand, in terms of RLEB, Eq. (6) equivalently
reads: FQ[σN ] � RLEBN2. Thus, the exact HL can be attained
only if RLEB does not vanish in the asymptotic N limit, what
requires the relative size of entanglement to be maintained with
increasing N . However, similarly to the continuity relation (5),
Eq. (6) leaves open the existence of sequences attaining
scalings arbitrarily close to HL despite their RLEB tending
to zero with N (it requires the size of the particle LEB to
grow as N1−ε, letting RLEB vanish as N−ε). Operationally, in
order to reach a superclassical scaling, it is thus enough for
the �N of Fig. 1 to prepare states with the effective number
of entangled particles rising with N , yet at such a rate that its
ratio to the total particle number is constantly decreasing. One
may thus argue that the preparation map �N of Fig. 1 is then
experimentally easier to implement, as it does not require the
relative size of entanglement to be maintained with increasing
N (e.g., while squeezing an atomic ensemble [34]), especially
when dealing with systems of macroscopic size [35].

Let us now provide the second main result relating the QFI
and the GME. To this end, we show that Eq. (4) (with ξ = 6)
may be utilized to upper bound the QFI as (see Appendix B
for the proof):

FQ[ρN ] � N + 6
√

EG[ρN ] N2. (7)

As an aside, note that the formula (7) may be straightforwardly
generalized to any k > 1 with help of the bound (6) and
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by defining the geometric measure of k producibility after
replacing SN

1 with SN
k in Eq. (2) (see Appendix B).

Inequality (7) implies that the exact HL can only be attained
if the entanglement is asymptotically nonvanishing, i.e., any
sequence {ρN } with GME vanishing for N → ∞ cannot reach
the 1/N2 scaling. Still, Eq. (7) does not exclude the possibility
that any resolution arbitrarily close to HL is attained by a
sequence {ρN }, whose elements exhibit vanishingly small
geometric measure of entanglement as N → ∞. In particular,
Eq. (7) just requires the GME to decay slowly enough, so that
as long as asymptotically EG[ρN ] � 1/N2ε, any resolution
1/N2−ε is allowed.

C. Almost the HL with vanishing RLEB and GME

In order to affirm the above claims, we now provide
examples of state sequences—consisting of either pure or
mixed states—that attain precision scalings arbitrarily close
to HL despite their relative size and amount of entanglement,
as quantified by RLEB and GME respectively, vanishing with
N → ∞. We return to the phase-sensing scenario of Fig. 1
with the parameter ϕ being unitarily encoded via the single-
particle Hamiltonian h = σz/2.

First, let us consider nonmaximally entangled states:∣∣ψN
p

〉
:= √

p|0〉⊗N +
√

1 − p|1〉⊗N (8)

with 0 � p � 1/2, so that |ψN
1/2〉 is the GHZ state of N qubits.

The metrological capabilities of states (8) were studied in
Ref. [19], where it was shown that by making p vanish quickly
enough with N , states (8) do not surpass SQL despite being
genuinely entangled for any p > 0. On the contrary, we focus
on the fact that states (8) also allow for resolutions arbitrarily
close to HL even when p → 0 as N → ∞. However, in
order to also control and vary their LEB, we tailor them to
|ψN

p,l〉 := |ψl
p〉 ⊗ |0〉⊗N−l , so that their RLEB = l/N for any

p > 0. As EG[|ψN
p,l〉] = p [22], we may then rewrite their QFI

as FQ[|ψN
p,l〉] = 4p(1 − p)l2 = 4EG(1 − EG)R2

LEBN2. Thus,
by setting both EG = 1/Nε1 and RLEB = 1/Nε2 to vanish with
N for any ε1,ε2 > 0, we obtain the QFI to scale as FQ[|ψN

p,l〉] ∼
N2−ε1−2ε2 , which in turn yields the desired arbitrarily close to
HL resolution 1/N2−ε1−2ε2 .

Now, let us turn to the case of mixed states and consider
N -qubit Werner-type states [36]:

ρN
p = p

∣∣ψN
1/2

〉〈
ψN

1/2

∣∣ + (1 − p)
12N

2N
. (9)

The QFI of ρN
p reads FQ[ρN

p ] = N2p2/[p + (1 −
p)/2N−1] [3], and for sufficiently large N simplifies to
pN2 (independently whether p depends on N ). Although the
GME can be exactly evaluated for these states [37], for our
purposes it is enough to use the upper bound EG[ρN

p ] � p/2,
which stems from the convexity of GME and may be shown
to be saturated for N → ∞ (see Appendix C). Thus, for
sufficiently large N we may write FQ[ρN

p ] � 2EGN2. Note
that by setting p = 1/Nε, leading to EG[ρN

p ] � 1/(2Nε),
we actually let the white noise increase with N , so that the
state (9) becomes fully depolarized in the asymptotic N limit.
Nevertheless, the QFI scales then at least as FQ[ρN

p ] � N2−ε

leading to the claimed 1/N2−ε resolution. Moreover, it has

been proven that for states (9) to be genuinely entangled
p > (2N−1 − 1)/(2N − 1) [38], which for large N converges
to 1/2 from above. Hence, by letting p → 0 as N → ∞ we
obtain a sequence of states that quickly seize to be genuinely
entangled with strictly RLEB < 1. However, in order to prove
that RLEB can be made vanishing, similar to the pure states
case, we tailor the states (9) accordingly to

ρN
p,l := p

∣∣ψN
1/2,l

〉〈
ψN

1/2,l

∣∣ + (1 − p)
12N

2N
, (10)

so that RLEB � l/N may be assured. Following the same
argumentation as in the case of Eq. (9) [3], the QFI of states (10)
can then be shown to simplify to FQ[ρN

p,l] ≈ pl2 for sufficiently
large N . Hence, as the GME has to still obey EG[ρN

p,l] � p/2,
the QFI of states (10) must asymptotically scale at least as
FQ[ρN

p,l] � 2EGR2
LEBN2. Thus, as desired, also the mixed

states (10) allow us to set both EG = 1/Nε1 and RLEB = 1/Nε2

vanishing, but still attain the 1/N2−ε1−2ε2 resolution despite
becoming completely depolarised in the asymptotic N limit.

Although the above pure- and mixed-state sequences
demonstrate that, indeed, both the GME and RLEB may be set
vanishing as N → ∞, while maintaining the arbitrarily close
to HL resolutions, the exemplary sequences do not asymptot-
ically saturate the bounds on the QFI set by Eqs. (6) and (7).
In the latter case, we expect this to be a consequence of the
QFI continuity relation (4) actually not being asymptotically
saturable due to the square-root dependence on the distance
between quantum states appearing in its form.

To put our results on firm ground, let us assume that one
wants to attain a superclassical resolution that is close to HL,
e.g., 1/N1.7. Then, in the case of pure (8) and mixed (10)
states it may be reached after letting both the RLEB and
GME vanish with ε1 = ε2 = 0.1. Hence, when considering the
large-particle-number regime of N ≈ 106 (typical to atomic-
ensemble experiments [9,10]), one requires EG ≈ 0.25, which
is half the entanglement of the GHZ state, and RLEB ≈ 25%,
that is, one-fourth of particles need to be entangled.

D. Geometric interpretation of the results

In Fig. 3, we schematically present an exemplary path that
elements of sequences {σN

(l)} and {ρN } should take for the
above described phenomenon to be possible: despite becoming
arbitrarily close to each other as N → ∞, the states {σN

(l)}
and {ρN } have drastically different metrological properties.
To be more precise, let the states σN

(l) ∈ SN
(l) be of constant

LEB = l for all N . According to Eq. (6), their QFI is thus
always constrained by lN , so that they only may yield an
SQL-like precision scaling. On the other hand, let ρN be
states whose LEB grows with N in a way that they attain an
asymptotic precision scaling arbitrarily close to HL. Crucially,
the two sequences exhibit highly contrasting metrological
properties in the asymptotic N limit. Still, it is possible to
choose them in a way that the geometric distance between
their consecutive elements gradually vanishes as N → ∞.
As shown in Fig. 3, this is possible as the elements of {ρN }
are constantly overtaken by the boundaries of sets of higher
producibility, while the hierarchy collapses with increasing
N . We explicitly draw the boundaries of the k-producible
sets for particle numbers N < N ′, in order to emphasize that
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FIG. 3. Collapse of the hierarchy of sets SN
k allowing two

sequences {σN
(l)} and {ρN } to approach one another with N , despite

their contrasting metrological properties. States σN
(l) are of constant

LEB = l, which [due to Eq. (6)] constrains their QFI to scale at
most linearly with N : FQ[σN

(l) ] � lN . ρN are states with their LEB
rising with N , so that their QFI is taken to scale as Nα with some
α < 2. Still, it is possible to choose the states σN

(l) and ρN [e.g., ones
of Eq. (10)] so that for sufficiently large N they become arbitrarily
close to each other. In particular, for the two N ′ > N depicted above,
both σN

(l) ∈ SN
(l) and σN ′

(l) ∈ SN ′
(l) , whereas ρN ∈ SN

k but ρN ′
/∈ SN ′

k for
some k > l, although the trace distance (T ′ < T ) between σN

(l) and
ρN decreases with N . This is possible because the sets SN

l collapse
faster than ρN approach σN

(l) .

our results suggest rapid shrinkage of the sets with N . In
particular, note that in Fig. 3: ρN ∈ SN

k but ρN ′
/∈ SN

k ; even
though T ′ = T (ρN ′

,σN ′
(l) ) < T = T (ρN,σN

(l)). We expect such
a phenomenon to be the consequence of the volume of each
SN

k collapsing exponentially with N , which, according to our
best knowledge, has only been proven for the set of separable
states (i.e., for l = 1) [39].

IV. CONCLUSION

We have studied restrictions that entanglement features im-
pose on the asymptotic metrological performance of quantum
states. First, by establishing the continuity relation for the
QFI, we have related the metrological properties of states
to their underlaying geometry. This allowed us to naturally
link their metrological utility to their entanglement content
as measured by the geometric measure of entanglement. As
a result, we have shown that for the HL to be attained in
the asymptotic N limit, both the relative size and amount of
entanglement (as quantified by RLEB and GME respectively)
cannot vanish. For instance, the states that exhibit undistillable
entanglement, but still attain the exact HL [21], must thus
asymptotically possess finite RLEB and GME. On the contrary,
we have demonstrated that any precision scaling arbitrarily
close to HL may be reached even though both RLEB and GME
vanish as N → ∞. In the presence of global depolarization,
this still allows the decoherence strength to be increasing
with N , which contrasts the case of uncorrelated noise types
whose strength must decrease with system size for a scaling
quantum-enhancement to be observed [17]. As uncorrelated
noises yield RLEB ∼ 1/N in the asymptotic N limit [18], our
results provide a new (entanglement-degrading) interpretation
of their destructive impact. We hope that our work can thus
be beneficial in proposing noise-robust metrology schemes
that attain superclassical resolutions by employing quantum
states with just the necessary entanglement properties. As
the metrological usefulness of a quantum state is directly
related to its macroscopicity [40], all our results also apply

in this context. Let us finally notice that our continuity of
the QFI has recently been used by some of us to study
the typical metrological properties of various ensembles of
quantum states [41].

A natural open question to ask is how the conclusions of
our work vary if one considers single-shot (ν = 1 in Fig. 1)
metrology protocols, in which the estimated parameter may
not be assumed to be fluctuating around a known value and the
Bayesian approach to estimation must be pursued [42]. Yet,
we expect the requirements on the entanglement to be then
much more stringent due to the lack of sufficient statistics.
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APPENDIX A: CONTINUITY OF QFI

Here we present a detailed proof of the continuity relation
for the quantum Fisher information (QFI), which we exten-
sively use in the main text. Yet, in order to also establish a
common notation and preliminary notions, we first introduce
the basic concepts of a purification of a mixed state, and that
of the Uhlmann fidelity and the Bures distance [28,43].

Let us consider a quantum system represented by a mixed
state ρ acting on a Hilbert space HS = Cd . It follows that
ρ can always be represented by a pure state from a larger
Hilbert space. Concretely, there exists |ψ〉 ∈ HS ⊗ HE =
Cd ⊗ Cd ′

with d ′ = rank(ρ) such that ρ = TrE|ψ〉〈ψ |. This
representation is, however, not unique because any pure state
related to |ψ〉 via |ψ ′〉 = 1S ⊗ VE|ψ〉 with VE being some
partial isometry (V †

EVE = 1) is also a purification of ρ. At
this point it is important to mention that any such VE can
be extended to a unitary operation by properly enlarging the
environmental Hilbert space HE , and so any two purifications
of a given ρ are thus related by a unitary operation acting on
HE [43].

Then, the Uhlmann fidelity of a pair of density matrices ρ

and σ acting on HS = Cd is defined through

F (ρ,σ ) := ‖√ρ
√

σ‖1 = Tr
√

σ 1/2ρ σ 1/2, (A1)

where ‖ · ‖1 stands for the trace norm defined as ‖X‖1 =
Tr

√
X†X. If at least one of these two states is pure, say

σ = |φ〉〈φ|, then the above formula simplifies to F (ρ,|φ〉) =√〈φ|ρ|φ〉, and if also ρ = |ψ〉〈ψ | then F (|ψ〉,|φ〉) = |〈ψ |φ〉|
is just the overlap of the two pure states.
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For further benefits let us also mention that for any pair of
mixed states ρ and σ their fidelity can be expressed in terms
of the fidelity of their purifications, denoted by |ψ〉 and |φ〉,
respectively. More precisely,

F (ρ,σ ) = max
|ψ〉

F (|ψ〉,|φ〉) = max
|ψ〉

|〈ψ |φ〉|, (A2)

where the maximization is performed over all purifications of
ρ, but equally well can be performed over the purifications of
σ [43]. The Uhlmann fidelity does not fulfill properties of a
measure of distance between quantum states [28], yet with its
help one may define the so-called Bures distance [28]:

DB(ρ,σ ) =
√

2[1 − F (ρ,σ )]. (A3)

Having these notions at hand, we can now pass to the
continuity relations of the QFI. Let us first recall that in our
case the parameter ϕ is encoded on a state with the aid of
a unitary operation, so that ρϕ = Uϕρ U †

ϕ where Uϕ = e−iHϕ

and H is a given parameter-encoding Hamiltonian. In such
case, the QFI most generally reads

FQ[ρ; H ] := FQ[ρϕ] = 2
∑
k,l

(λk − λl)2

λk + λl

|〈ξk|H |ξl〉|2, (A4)

where λk and |ξk〉 are respectively the eigenvalues and
the eigenvectors of ρ. Importantly, as emphasized by our
notation in the definition (A4), owing to the unitary parameter-
encoding, the QFI is independent of the estimated parameter
and thus becomes just a function of the state and the
Hamiltonian.

Theorem 1. For any pair of density matrices ρ and σ

acting on HS and for the QFI given in Eq. (A4) the following
inequalities hold true:

|FQ[ρ; H ] − FQ[σ ; H ]| � 32
√

1 − F 2(ρ,σ ) ‖H‖2, (A5)

|FQ[ρ; H ] − FQ[σ ; H ]| � 32 DB(ρ,σ ) ‖H‖2, (A6)

and

|FQ[ρ; H ] − FQ[σ ; H ]| � 32
√

‖ρ − σ‖1 ‖H‖2, (A7)

where F and DB stand for the Uhlmann fidelity and the Bures
distance respectively.

Proof.The key ingredient of our proof is the fact that the QFI
can generally (not only for unitary encodings) be expressed as

FQ[ρϕ]|ϕ=ϕ0 = 4 min
|ψϕ〉

〈ψ̇ϕ|ψ̇ϕ〉|ϕ=ϕ0 , (A8)

where |ψ̇ϕ〉 = d|ψϕ〉/dϕ and the minimization is in principle
performed over all purifications |ψϕ〉 ∈ HS ⊗ HE of ρϕ for a
given parameter true value ϕ0 [44,45].

It turns out, however, that in this minimization it is enough
to consider only a family of purifications of ρϕ valid at ϕ0

given by

|ψϕ〉 = e−ihE (ϕ−ϕ0)|ψ̃ϕ〉, (A9)

where |ψ̃ϕ〉 is some fixed purification of ρϕ and hE is any
Hermitian operator acting on the ancillary subsystem HE

(notice that hE is independent of ϕ) [45]. Moreover, in our
case, i.e., when the quantum evolution encoding the parameter

ϕ is unitary, any purification of ρϕ takes the form

|ψ̃ϕ〉 = Uϕ ⊗ 1E |ψ〉, (A10)

for some purification |ψ〉 of ρ.
Now, by substituting Eqs. (A9) and (A10) into Eq. (A8) one

obtains an equivalent expression for QFI given by

FQ[ρ; H ] = 4 min
hE

〈ψ |(H + hE)2|ψ〉, (A11)

in which: H + hE = H ⊗ 1E + 1S ⊗ hE , H is the parameter-
encoding Hamiltonian considered (acting on the system), and
the minimization is performed over all Hermitian operators
hE acting on the environment. It should be noticed that,
in agreement with definition (A4), formula (A11) no longer
depends on the parameter ϕ.

What is more, having the purification-based QFI defini-
tion (A11) for a unitary encoding at hand, we may explicitly
construct the optimal hE for a given Hamiltonian H and a state
ρ = ∑

i λi |ξi〉〈ξi |. In particular, we may assume that the fixed
purification of ρ appearing in Eq. (A11) is the canonical one
generated by the eigensystem of ρ, that is,

|ψ〉 =
∑

i

√
λi |ξi〉|i〉. (A12)

Moreover, denoting by hij the entries of hE in the standard
basis of HE , let us define the following multivariable function

f ({hij }) = 〈ψ |(H + hE)2|ψ〉
=

∑
i

λi〈ξi |H 2|ξi〉 +
∑
ij

λihijhji

+ 2
∑
ij

√
λiλj 〈ξi |H |ξj 〉hij . (A13)

The necessary condition that this function has a minimum at
some hE is that its derivatives over all hij vanish at hE . This
gives us the following system of equations:

2
√

λiλj 〈ξi |H |ξj 〉 + (λi + λj )hji = 0, (A14)

which implies that

hij = −2
√

λiλj

λi + λj

〈ξj |H |ξi〉. (A15)

The resulting matrix h is clearly Hermitian. Moreover, due
to the fact that the function f is convex [which follows from
convexity of the square function ([46], p. 113)], the above
solution corresponds to its global minimum.

Now, stemming from the QFI definition (A11) and the
optimal form of hE (A15), we prove the first QFI continuity
relation (A5). First, let |ψσ 〉 and hσ

E be the purification of a
given state σ and the corresponding Hamiltonian realizing the
minimum in Eq. (A11) for this state. Furthermore, let |ψρ〉 be
some, for the time being unspecified, purification of another
state ρ. At this point, it should be noticed that both purifications
|ψσ 〉 and |ψρ〉 can be chosen so that they belong to the same
Hilbert space (in other words, the ancillary Hilbert space HE

can be taken the same for both purifications).
Let us finally assume, without any loss of generality, that

FQ[ρ; H ] � FQ[σ ; H ], i.e., ρ is a better state with respect to
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the metrological task considered. Noting that

FQ[ρ; H ] = 4 min
hE

〈ψρ |(H + hE)2|ψρ〉

� 4〈ψρ |
(
H + hσ

E

)2|ψρ〉, (A16)

we may upper bound the QFI difference as

FQ[ρ; H ] − FQ[σ ; H ]

� 4
[〈ψρ |

(
H + hσ

E

)2|ψρ〉 − 〈ψσ |(H + hσ
E

)2|ψσ 〉]
= 4Tr

[
(ψρ − ψσ )

(
H + hσ

E

)2]
, (A17)

where by ψρ and ψσ we denote projectors onto |ψρ〉 and |ψσ 〉
respectively. Moreover, exploiting the fact that

|Tr(A†B)| � ‖A‖1‖B‖ (A18)

holds for any two operators A and B with ‖ · ‖ denoting
the matrix norm ‖X‖ := max‖ψ‖=1 ‖X|ψ〉‖, we arrive at the
following expression:

FQ[ρ; H ] − FQ[σ ; H ] � 4 ‖ψρ − ψσ‖1

∥∥H + hσ
E

∥∥2
. (A19)

To obtain a similar relation for the states ρ and σ instead
of their purifications, let us notice that for any two pure states
|ψ〉 and |φ〉:

‖ψ − φ‖1 = 2
√

1 − F 2(|ψ〉,|φ〉), (A20)

where F stands for the Uhlmann fidelity (A1). Thus, we may
rewrite Eq. (A19) to obtain

FQ[ρ; H ] − FQ[σ ; H ] � 8
√

1 − F 2(|ψρ〉,|ψσ 〉) ∥∥H + hσ
E

∥∥2
.

(A21)
Crucially, we can still exploit the freedom in choosing the
purification of the state ρ. Concretely, we can choose it to be
the one that realizes maximum in Eq. (A2), which allows us to
just write F (|ψρ〉,|ψσ 〉) = F (ρ,σ ). Hence, Eq. (A21) rewrites
as

FQ[ρ; H ] − FQ[σ ; H ] � 8
√

1 − F 2(ρ,σ )
∥∥H + hσ

E

∥∥2
.

(A22)
In order to turn the above inequality into the one of Eq. (A5),
we need to make Eq. (A22) independent of the the auxiliary
Hamiltonian hσ

E . We achieve this by proving that its norm
can always be upper bounded by the norm of the parameter-
encoding Hamiltonian, i.e., ‖hσ

E‖ � ‖H‖.
For this purpose, we recall that hσ

E that realizes the mini-
mum in Eq. (A11) for the state σ (with eigendecomposition
σ = ∑

i μi |ηi〉〈ηi |) must have the form derived in Eq. (A15).
Then, we note that for a Hermitian operator h its operator norm
can be expressed as

‖h‖ := max
|ψ〉,‖ψ‖=1

|〈ψ |h|ψ〉|. (A23)

Let then |ω〉 denote the pure state realizing the above maximum
for hσ

E (it is just the eigenvector of hσ
E corresponding to its

eigenvalue with the largest absolute value). Writing |ω〉 in the
standard basis as |ω〉 = ∑

i αi |i〉, it follows from Eq. (A15)
that the operator norm of hσ

E is thus given by

∥∥hσ
E

∥∥ =
∣∣∣∣∣∣
∑
ij

α∗
i αj

2
√

μiμj

μi + μj

〈ηj |H |ηi〉
∣∣∣∣∣∣. (A24)

Now, we introduce the following vector

|η(t)〉 =
∑

i

α∗
i

√
μie

−tμi |ηi〉 (A25)

with t ∈ [0,∞) being some parameter. This vector is normal-
ized so that

∫ ∞
0 dt 〈η(t)|η(t)〉 = 1/2. As a result, we may write

the operator norm of hσ
E as follows:∥∥hσ

E

∥∥ = 2

∣∣∣∣∫ ∞

0
dt 〈η(t)|H |η(t)〉

∣∣∣∣ (A26)

and, realizing that∣∣∣∣∫ ∞

0
dt 〈η(t)|H |η(t)〉

∣∣∣∣ � ‖H‖
∣∣∣∣∫ ∞

0
dt 〈η(t)|η(t)〉

∣∣∣∣
= 1

2
‖H‖, (A27)

we prove that indeed ‖hσ
E‖ � ‖H‖. As a result, we may upper

bound the norm appearing in Eq. (A22) as

‖H + hE‖2 � (‖H‖ + ‖hE‖)2 � 4‖H‖2 (A28)

and finally arrive at the first continuity relation (A5).
To prove the second continuity relation (A6), it is enough

to notice that√
1 − F 2(ρ,σ ) =

√
[1 − F (ρ,σ )][1 + F (ρ,σ )]

�
√

2[1 − F (ρ,σ )] = DB(ρ,σ ), (A29)

where to obtain the inequality we have used the fact that
F (ρ,σ ) � 1 for any pair of states ρ,σ .

Lastly, in order to prove the third continuity relation (A7),
we exploit the Fuchs-van de Graaf inequality [28], which states
that for any pair of density matrices ρ and σ acting on Cd

1 − F (ρ,σ ) � 1
2‖ρ − σ‖1. (A30)

Hence, it directly follows that DB(ρ,σ ) �
√‖ρ − σ‖1 and we

obtain the last inequality of Eq. (A7). �
We now consider the case where the two states ρ and σ

are pure. In this situation, the continuity relations of Theorem
1—in particular Eq. (A5)—can be improved by a factor of
3/4, as demonstrated in the following lemma.

Lemma 1. For any pair of pure states |ψ〉,|φ〉 ∈ HS , and a
parameter-encoding Hamiltonian H , the following inequality
holds∣∣FQ[|ψ〉; H ] − FQ[|φ〉; H ]

∣∣ � 12‖ψ − φ‖1‖H‖2

= 24
√

1 − F 2(|ψ〉,|φ〉) ‖H‖2,

(A31)

where ψ and φ denote the projectors onto |ψ〉 and |φ〉,
respectively.

Proof. We begin by recalling that the QFI for pure states
reads

FQ[|ψ〉; H ] = 4(〈ψ |H 2|ψ〉 − 〈ψ |H |ψ〉2). (A32)

This allows us to upper bound the left-hand side of Eq. (A31)
as∣∣FQ[|ψ〉; H ] − FQ[|φ〉; H ]

∣∣ � 4|Tr(H 2ψ) − Tr(H 2φ)|
+ 4|[Tr(Hψ)]2 − [Tr(Hφ)]2|.

(A33)
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Let us now concentrate on the second term appearing on the
right-hand side of the above inequality. It can be bounded from
above as

|[Tr(Hψ)]2 − [Tr(Hφ)]2|
= |Tr(Hψ) − Tr(Hφ)||Tr(Hψ) + Tr(Hφ)|
� 2|Tr(Hψ) − Tr(Hφ)|‖H‖, (A34)

where the last inequality is a consequence of the fact that for
any normalized |ψ〉: Tr(ψH ) = 〈ψ |H |ψ〉 � ‖H‖. Plugging
Eq. (A34) into Eq. (A33), we obtain

|FQ[|ψ〉; H ] − FQ[|φ〉; H ]|
� 4|Tr[(ψ − φ)H 2]| + 8|Tr[(ψ − φ)H ]|‖H‖ (A35)

and finally, acknowledging that |Tr(X†Y )| � ‖X‖1‖Y‖ holds
for any two operators X,Y , we arrive at

|FQ[|ψ〉; H ] − FQ[|φ〉; H ]|
� 12‖ψ − φ‖1‖H‖2

= 24
√

1 − F 2(|ψ〉,|φ〉) ‖H‖2, (A36)

where the last equality stems from Eq. (A20). �
Although at first sight the inequality (A31) may seem to be

less important due the constraint of states purity, it crucially
allows us also to tighten the QFI continuity relation (A5) for
the case when one of the states considered is pure, while the
other can possibly be mixed. In fact, we are able to do so by
using the convex-roof-based definition of the QFI that has been
introduced for protocols with unitary encoding in Ref. [32]:

Theorem 2. For any mixed state ρ acting onHS and any pure
state |φ〉 ∈ HS and a given parameter-encoding Hamiltonian
H , the following inequality holds true:

|FQ[ρ; H ] − FQ[|φ〉; H ]| � 24
√

1 − F 2(ρ,|φ〉) ‖H‖2. (A37)

Proof. Let us first recall that the QFI of a mixed state can
be expressed as the convex roof of the variance [32], i.e.,

FQ[ρ; H ] = inf
{λk,|ξk〉}

∑
k

pk FQ[|ξk〉; H ], (A38)

where the infimum is taken over all ensembles {pk,|ξk〉} such
that

∑
k pk|ξk〉〈ξk| = ρ (importantly |ξk〉 are normalized but

generally not orthogonal). Choosing then {pk,|ξk〉} to be the
ensemble realizing the minimum in Eq. (A38), one finds that

|FQ[ρ; H ] − FQ[|φ〉; H ]| �
∑

k

pk|FQ[|ξk〉; H ] − FQ[|φ〉; H ]|

� 24

√
1 −

∑
k

pkF 2(|ξk〉,|φ〉) ‖H‖2

= 24
√

1 − F 2(ρ,|φ〉) ‖H‖2, (A39)

where the second inequality follows from the pure-states
continuity relation (A31) and the concavity of the square
root. �

Lastly, we adopt the above proved Theorems 1 and 2 to
the case of the metrology protocol considered in the main
text, i.e., the setting when the system investigated consists of
N particles, each independently sensing a unitarily encoded

parameter of interest. Then, we may always express the overall
system Hamiltonian H as a sum of the local ones:

Hloc :=
N∑

n=1

h(n), (A40)

where h(n) represents the parameter-encoding Hamiltonian
of the nth particle and is conveniently normalized so that
‖h(n)‖ � 1/2 for all n. In what follows we refer to such
Hamiltonians as local and denote them by Hloc. In particular, as
for any Hloc,‖Hloc‖2 � N2/4, the three general QFI continuity
relations (A5)–(A7) yield the following.

Corollary 1. For any pair of N -particle states ρN and
σN acting on (Cd )⊗N , and any local Hamiltonian Hloc, the
difference in the QFIs of ρN and σN can always be upper
bounded as:

|FQ[ρN ; Hloc] − FQ[σN ; Hloc]| � 8
√

1 − F 2(ρN,σN ) N2,

(A41)

|FQ[ρN ; Hloc] − FQ[σN ; Hloc]| � 8 DB(ρN,σN ) N2 (A42)

and

|FQ[ρN ; Hloc] − FQ[σN ; Hloc]| � 8
√

‖ρN − σN‖1 N2.

(A43)
Analogously, we may then also rewrite Theorem 2, which

deals with the case of the one of the states being pure.
Corollary 2. For any pair of N -particle states, a mixed ρN

and a pure |φN 〉, and a local Hamiltonian Hloc, the continuity
relation (A37) leads to∣∣FQ[ρN ; Hloc] − FQ[|φN 〉; Hloc]

∣∣ � 6
√

1 − F 2(ρN,|φN 〉) N2.

(A44)

APPENDIX B: RELATING THE QFI TO GEOMETRIC
MEASURES OF ENTANGLEMENT

Here we show that the continuity relation (A5) can be used
to link the QFI to a multipartite entanglement measure. To this
end, we first need to recall the notion of k producibility.

Consider a multipartite pure state |ψN 〉 ∈ (Cd )⊗N . We call
it k-producible with k � N if it can be written as [14]

|ψN 〉 = |ψ1〉 ⊗ . . . ⊗ |ψm〉, (B1)

with each |ψi〉 being a pure state consisting of at most k parties.
In particular, it follows from this definition that a k- but not
(k − 1)-producible state contains k particles that are genuinely
entangled [20].

This definition can be straightforwardly extended to mixed
states: a mixed state ρN is k-producible if it is a probabilistic
mixture of k-producible pure states. By definition, for every k,
the set of all k-producible states SN

k is convex. Moreover,
such sets of k-producible states form a hierarchy that we
schematically depict in Fig. 2. In particular, SN

1 contains all
fully separable states and SN

N is the set of all states, and, in
general, SN

1 ⊂ . . . ⊂ SN
N . Note that the set SN

N \ SN
N−1 thus

consists of all N -partite genuinely entangled states.
Exploiting the fact that the sets SN

k are convex, one can
easily introduce entanglement measures quantifying the extent
to which a given N -partite state is non-k-producible. More

012339-8



ASYMPTOTIC ROLE OF ENTANGLEMENT IN QUANTUM . . . PHYSICAL REVIEW A 94, 012339 (2016)

concretely, for pure states one defines

E
prod
k [|ψN 〉] := 1 − max

|φN 〉∈SN
k

|〈φN |ψN 〉|2, (B2)

which is then extended to mixed states by using the convex
roof construction, i.e.,

E
prod
k [ρN ] := inf

{pi ,|ψN
i 〉}

∑
i

piE
prod
k

[∣∣ψN
i

〉]
. (B3)

The infimum above is taken over all ensembles {pi,|ψN
i 〉} re-

alizing ρN , i.e., such that
∑

i pi |ψN
i 〉〈ψN

i | = ρN (importantly
|ψN

i 〉 are normalized but generally not orthogonal).
It is important to note that Eq. (B3) can be rewritten

with help of Uhlmann fidelity (A1), (see the appendixes of
Ref. [29]), so that the optimization can be performed over all
k-producible mixed states:

E
prod
k [ρN ] = 1 − max

σN∈SN
k

F 2(ρN,σN ), (B4)

which allows us to relate E
prod
k to the QFI.

Lastly, let us mention that for the special case of k = 1 in
Eq. (B3), one recovers the definition of the geometric measure
of entanglement (GME), EG[ρN ] = E

prod
1 [ρN ], that we only

consider in the main text of this work.
Lemma 2. For any pure |ψN 〉 ∈ (Cd )⊗N and any local

Hamiltonian Hloc, the following inequality holds:

FQ[|ψN 〉; Hloc] � kN + 6
√

E
prod
k (|ψN 〉) N2. (B5)

Proof. Denoting by |φN
∗ 〉 the k-producible state realizing

the maximum in Eq. (B2) for |ψN 〉, i.e.,

EG[|ψN 〉] = 1 − |〈φN
∗ |ψN 〉|2, (B6)

it follows from Eq. (A44) that

FQ[|ψN 〉] � FQ[|φN
∗ 〉] + 6

√
E

prod
k [|ψN 〉] N2. (B7)

In order to obtain Eq. (B5) and complete the proof, it
remains to utilize the fact that for any k-producible state
σN ∈ SN

k , its QFI is upper bounded as follows [16]:

FQ[σN ] �
⌊

N

k

⌋
k2 +

(
N −

⌊
N

k

⌋
k

)2

� kN. (B8)

�
Exploiting the above lemma, we can now prove the

following general theorem.
Theorem 3. For any state ρN acting on (Cd )⊗N and any

local Hamiltonian Hloc, the following inequality is true:

FQ[ρN ; Hloc] � kN + 6
√

E
prod
k [ρN ] N2. (B9)

Proof. Let {pi,|ψN
i 〉} be an ensemble realizing ρN for which

the minimum in Eq. (B3) is achieved. Then, we have the
following chain of inequalities

FQ[ρN ; H ] �
∑

i

piFQ

[∣∣ψN
i

〉
; H

]
� kN + 6

∑
i

pi

√
E

prod
k

[∣∣ψN
i

〉]
N2

� kN + 6

√∑
i

piE
prod
k

[∣∣ψN
i

〉]
N2

= kN + 6
√

E
prod
k [ρN ] N2, (B10)

where the second and the third inequalities follow respectively
from Eq. (B5) and the concavity of the square root, while the
last equality stems from the definition of E

prod
k (B3). �

Remark. For k = 1, inequality (B9) relates the QFI for any
Hamiltonian of the form (A40), Hloc, to the geometric measure
of entanglement EG used in the main text:

FQ[ρN ; Hloc] � N + 6
√

EG[ρN ] N2. (B11)

On the other hand, (B9) can be used to derive a lower bound
on E

prod
k :

E
prod
k (ρN ) �

{(
FQ[ρN ;Hloc]−kN

6N2

)2
, FQ[ρN ; Hloc] > kN

0, FQ[ρN ; Hloc] � kN

(B12)

whose right-hand side scales with N as (FQ[ρN ; Hloc]/6N2)2

in the limit of large N .
The bound (B12) is in general not tight. For instance, for

the N -qubit GHZ state∣∣ψN
GHZ

〉 = 1√
2

(|0〉⊗N + |1〉⊗N ) (B13)

the QFI with the Hamiltonian Hloc = (1/2)
∑

i σ
z
i amounts to

FQ[|ψN
GHZ〉] = N2, and hence our bound gives EG[|ψN

GHZ〉] �
(N2 − N )2/36N4, which tends to 1/36 for N → ∞, while
it is known that EG[|ψN

GHZ〉] = 1/2. Nevertheless, it allows
one to lower bound E

prod
k for states for which only the QFI

is easy to compute. Generally speaking, the bound (B12)
provides a nontrivial estimation of E

prod
k for all states for which

FQ[ρN ; Hloc] > kN .

APPENDIX C: ESTIMATING GME FOR
WERNER-TYPE STATES

Let us consider the following class of N -qubit Werner-type
states, i.e., a mixture of the GHZ state (B13) and the maximally
mixed state:

ρN
p = p

∣∣ψN
GHZ

〉〈
ψN

GHZ

∣∣ + (1 − p)
12N

2N
. (C1)

The GME for these states can be upper bounded as EG[ρN
p ] �

p/2. This follows from the facts that EG is convex and that
EG[|ψN

GHZ〉] = 1/2 for any N . Our aim here is to show that for
sufficiently large N this upper bound is very close to the value
of EG[ρN

p ].
To this end, let us first notice that very recently in Ref. [37]

it has been shown that computation of EG[ρN
p ] simplifies to

the following maximization

EG
[
ρN

p

] = max
μ∈[0,μm]

f N
p (μ), (C2)
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where μm = 2N−3/(2N−2 − 1) and

f N
p (μ) = 1

2

[
1 − μ − √

γ + 2pμ

+ 1 − p

2N

(
2μ + μ(μ + √

α)

μ − 1

)]
(C3)

with γ = (μ − 1)2 + 23−Nμ and α = 1 − μ + μ2.
Now, it is clear that EG[ρN

p ] � f N
p (μm). It is also not

difficult to see that for N → ∞,μm → 1/2,γm → 1/4, and
αm → 3/4, where γm and αm are γ and α computed for μm. All
this implies that f N

p (μm) → p/2, and thus EG[ρN
p ] → p/2 for

large N .
Furthermore, one should note that the convergence of

EG[ρN
p ] to p/2 with N → ∞ is quite fast. In other words,

already for systems of moderate size (N = 10) the upper bound
EG[ρN

p ] � p/2 is a good approximation to EG[ρN
p ]. For this

purpose, let us consider the following rough estimation of
|f N

p (μm) − p/2|. We first notice that∣∣∣f N
p (μm) − p

2

∣∣∣ � 1

2
|1 − μm − √

γm| + p

2
|2μm − 1|

+1 − p

2N

∣∣∣∣2μm + μm(μm + √
αm)

μm − 1

∣∣∣∣. (C4)

Let us now bound each of the three terms appearing in the
above expression. First, we see that

|1 − μm − √
γm| � 1

2N−2 − 1
+

√
1

2N−2 − 1
. (C5)

Second,

|2μm − 1| = 1

2N−2 − 1
. (C6)

And finally, for N � 4,∣∣∣∣2μm + μm(μm + √
αm)

μm − 1

∣∣∣∣ � β (C7)

0.2 0.4 0.6 0.8 1.0
p

0.1

0.2

0.3

0.4

0.5

EG

FIG. 4. Geometric measure of entanglement (GME), EG, as a
function of the parameter p for states given in Eq. (C1). The number
of qubits, N , is chosen to be: 2 (solid line), 3 (dashed line), 4 (dotted
line), and 10 (dot-dashed line).

with β = 4/3 + 2(2 + √
7)/3 ≈ 4.43. All this gives

∣∣∣f N
p (μm) − p

2

∣∣∣ � 1

2N−2 − 1
+ 1

2

√
1

2N−2 − 1
+ β

2N
. (C8)

One then sees that already for N = 10, the difference between
then upper bound and the actual value of the GME for ρN

p is
at most 0.04.

To demonstrate the fast convergence, we have plotted in
Fig. 4 the GME, EG, as a function of the parameter p for N

being: 2, 3, 4, and 10. For large N , the curve becomes almost
indistinguishable from p/2, which is clear on Fig. 4 already
for N = 10.
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(2001).

[43] M. A. Nielsen and I. L. Chuang, Quantum Computing and
Quantum Information (Cambridge University Press, Cambridge,
2000).

[44] A. Fujiwara and H. Imai, J. Phys. A 41, 255304 (2008).
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