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How can relevant information be extracted from a quantum information source? In many situations, only some
part of the total information content produced by an information source is useful. Can one then find an efficient
encoding, in the sense of retaining the largest fraction of relevant information? This paper offers one possible
solution by giving a generalization of a classical method designed to retain as much relevant information as
possible in a lossy data compression. A key feature of the method is to introduce a second information source to
define relevance. We quantify the advantage a quantum encoding has over the best classical encoding in general,
and we demonstrate using examples that a substantial quantum advantage is possible. We show analytically,
however, that if the relevant information is purely classical, then a classical encoding is optimal.
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I. INTRODUCTION

Predicting future outcomes based on past observations is
a fundamental problem, not only for science and technology,
but also for living organisms. A central question is how much
of the available data is useful for prediction. This question
is closely related to the challenge of finding quantitative
measures of complexity. One such measure is the fraction
of information about a dynamical process’s past states that
is needed to describe its future states [1–5]. Efficient use of
information then boils down to storing only information that
is relevant for prediction: If two representations of past events
yield equally good predictions, the simpler one is typically
preferable [6–10].

We have shown recently that this type of information
efficiency is directly related to efficient thermodynamic
operation [11,12], implying that considerations regarding
predictive filtering might be of relevance to the design of power
efficient small scale devices, man-made or natural. Since
real environments are ultimately quantum, this immediately
raises a question: Is there an advantage gained by encoding
the information in a quantum memory rather than a classical
memory? In this paper we investigate under what conditions
a quantum memory can be more predictive than a classical
memory and whether it can do so with higher efficiency.

This basic information-theoretic question is particularly
enticing in a biological context. Living systems are masters
at adapting to their environment, and predicting future events
is key to their survival. Efficient information use is found
throughout the nervous system and may constitute a building
principle of biological computing machines, such as neurons
and brains [13]. Filtering useful bits from “nonpredictive
clutter” [13] furthermore allows for thermodynamic efficiency
[11,12]. Recent work has found that biophysical devices
indeed evolved to use energy in a highly efficient manner
[14–16].

There is mounting evidence that quantum effects play an
important role in the efficient operation of some microscopic
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biological systems [17–19]. For example, the extremely high
energetic efficiency of excitation transport in light-harvesting
complexes in bacteria and plants may be using some form
of quantum random walk [20]. It has been shown that a
delicate balance of noisy and coherent quantum processes
is necessary to reach optimal efficiency [20–22], indicating
that quantum effects might be exploited for an evolutionary
advantage. Although quantifying quantum effects in biological
systems and understanding advantages they might result in
remain a great challenge, we hope that the work presented
in this paper will provide a fruitful framework for addressing
questions regarding the utility of storing quantum information
for systems that operate in a quantum environment.

A. Extraction of relevant information from classical
information sources

Any continuous information source contains an infinite
amount of information, but not all of this information is useful
to the receiver at the other end of a communication channel.
One would therefore like to delineate relevant from irrelevant
information. Shannon [23] addressed this problem by pointing
out that the rate of an information source for a given quality of
signal reproduction should be taken as the smallest amount of
information required to specify the source, subject to a given
constraint on average distortion. The distortion measure, which
has to be chosen ad hoc by the practitioner, implicitly contains
a notion of relevance [24].

Relevant information is treated explicitly in a similar
framework, called the “information bottleneck” method [26].
Given a data source X and a relevant variable Y that depends
on X, the method finds an optimal encoding X → M of
the data into a representation M , such that information
about Y is kept while irrelevant bits are filtered out. The
method achieves this by solving a constrained optimization
problem, minimizing mutual information I [X,M], subject to
a constraint on I [M,Y ]. The quantity I [X,M] is taken to
measure the coding cost, in line with Shannon’s work, and the
quantity I [M,Y ] measures the amount of relevant information
kept in the “memory,” M . It cannot exceed the total relevant
information the raw data contains, i.e., I [M,Y ] � I [X,Y ],
due to the data processing inequality. The trade-off between
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coding cost and relevant bits retained is controlled by a
Lagrange multiplier which parametrizes a family of solutions.
The resulting compression scheme finds sufficient statistics
in the limit where all of the relevant information is kept, i.e.,
I [M,Y ] = I [X,Y ]. When applied to time series prediction,
this limiting model can be used to quantify the complexity of
a dynamical system, as mentioned above [27].

B. Organization of the paper

In this paper we introduce a quantum generalization of the
information bottleneck method in Sec. II. The data source,
X, is now quantum, and relevance is defined with respect to
a second quantum data source, Y . The coding protocol we
introduce here can be seen as a generalization of the protocol
used in quantum rate-distortion coding [28].

Following the classical method, we find an encoding of
the information in X into a memory M , maximizing the
information about Y while discarding irrelevant information.
To that end, we derive self-consistent equations that any
optimal encoding must obey (Sec. II C and Appendix A). These
equations form the basis for an iterative algorithm (Appendix
C) which allows us to illustrate the behavior of optimal quan-
tum encodings using a series of numerical examples (Sec. V).

We show analytically that a quantum advantage is possible
only for nonclassical relevant information, i.e., only when the
co-occurrence statistics between X and Y cannot be described
by a classical probability distribution (Sec. III B and Ap-
pendix B 2). A system operating in an environment where rel-
evant features can be fully approximated by a classical model
therefore does not gain from encoding quantum information.

In general, however, using a quantum memory allows for
storing more relevant information without having to increase
the size of the memory to do so. Moreover, we demonstrate
that it is possible to find encodings with more information
about Y than what is maximally achievable for any classical
memory. We specify the quantum advantage in Sec. IV and
analyze examples in Sec. V to verify that there can be a
significant quantum advantage. For the examples, we compute
entanglement and quantum discord present in the optimal
encodings to shed light on the role played by quantum
correlations.

We find that a quantum advantage is possible even when the
map from X to Y breaks any entanglement with the memory
(Sec. V B). We furthermore demonstrate in Sec. V C that
in a quantum process with redundant information, irrelevant
features get filtered out: The numerical algorithm is able to
pick out and purify only the relevant information.

II. RELEVANT QUANTUM INFORMATION ENCODING

Given a information source X, how can one introduce the
notion that some information is more relevant than the rest?
In conventional rate-distortion coding, the goal is to encode
the information in X with minimal distortion [23,28–31].
However, in practice, it may be difficult to define an appropriate
distortion measure. In general, we may want to encode only
those aspects of the data that we deem important and filter out
the rest. This task is closely related to predictive inference,
where we want to extract from X exactly those features that

FIG. 1. We consider a data source X and define “relevance” by
introducing a quantum channel, RX→Y , to a second information
source, Y . Information from X is encoded in a memory M , and
only information about Y is deemed important. Relevant information
is quantified by an information measure, Ipred, quantifying the
correlations between M and Y . We refer to Ipred as “predictive power.”
The correlations between M and X, quantified by an information
measure Imem, we refer to as “memory.” The latter quantifies the total
encoded information. An encoding is considered more efficient if it
has greater Ipred at the same Imem.

are useful for making inferences about the outcome of some
dynamical process that takes X as its input.

The information bottleneck method [26] gives a simple
solution to this problem: Introduce a second information
source Y , a “relevant variable,” which depends on X, and
let this dependence define relevance. Classically, the co-
occurrence statistics of X and Y determine the available
relevant information, which can be filtered out when the data
are represented by a memory M . In a quantum mechanical
generalization, two scenarios are possible: (i) Think of X

and Y as two quantum systems in a joint state ρXY , or (ii)
think of Y as output after sending X through a quantum
channel, ρY = R(ρX). We here focus on the latter scenario,
illustrated in Fig. 1. Due to the causal relationship between
X and Y in this scenario, we refer to information about
X as “memory” and information about Y extracted from X

as “predictive information.” The total amount of encoded
predictive information we call the encoding’s “predictive
power”. The map RX→Y defines relevance, and we refer to
it as “the relevance channel”.

One cannot simultaneously send X through two indepen-
dent quantum channels, one with Y as output and the other
with M as output. That is, we cannot send X through both
the relevance channel and an independent encoding channel.
Classically, this problem does not arise, and one can always
make a copy of X, but quantum mechanically, no such physical
process exists in general [32]. We therefore consider a protocol
similar to that used in quantum rate-distortion coding [28–31]:
We take the input to the problem to be a purification of the
state ρX by introducing a second quantum system that acts as
a reference, R. Information is then encoded in the memory by
mapping XR to MR. Subsequently, MR is mapped to MY via
the relevance channel.

In the spirit of the classical information bottleneck method
[26], we measure encoding cost and encoding quality using
mutual information. Here we depart from the approach used
in quantum rate-distortion coding, as we do not use the usual
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qubit encoding rate to quantify cost and the usual entanglement
fidelity to quantify quality [28–31]. Instead, we measure
quality by predictive power, i.e., the relevant information
quantifying the correlations between M and Y . Memory cost
is measured by mutual information between M and X.

A. Notation and definitions

Hilbert spaces associated to quantum systems are denoted
by HA, where the subscript is used to differentiate between
systems. We assume that all Hilbert spaces have finite
dimension and let dA denote the dimension of system A, etc.
The set of linear operators onHA we denote L(HA). We reserve
the symbol IA ∈ L(HA) for the identity operator on A. A
quantum state is a positive semidefinite operator ρA ∈ L(HA),
with unit trace. For a given state ρAB defined on a composite
system, AB, we use the convention that ρA and ρB denote the
reduced states, ρA = trBρAB and ρB = trAρAB , respectively.

Quantum channels, i.e., completely positive and trace-
preserving maps, are denoted by uppercase calligraphic letters,
such as EA→B : L(HA) → L(HB). The superscript is used to
emphasize the input and output systems, but is left out when a
channel is applied to a state, e.g., E(ρA), to simplify notation.
We use IA to denote the identity channel on system A. A given
quantum channel, EA→B , can be extended to an ancilla system,
C, by tensoring with the identity channel. Such an extension
we denote by putting a hat on the same symbol as that used
for the original channel: ÊAC→BC = EA→B ⊗ IC .

A purification of a state, ρA, is a pure state ψAR =
|ψAR〉〈ψAR|, satisfying trR ψAR = ρA. Here R is a second
quantum system with dimension at least as large as A. There
are many possible purifications, but we here fix a choice with
R isomorphic to A,

|ψAR〉 =
∑

i

√
pi |i〉|i ′〉, (1)

where ρA = ∑
i pi |i〉〈i| is the spectral decomposition of ρA

and |i〉 and |i ′〉 are orthonormal bases for the two systems A

and R, respectively.
The von Neumann entropy of system A in a state ρA

is defined as S[A] = S(ρA) = −tr[ρA log2 ρA]. The mutual
information of two systems, A and B, in a bipartite state,
ρAB , is given in terms of von Neumann entropies,

I [A : B] = I (ρAB) = S(ρA) + S(ρB) − S(ρAB). (2)

Mutual information was given an operational meaning in [33],
where it was shown that it quantifies the smallest rate at which
one must inject noise into the system for A and B to become
uncorrelated in the usual asymptotic limit. It can therefore be
taken as a measure of the total correlations between the two
systems.

We make use of the Choi-Jamiołkowski isomorphism
to represent channels in terms of positive operators. More
specifically, we use the framework developed in [34] and
introduce conditional quantum operators to represent quantum
channels. That is, any channel EA→B we can write uniquely
in terms of a positive operator EB|A ∈ L(HA ⊗ HB), satisfying
trBEB|A = IA and [34]

E(ρA) = trA
[
ETA

B|AρA

]
, (3)

for all states ρA on A. TA here denotes the partial transpose
on A.

For given initial state ρA and channel EA→B , we can define
a bipartite quantum state on AB [34]:

ρAB = ρ
1/2
A EB|Aρ

1/2
A . (4)

Vice versa, for any given bipartite state ρAB we can define a
channel through a conditional quantum operator

EB|A = ρ
−1/2
A ρABρ

−1/2
A . (5)

This framework allows us to switch back and forth between
channels and states for representing the evolution of a given
initial state.

Classical probability distributions we denote by p(x) and
q(x), and conditional probability distributions we denote by
p(y|x) and q(y|x). A conditional probability distribution
satisfies

∑
y p(y|x) = 1 for all x. A state on a bipartite system

XY that can be written

ρXY =
∑
x,y

p(x,y)|x〉〈x||y〉〈y| (6)

for a joint probability distribution p(x,y) and orthonormal
bases |x〉 for HX and |y〉 for HY , we call a classical state,
reflecting that X and Y are only classically correlated. A state
that can be written

ρXY =
∑

y

p(y)ρX|y |y〉〈y|, (7)

where ρX|y are arbitrary states of system X, we call quantum
classical, reflecting that X can be quantum while Y is classical.
Similarly, a quantum channel, EX→Y , is said to be classical if
it can be written in terms of a conditional quantum operator of
the form

EY |X =
∑
x,y

p(y|x)|y〉〈y||x〉〈x|, (8)

where p(y|x) is a conditional probability distribution. If this
classical channel is applied to a state of X that is diagonal in the
same basis |x〉, ρX = ∑

x p(x)|x〉〈x|, we call this a classical
process. The output is in this case just ρY = ∑

y p(y)|y〉〈y|,
where p(y) = ∑

x p(x,y) = ∑
x p(x)p(y|x).

B. Relevant information optimization problem

Denote by ρX a state of a quantum system X, with
purification ψXR . This state represents the data from which
we wish to extract information. The reference system R is sent
through the relevance channel, RR→Y , with output system
Y . We seek an optimal encoding of the information in X to
a memory, M , in terms of a quantum channel EX→M in the
sense that we wish to retain as much information about Y as
possible, without storing any unnecessary data.

The protocol we consider is similar to that used in quantum
rate-distortion coding [28–31]. Starting from the purification,
ψXR , information is encoded in the memory by a map,

ÊXR→MR = EX→M ⊗ IR. (9)

This map is an extension of the local encoding map, EX→M , to
the reference system R. Information is now stored in the state

ρMR = Ê(ψXR). (10)
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FIG. 2. An illustration of the causal structure of three related
coding protocols. In each case the input is a purification ψXR of the
initial data ρX . The protocols differ only by local maps applied to
either the data, X, or the purification reference, R. (a) The “relevance
coding protocol” considered in this paper. The data are encoded in
a memory by an encoding map, EX→M , while a “relevance channel”
RR→Y is applied to the reference to define relevant information. (b)
The conventional protocol for quantum rate-distortion coding. No
“relevance channel” is used, and all of the information in the initial
data is considered equally important. A decoding map, DM→Z , needs
to be introduced to measure the fidelity of the encoded and original
data. (c) A generalized rate-distortion coding protocol, of which the
two protocols in (a) and (b) are special cases.

Subsequently, the reference is sent through the relevance
channel RR→Y , which we extend to the memory system,

R̂MR→MY = IM ⊗ RR→Y , (11)

so that information about Y is finally encoded in the state

ρMY = R̂(ρMR). (12)

The protocol is depicted in Fig. 2(a).
We use mutual information to quantify both the information

encoded about the initial data, which we refer to as memory,

Imem = Imem[ρMR] = I [M : R], (13)

and the information available about the output on Y , which we
refer to as predictive power,

Ipred = Ipred[ρMR] = I [M : Y ]. (14)

Following the classical information bottleneck method,
we wish to filter out the relevant information about Y .

We do so by maximizing Ipred. However, keeping more
relevant information comes at the cost of increased memory,
Imem. We define an optimal encoding as one that maximizes
Ipred, while simultaneously obeying a constraint on Imem.
Optimal encodings therefore must be solutions to the following
optimization problem:

max
EX→M

Ipred such that Imem � const. (15)

It should be noted that the dual problem of minimizing Imem

subject to a constraint on Ipred is essentially equivalent, in the
sense that for a given value of Imem and Ipred the same solution,
ρMR , is found.

Before we discuss solutions to this optimization problem,
let us pause to consider the relationship to quantum rate-
distortion coding in more detail [28–31]. There, one also
considers an information source X in a state ρX, with
purification ψXR , and seeks to find a minimal encoding of
X into a memory, M , given by a map EX→M . The encoding
is subject to a constraint quantifying the allowed degree
of distortion. To measure the distortion, one introduces a
decoding map, DM→Z , where the system Z is isomorphic to
X. A distortion function measuring the fidelity of the decoded
signal with the original, can then be introduced on the final
output space of Z and the reference system R. The protocol
is depicted in Fig. 2(b). The goal in rate-distortion coding
is to find the most compact encoding by minimizing the
dimension of the memory Hilbert space, dM [35]. We here
have a different goal, by maximizing a mutual information
measure subject to a constraint. We do, however, note that
we will find optimal encodings for which dM is the smallest
possible value that allows for reaching the maximum of the
constrained optimization problem.

Another key difference between the protocol considered
in this paper and quantum rate-distortion coding is that in the
latter, distortion is measured relative to the original data source,
X, whereas we here measure it relative to a second information
source, Y . We seek to extract only the information from X that
is relevant for making an inference about Y . Conceptually,
one could say that we measure average distortion by the
negative mutual information, −Ipred = −I [M : Y ] (large Ipred

meaning low distortion) [36]. Therefore, we do not need to
introduce a decoding map to define distortion. More generally
though, a decoding scheme can be introduced by introducing
a map, DM→Z , following EX→M . This generalized protocol is
depicted in Fig. 2(c).

C. Optimal encodings

Finding the solutions to the optimization problem in
Eq. (15) is equivalent to solving

ρ
opt
MR = arg max

σMR

{I [R̂(σMR)] − αI (σMR) − trR[�RσR]}

(16)

(this is shown in Appendix A). Here α � 0 and �R are
Lagrange multipliers, where �R is a Hermitian operator on
R. α is for the constraint on Imem = I [M : R], and �R is for
the constraint that σR = trM σMR must equal the given initial
state ρR (denoting the reduced state ρR = trXψXR , which is
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identical to the given initial state ρX, but defined on system
R). Recall that R̂R→Y is the relevance channel; see Eq. (12).

An optimal encoding EX→M
opt can be constructed from an

optimal state found in Eq. (16), ρ
opt
MR , via the conditional

quantum operator,

Eopt
M|X = ρ

−1/2
R ρ

opt
MRρ

−1/2
R . (17)

The optimal encoding map is represented as

Eopt(σX) = trX
[(
Eopt

M|X
)TX

σX

]
. (18)

Since X and R are isomorphic systems, we have introduced
a slight abuse of notation by referring to the system X on
the left-hand side of Eq. (17) and R on the right-hand side.
This simply serves to remind us that EM|X is used to define an
encoding map from X to M .

As shown in Appendix A, an optimal encoding satisfies the
following self-consistent equation

Eopt
M|X = Z

−1/2
R exp

(
log2 ρ

opt
M − 1

α
HMR

)
Z

−1/2
R , (19)

where we have introduced

HMR =R̂†( log2 ρ
opt
M + log2 ρ

opt
Y − log2 ρ

opt
MY

)
, (20)

ZR = trM

[
exp

(
log2 ρ

opt
M − 1

α
HMR

)]
, (21)

and R̂†Y→R is the dual map of R̂R→Y [39]. We have
suppressed explicitly writing out identity operators in tensor
products in Eqs. (19)–(21) to keep the notation as simple as
possible.

Equation (19) states an implicit relation that any optimal
encoding must satisfy. In Sec. III we use this relation to
derive several important properties of optimal encodings.
Furthermore, Eq. (19) forms the basis for an iterative algorithm
to explicitly find EX→M

opt for a given input state and relevance
channel. In Sec. V we use this algorithm to find optimal
encodings for a series of examples and study the properties
of these encodings. The iterative algorithm itself is discussed
in Appendix C . Equation (19) reduces to the well-known
classical result from [26] if the states are purely classically
correlated (see Appendix A 3).

III. BASIC PROPERTIES OF OPTIMAL ENCODINGS

A. Structure in the small and large α limits

In the limit of α → 0, the second term in the exponential in
Eq. (19) dominates. The operator thus has a form analogous to
that of a thermal state, with α playing the role of temperature
and HMR the role of Hamiltonian. As shown in Appendix
B, the expectation value of HMR , is the negative predictive
power:

〈HMR〉 = tr[HMRρMR] = −Ipred[ρMR]. (22)

We therefore interpret the solution in this limit as a “ground
state” that maximizes Ipred by minimizing 〈HMR〉. This is, of
course, consistent with the fact that the constraint on Imem in
the optimization problem vanishes as α → 0.

In the classical case, the solution found in this limit specifies
a deterministic hidden Markov model, which is a minimal
representation with sufficient statistics [3,40]. In the quantum
case, this solution can be seen as a generalization of the concept
of purification: While a purification is a solution that allows for
retaining all of the relevant information, there are other, more
efficient solutions. A purification would follow from the choice
RR→Y = IR . The optimally predictive encoding, in contrast, is
maximally correlated with the relevant information, as defined
by the second information source, but uncorrelated with the
irrelevant information.

In the large α limit, there is an infinite emphasis on
compression. Then, the first term in the exponential dominates,
and the term proportional to 1/α can be neglected. Equation
(19) then implies that Eopt

M|X = ρM ⊗ IX, where ρM is arbitrary,
and Ipred = Imem = 0 in this limit.

B. No quantum advantage for classical processes

Let |x〉 and |y〉 be orthonormal basis sets for the two systems
R and Y , respectively (recall that R is isomorphic to X). Recall
that the relevance map, RR→Y , is said to be classical if it can
be written in terms of a conditional quantum operator of the
form

RY |R =
∑
x,y

p(y|x)|y〉〈y||x〉〈x|, (23)

where p(y|x) is a conditional probability distribution. If,
furthermore, the classical relevance channel in Eq. (23) is
applied to an initial state ρR that is diagonal in the basis |x〉,
ρR = ∑

x p(x)|x〉〈x|, we call this a classical process, since it
can be described in terms of a stochastic map from a classical
probability distribution to a classical probability distribution.

An optimal encoding channel for classical processes is
always of the classical form

Eopt
M|X =

∑
m,x

p(m|x)|m〉〈m| |x〉〈x|, (24)

corresponding to an optimal state of the memory and reference

ρ
opt
MR =

∑
m,x

p(x)p(m|x)|m〉〈m| |x〉〈x| (25)

(this is shown in Appendix B). This means that if the relevance
map deems only classical information about X to be important,
then quantum correlations are superfluous and should be
filtered out in an optimal data representation.

By encoding information into nonorthogonal states of the
memory, it is possible to reduce the entropy, S(ρM ), of the
memory, without loss of predictive power. This was exploited
in [41] to construct a memory of smaller entropy than the best
classical model, with no loss of information. However, we
show in Appendix B that for a classical process, a quantum
memory cannot achieve higher predictive power as quantified
by Ipred than the best classical data representation at the same
Imem. Hence, whenever the relevant data are purely classical
there is no quantum advantage to predictive inference as we
have defined it here.

This raises the question of whether the entropy of the
memory is, in itself, a good measure of complexity [41]. Our
view is that rather the correlations between the memory and the
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source should be considered. Encoding classical information
into nonorthogonal quantum states does not require fewer input
bits, even if the entropy of the memory alone can be lower. For
classical states of the form Eq. (25), it is Imem = I [M : R] that
correctly quantifies the encoding rate in classical bits [23,26].

IV. QUANTIFYING QUANTUM ADVANTAGE: THE
INFORMATION PLANE

We do expect a quantum memory to generically perform
better for nonclassical processes. To quantify the quantum
advantage, we compare the optimal solution of the quantum
problem to the optimal solution when the memory is restricted
to be classical.

More precisely, we say that the memory is classical if the
encoding maps leaves MR in a classical-quantum state σMR

of the form

σMR =
∑
m

p(m)|m〉〈m| ⊗ σR|m, (26)

for a basis {|m〉} on M , probability distribution p(m), and
arbitrary states σR|m on R, with the constraint trMσMR = ρR .
The optimal classical encoding is thus defined to be the
solution to the optimization problem [Eq. (16)], when the
optimization is over the restricted set of states given by
Eq. (26). This restriction is discussed further in Appendix A 2.

We measure quantum advantage using the information
plane [26]. The optimal values of Imem and Ipred trace out
a convex curve in the plane spanned by Imem and Ipred

as the Lagrange multiplier α is varied. We can find this
curve numerically using the iterative algorithm presented
in Appendix C. Whenever we need to distinguish between
quantum and classical memories, we denote the values of
Imem(pred) by I

Q
mem(pred) and IC

mem(pred), evaluated for a quantum
and a classical memory, respectively. The optimal curves for
classical and quantum memories can, in general, be different,
with the quantum curve lying above the classical. This generic
situation is illustrated in Fig. 3.

We have the following general bounds on Imem and Ipred.
(1) The memory of a purification, Imem[ψXR] = 2S[X],

upper bounds Imem for a any memory, quantum or classical,
IC/Q

mem � Imem[ψXR].
(2) The predictive power of a purification, Ipred[ψXR],

upper bounds Ipred for any memory, quantum or classical,
I

C/Q
pred � Ipred[ψXR].

(3) The entropy S[X] of the initial data upper bounds Imem

for a classical memory, IC
mem � S[X].

The last bound follows from writing Imem = S[R] −
S[R|M], where S[R|M] = S(ρMR) − S(ρM ) is always greater
or equal to zero for a classical memory of the form Eq. (26)
(recall that S[R] = S[X]). A quantum memory can beat this
bound by having negative values of the conditional entropy
S[R|M] [42,43].

The bounds introduced above, together with the curve
traced out by the respective quantum and classical optimal
encodings, can be used to define three regions of the infor-
mation plane: (1) the quantum feasible region containing all
achievable points for quantum states satisfying the constraint
trMσMR = ρR; (2) the classically feasible region, a subset
thereof, which consists of the points achievable for states

2S[X]

Quantum

α → 0

α → 0

FIG. 3. The information plane is spanned by Imem on the horizon-
tal and Ipred on the vertical axis. It can be divided into three regions: the
infeasible, the quantum feasible, and the classically feasible region.
These regions can be mapped out using the quantum and classical
upper bounds on Imem and the optimal curves found using the quantum
information bottleneck method. The optimal quantum curve generally
lies above the optimal classical curve, and we quantify the gap by the
two positive measures δpred and δmem, as illustrated in the figure. The
circles indicate the α → 0 limits of the optimal quantum and classical
solutions.

of the form of Eq. (26) that satisfy the same constraint; (3)
the infeasible region containing those points corresponding to
values of Imem and Ipred that cannot be reached for any state
satisfying the constraint. Figure 3 illustrates these regions. The
boundaries of the feasible regions in the information plane
allow us to read off the maximum predictive power at a given
memory cost, as quantified by Imem, for both quantum and
classical memories.

We quantify the quantum advantage by comparing the
optimal points achievable for a quantum memory to those
of a classical memory. We introduce two measures.

(1) δpred[Imem] = I
Q
pred[Imem] − IC

pred[Imem] � 0, which we
define to be the difference between the predictive power of the
best quantum model and the best classical model at a given
Imem.

(2) δmem[Ipred] = IC
mem[Ipred] − IQ

mem[Ipred] � 0, defined to
be the difference in memory between the best classical and
best quantum model at a given Ipred.

δpred is naturally only defined for Imem � S[X], and δmem

is defined only for Ipred smaller than the maximum achievable
value for a classical memory. We emphasize that δpred and
δmem quantify quantum advantage compared to any classical
memory of arbitrary dimension dM . This is in contrast to
quantum discord [44,45], which in a sense compares a quantum
memory to classical memories of the same dimension: Discord
can be thought of as comparing a quantum encoding to
an optimal classical encoding achievable through sending
the quantum memory through a decoherence channel [12].
Discord thus compares quantum bits to classical bits on a
“bit-for-bit” basis, which is not necessarily a fair comparison
in the present context.
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V. EXAMPLES

We consider three simple examples to illustrate how
the quantum information bottleneck method can be used
in practice and to showcase some key features of optimal
encodings. All optimal encodings are found numerically, using
the algorithm in Appendix C.

The first example is a purely classical process. It serves
to illustrate the fact that there is no quantum advantage for
classical prediction problems, as indicated by our analytical
results (Sec. III B). We verify numerically that the optimal
solutions for an arbitrary quantum memory are in agreement
with those for a classical memory [46] by tracing out the
optimal curves in the information plane, showing that they
overlap precisely.

The second example illustrates a process with a classical-
to-quantum transition for the optimal encoding. A quantum bit
is being sent through a phase damping channel. For compres-
sion values below the classical maximum, Imem � S[X], the
optimal classical memory performs just as well as the quantum
memory. However, the predictive power so achieved does not
exceed 65% of the maximum possible predictive power. The
optimal quantum memory can break through this classical
barrier by taking on negative values of the quantum conditional
entropy, S[R|M]. Thereby, the quantum memory can achieve
full predictive power. This illustrates one of the main features
of a quantum memory: It can achieve full predictive power on
quantum processes where a classical memory cannot.

The third example shows a quantum process with redundant
information. In this example, there is a quantum advantage
for any value of retained memory. We quantify this quantum
advantage. The redundant information (containing no utility
for prediction) gets filtered out by the iterative algorithm that
constructs the optimal encodings. Full predictive power is
obtained at substantial compression: The maximum value of
Ipred[ψXR] is reached for a memory with almost three times
less memory cost, Imem < Imem[ψXR]. We also find that this is
achievable for a memory of smaller dimension than the initial
data, dM < dX.

A. Even process: A classical process

Our first example illustrates that there is no quantum
advantage for predicting a classical process. The example
system is a hidden Markov process called the even process
[47]. The predictive compressibility characteristics of this
process were studied for a classical memory in [46]. We show
here that the optimal quantum memory has identical features.

The even process outputs all binary strings consisting of
an even number of 1’s bounded by 0’s and associates a
probability to any bit string by choosing either a 0 or a 1
with fair probability after having generated either a 0 or a
pair of 1’s. Consider the problem of predicting a future string
of generated bits, based on having observed previous output
strings. We chose the initial data to be the set of all bit strings,
x, of length three, and we associate with each of them a
probability, p(x), equal to the frequency at which the even
process generates the respective string. The relevance map is
taken to be the map induced by the even process generating
two new output bits from each respective previous sequence
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FIG. 4. Optimal curve in the information plane for the classical
even process. Classical and quantum solutions coincide exactly. Dots
show numerical results for a memory of dimension dM = 3 (blue) and
dM = 2 (gray) for comparison. (Inset) Magnification of the region
where the solutions for dM = 3 and dM = 2 bifurcate.

of three bits. To quantize this problem, we associate a set of
pure orthogonal states |x〉, one for each history x, and take
the state ρX = ∑

x p(x)|x〉〈x| as initial data. There are eight
possible bit strings of length three, so dX = 8. Similarly, for
the output we associate a set of pure orthogonal states |y〉,
one for each possible two-bit output (so that dY = 4). The
relevance map can then be defined by a conditional quantum
operator RY |R = ∑

x,y p(y|x)|y〉〈y||x〉〈x|, where p(y|x) is
the stochastic map induced by the even process from the set of
histories, x, to the set of futures, y.

For both a quantum memory and a classical memory,
respectively, we compute the family of optimal encodings with
the iterative algorithm and the deterministic annealing scheme
described in Appendix C. The optimal values for the two cases
exactly coincide, as shown in Fig. 4. The blue dots are the
numerically found optimal values of Imem and Ipred, for both
the quantum and the classical memory as α is changed from a
large value (lower left corner) to a small value. The maximal
value of Ipred is reached by a memory of dimension dM = 3.
Our results are in agreement with [46].

The gray dots in Fig. 4 show the results for a memory
of dimension dM = 2. This memory size is not large enough
to reach the maximum value of Ipred, and the solution with
dM = 3 bifurcates from that with dM = 2 as α is lowered,
shown in the inset of Fig. 4. This illustrates that the algorithm
can be used not only to find an optimal encoding at a fixed
memory dimension, dM , but also find the smallest possible dM

reaching maximal predictive power.
The maximal value of Ipred is reached at a value of Imem 	

1.45 bits, which is only 56% of the classical entropy of the
input data, S[X] 	 2.6 bits. Hence, significant compression of
the input data is possible, without any loss of predictive power
[46]. Note that the maximum quantum value is 2S[X] 	 5.2
bits. This large value comes from the low degree of purity of
the initial data, allowing a large degree of entanglement with
the memory. Such entanglement is wasteful for predicting a
classical process, and the algorithm correctly filters out this
entanglement.
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B. Causally incompressible quantum process

This example serves to illustrate that there is a quantum
advantage to predictive inference, even for quantum processes
that are not causally compressible.

The even process is an example of a (classical) causally
compressible process [48]. If a model can be constructed such
that full predictive power is achieved at a memory less than
the maximum set by the entropy of the data (in the classical
case), then a process is fully causally compressible [48]. This
definition is easily extended to quantum memories, with the
maximum value for the memory now given by the memory of
a purification, Imem[ψXR].

We look at a phase-damping qubit channel. Phase damping
describes loss of quantum information over time through decay
of off-diagonal matrix elements for a quantum state. For a
single qubit, the phase-damping channel can be represented
by an operator-sum,

R(σR) =K1σRK
†
1 + K2σRK

†
2, (27)

K1 =
(

1 0
0

√
1 − λ

)
, (28)

K2 =
(

0 0
0

√
λ

)
, (29)

where λ = 1 − exp(−t/T2) is a probability that grows with
time, T2 being the qubit “coherence time.”

As initial data we take the quantum state

ρX = (1 − p)|+〉〈+| + p
I2

2
, (30)

where |+〉 = (|0〉 + |1〉)/√2 and I2 is the qubit identity
operator. We choose parameters λ = 0.5 and p = 0.3. The
qualitative nature of the results does not depend sensitively on
the choice of parameters, but of course with a pure ρX (p = 0)
we would necessarily have Imem[ψXR] = 0, and therefore no
predictive compression would be possible.

Numerical results for optimal classical and quantum mem-
ories are shown in Fig. 5, with blue and pink dots for the
classical and quantum case, respectively. Panel (a) shows the
optimal curves in the information plane. The predictive power
of a classical memory is limited; it cannot exceed Ipred 	 0.46
bits. This is only 65% of the maximum possible predictive
power of Ipred 	 0.82 bits. The quantum curve falls exactly
on top of the classical curve, as long as Imem � S[X] 	 0.61.
Beyond this value, we enter the classically infeasible region.
The quantum memory is, however, able to break through this
point. The quantum memory reaches the maximum possible
predictive power, albeit requiring full complexity, Imem 	 1.2
bits—twice the complexity of the best classical solution.

The point where the quantum memory goes beyond what
is classically possible is associated with negative values of
S[R|M], and a sharp drop in the entropy of the memory, S[M],
as shown in panel (b) of Fig. 5. This indicates a classical-
quantum transition for the optimal encoding. This transition is
further accompanied by a jump in purity at this point, which is
shown in panel (c) of Fig. 5. Note that in the limit of maximal
predictive power, the optimal quantum solution is a purification
of ρR , thus keeping all aspects of the original data and hence
having full predictive power at full memory cost.
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FIG. 5. Characteristics of optimal encodings for a qubit phase
damping channel. (a)–(c) Quantum solutions in pink, classical in
blue. (a) Optimal solutions depicted in the information plane. (b)
Conditional entropy S[R|M] and memory entropy S[M]. (c) Purity
of the optimal solution ρ

opt
MR . (d) Quantum correlations in the optimal

solutions, quantified by concurrence (green) and quantum discord
(purple), for the input (dark) and output (bright) systems, MR and
MY , respectively.

The classical-quantum transition also comes along with a
change in other quantities. In panel (d) of Fig. 5, we plot two
different measures of quantum correlations for the optimal
solutions. As a measure of entanglement between the the data
qubit and the memory qubit, we plot the concurrence [32],

C[MR] = C(ρMR) = max(0,λ1 − λ2 − λ3 − λ4), (31)
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where λ1, . . . ,λ4 are the eigenvalues, in decreasing order, of
the Hermitian matrix

√√
ρMRρ̃MR

√
ρMR . Here ρ̃MR = (σy ⊗

σy)ρ∗
MR(σy ⊗ σy) and σy is the Pauli-y matrix. We also plot

the quantum discord [44,45] of the memory,

D[R|M] =D(ρMR) = S(ρM ) − S(ρMR)

+ min
{P (m)}

∑
m

p(m)S(ρR|m), (32)

where the minimization is over all sets of rank 1 projectors on
M , {P (m) = |m〉〈m| ⊗ IR}, such that

∑
m P (m) = IMR , and

p(m) = tr[P (m)ρMR], ρR|m = trM [P (m)ρMRP (m)]/p(m).
The discord is nonzero only for a nonclassical memory, but

is not a measure of nonlocal correlations like entanglement, as
it can be created locally [49]. Rather, it stems from encoding
information into nonorthogonal states. In panel (d) of Fig. 5
we see that C[MR] and D[R|M] are zero for values of Imem

below the classical-quantum transition and nonzero above. In
the α → 0 limit, the quantum memory shows a high degree of
entanglement and discord. We also plot the concurrence and
the discord for the output state ρ

opt
MY [replacing R with Y in

Eqs. (31) and (32)]. Interestingly, we see that the relevance
channel breaks the entanglement such that C[MY ] is zero for
all values of Imem, while the discord, D[Y |M], is nonzero
above the classical-quantum transition. This demonstrates
a quantum predictive advantage even for an entanglement
breaking process. The nonzero discord of the output state
shows that there is a significant degree of “quantumness” of
the predictive information encoded in the memory.

C. Quantum process with redundant information

Our last example shows that redundant information is
filtered out for fully causally compressible quantum processes.
We take the initial data to be represented by two uncorrelated
qubits. The relevance map acts on only one of them, while the
other is discarded. The relevance channel is chosen in such a
way that it can map orthogonal to nonorthogonal states, and is
known to be able to create quantum discord [49], even though
it is a purely local map. In this example, there is a predictive
advantage to having a quantum memory for any complexity
Imem > 0: The optimal quantum curve lies strictly above the
optimal classical curve in the information plane.

The initial data consists of two qubits, X = X1X2, where
the first is in the state given in Eq. (30) and the second is in a
maximally mixed state:

ρX1X2 =
[

(1 − p)|+〉〈+| + p
I2

2

]
⊗ I2

2
. (33)

The relevance channel is taken to be an amplitude damping
channel on the first qubit, while the second qubit is traced out,

R(σR1R2 ) =trR2

[
K1σR1R2K

†
1 + K2σR1R2K

†
2

]
, (34)

K1 =
(

1 0
0

√
1 − λ

)
⊗ I2, (35)

K2 =
(

0
√

λ

0 0

)
⊗ I2. (36)

For the parameters we choose λ = 0.7 and p = 0.3. Again, the
results do not depend sensitively on this choice of parameters.

Clearly, the second qubit is irrelevant for making an
inference about the first qubit. The choice of a maximally
mixed state for the second qubit in Eq. (33) is made to have a
high degree of mixedness in the initial data, which allows
for large degree of correlation with a memory. However,
information pertaining to the second qubit is redundant, and
we use this example to show that the numerical algorithm
filters out this information.

In Fig. 6(a) we show the optimal quantum and classical
curves in the information plane, with the quantum curve lying
strictly above the classical. We see that a very high degree
of compression is possible. Importantly, the optimal quantum
memory reaches maximum predictive power for Imem 	 1.2
bits, well below both the quantum and the classical maximal
values of roughly 3.2 and 1.6 bits, respectively. The maximum
is reached for a memory of dimension dM = 2, showing that
the irrelevant quantum bit has been filtered out from the initial
data.

The classical memory is limited to a maximum predictive
power of Ipred 	 0.16 bits, which is roughly 38% of the
maximum quantum value of 0.42 bits.

To gain further insight into the origin of the quantum
advantage, we plot in panel (b) of Fig. 6 the conditional entropy
S[R|M] and the memory entropy S[M]. In contrast to the
previous example, we now see that the quantum solution has
a significantly lower memory entropy than the best classical
solution, indicating that information is packed more densely
into the quantum memory.

In Fig. 6(c), we plot the purity, tr[ρ2
MR], of the quantum and

the classical solutions. In contrast to the previous example,
the optimal quantum solution in the α → 0 limit is no longer
a purification of the initial data, due to the presence of the
irrelevant data qubit in a highly mixed state. The maximum
value of the purity for the quantum solution is found to be 0.5.
This degree of mixedness comes solely from the entropy of
the irrelevant qubit. Indeed, if we trace out this qubit, we find
that the memory and the relevant data qubit are in a pure state:
The optimal quantum solution in the α → 0 is found to be
ρ

opt
MR[α → 0] = |ψMR1〉〈ψMR1 | ⊗ I2/2, where |ψMR1〉 refers

to a purification of the first data qubit. This further illustrates
how the irrelevant data qubit has been filtered out, and the
numerical algorithm is able to pick out and purify only the
relevant information.

The lower entropy of the quantum memory compared
to the classical, illustrated in Fig. 6(b), indicates that a
predictive advantage is related to information encoded into
nonorthogonal states. We therefore expect a nonzero quantum
discord for the memory. Since we are not interested in quantum
correlations between the memory and the irrelevant second
data qubit, we trace this qubit out and consider the discord
and the concurrence of the memory and the first, relevant, data
qubit, which is denoted R1. The concurrence and discord are
plotted in Fig. 6(d). We show both the quantum correlations of
the initial system, MR1, and the output, MY . A high degree
of both entanglement and discord in the initial and the final
optimal states is seen to be necessary for an optimal encoding.

Neither discord nor concurrence should be taken as mea-
sures of predictive quantum advantage. For this, we consider
the measures δpred and δmem introduced in Sec. IV. These
quantities can essentially be read off from panel (a) of Fig. 6
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FIG. 6. Optimal encodings for an amplitude damping channel
with redundant initial data. (a) The optimal quantum and classical
curves in the information plane. (b) The conditional entropy S[X|M]
and the memory entropy S[M]. (c) The purity of the optimal solution
ρ

opt
MR . (d) Quantum correlations in the optimal solutions, quantified by

concurrence and quantum discord, for the input and output systems,
MR1 and MY , respectively, where R1 refers to the first (relevant)
data qubit.

but are displayed more clearly in Fig. 7. The values in this
plot are calculated by interpolating the numerical data points
displayed in Fig. 6(a).

Quantum predictive advantage increases at the point where
the classical limit is reached, Fig. 7 (top). There is up to
about 0.1 bits of quantum advantage in the classically feasible
regime, and in the classically infeasible regime we find an
additional quantum predictive advantage of as much as 0.26
bits. The quantum advantage to compression also becomes
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FIG. 7. Predictive quantum advantage for the amplitude damping
channel, as quantified by δpred[Imem] (top) and δmem[Ipred] (bottom).

more pronounced as more predictive information is retained
(bottom panel).

VI. CONCLUSIONS

We have introduced and analyzed a quantum generalization
of a method introduced by Tishby et al. [26] called the infor-
mation bottleneck method, an approach to lossy compression
that extracts relevant information. The coding protocol we
introduced can be seen as a generalization of the protocol used
in quantum rate-distortion coding.

Both the quality of the encoding and the coding cost are
quantified in terms of mutual information. This allowed us to
find analytically an implicit relation that any optimal encoding
must satisfy.

The approach we have taken allows for choosing how much
emphasis should be put on compression versus retention of
relevant information. The limit where infinite weight is put
on retaining relevant information is particularly interesting. In
this limit, an encoding with full predictive information exists,
often at significant compression. That is, the compressed
data contain as much relevant information as does the initial
uncompressed data [50], but it can still be significantly
less correlated with the initial data than a purification: The
irrelevant information has been filtered out. For a quantum
memory, this solution can thus be seen as a generalization of
the concept of purification [51]. How much reduction can be
achieved depends on the particular data source.

We have introduced a quantum generalization of the
information bottleneck algorithm to find optimal encodings
numerically. Examples were found exhibiting a substantial
quantum predictive advantage. We studied a phase-damping
qubit channel and found a classical-to-quantum transition:
Both classical and quantum encodings did equally well up
to the point where the classical one reached its memory limit.
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The quantum encoding was able to capture all of the relevant
information in the data (almost a factor two more than the best
classical solution). Breaking through the classical memory
limit was shown to be associated to a negative quantum
conditional entropy. To achieve full predictive power, however,
the memory had to be a purification of the initial data.

In contrast, a quantum process with redundant information
can be compressed; one need only filter out the redundant bits.
Using an example of two qubits, one of which was redundant,
we showed that the numerical algorithm successfully picks out
and purifies only the relevant qubit. In this example, there was
a predictive advantage to having a quantum memory for any
value of the memory kept.

We have shown analytically and verified numerically that if
the relevant information is purely classical, then there can be no
quantum advantage. This result is particularly interesting in the
context of biological systems. It might be taken as an indication
that an organism living in an environment where it suffices to
make predictions about features that are fully approximated
by a classical process does not gain from encoding quantum
information. This is intuitive, since we expect a possible
quantum advantage only when the relevant features of the
environment are intrinsically quantum.
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APPENDIX A: THE SELF-CONSISTENT EQUATIONS
FOR AN OPTIMAL SOLUTION

In this Appendix we show that a solution to the optimization
problem, Eq. (15), fulfills Eq. (19) of the main text. We first
derive the case for a general memory and then consider the
special case where the memory is restricted to be classical.

1. Optimally predictive quantum memories

We wish to solve the optimization problem

max
EX→M

I [M : Y ] such that I [M : R] � const., (A1)

where

I [M : R] = S(σM ) + S(σR) − S(σMR), (A2)

I [M : Y ] = S(σM ) + S(σY ) − S(σMY ), (A3)

and

σMR =Ê(ψXR), (A4)

σMY =R̂(σMR). (A5)

Recall that ρX, with purification ψXR , and the relevance map
RR→Y , were assumed to be given. Also note that the reduced
state on R, σR = trM σMR = ρR , is identical to ρX, since
ÊXR→MR acts trivially on the reference R.

We first remark that optimizing over EX→M is equivalent to
optimizing over all states, σMR , on the bipartite system MR,

with the constraint

trM σMR = ρR. (A6)

This is a straightforward consequence of the Choi-
Jamiołkowski isomorphism, which gives one-to-one corre-
spondence between channels and positive operators. More
specifically, for a candidate channel EX→M , we introduce a
representation in terms of a conditional quantum operator [34],

E(σX) = trX
[
ETX

M|XσX

]
, (A7)

where EM|X is a positive operator, satisfying trMEM|X = IX.
TX denotes the partial transpose on X. We now introduce the
following state on MR associated with EX→M :

σMR = ρ
1/2
R EM|Xρ

1/2
R . (A8)

The slight abuse of notation here is based on the two systems X

and R being isomorphic. For ρR fixed this uniquely associates
a state with the channel. On the other hand, given a state
σMR satisfying trM σMR = ρR , we introduce the conditional
quantum operator

EM|X =ρ
−1/2
R σMRρ

−1/2
R , (A9)

which uniquely specifies a quantum channel, EX→M , through
Eq. (A7). For more details on the link between conditional
quantum operators, as we define them here, and the Choi-
Jamiołkowski isomorphism, we refer the reader to [34].

This means that we can replace the maximization over
EX→M with one over states, σMX, in Eq. (A1). We next show
explicitly that this is consistent, in the sense that Ê(ψXR) =
ρ

1/2
R EM|Xρ

1/2
R , where E is given by Eq. (A7). First we find for

σMR

σMR = E ⊗ IR(ψXR) = trX
[
ETX

M|XψXR

]
(A10)

=
∑
ij

√
pipj trX

[
ETX

M|X|i〉〈j |]|i ′〉〈j ′| (A11)

=
∑
ij

√
pipj 〈j |ETX

M|X|i〉|i ′〉〈j ′| (A12)

=
∑
ij

√
pipj

〈
i|EM|X|j 〉|i ′〉〈j ′|. (A13)

In the first line we introduced the representation of the map
in terms of the conditional state. In the second line, we used
Eq. (1) to write ψXR in terms of basis states |i〉 and |i ′〉 on
the two respective systems, X and R. In the third line we
performed the partial trace, and in the last line we performed
the partial transpose. On the other hand, we also have that

σMR = ρ
1/2
R EM|Xρ

1/2
R (A14)

=
∑

i

√
pi |i〉〈i|EM|X

∑
j

√
pj |j 〉〈j | (A15)

=
∑
ij

√
pipj

〈
i|EM|X|j 〉|i〉〈j |, (A16)

where we simply inserted the spectral decomposition ρR =∑
i pi |i〉〈i|. Comparing Eq. (A13) and Eq. (A16), we see that

the expressions are identical.

012338-11



ARNE L. GRIMSMO AND SUSANNE STILL PHYSICAL REVIEW A 94, 012338 (2016)

In summary, we now consider the optimization problem

max
σMR

I [R̂(σMR)] (A17a)

such that I (σMR) � const., (A17b)

σR = trM [σMR] = ρR. (A17c)

We solve the constrained optimization problem in Eq. (A17)
by introducing Lagrange multipliers. That is, we seek to
maximize a Lagrangian

max
σMR

L(σMR), (A18)

defined by

L(σMR) = I [R̂(σMR)] − αI (σMR) − trR[�RσR]. (A19)

Here α � 0 and �R are the Lagrange multipliers, where �R is
a Hermitian operator on R. α is for the constraint on I (σMR),
and �R for the constraint that σR = trM σMR = ρR is the given
initial state. To clarify the latter constraint, it is useful to expand
ρR in some orthonormal basis of Hermitian operators Hkl on
HR , ρR = ∑

k,l xklHkl , xkl ∈ R. The constraint that trM σMR =
ρR can then be stated as trR[Hkl trM σMR] = xkl , for all k,l.
Hence, we can write

�R =
∑
kl

λklHkl, (A20)

with d2
X real Lagrange multipliers λkl .

We proceed by considering a small variation in σMR:
σMR → σMR + δMR for traceless and Hermitian δMR . The
functional derivative, δL/δMR , is then defined through

δL = tr

[
δL

δMR

δMR

]
, (A21)

where δL is the variation in L to first order in δMR . In particular,
we have the following functional derivatives:

δS(σM )

δMR

= − log2 σM ⊗ IR − IMR, (A22)

δS(σR)

δMR

= −IM ⊗ log2 σR − IMR, (A23)

δS(σMR)

δMR

= − log2 σMR − IMR, (A24)

δS(σY )

δMR

= −R̂†(IM ⊗ log2 σY + IMY

)
, (A25)

δS(σMY )

δMR

= −R̂†(log2 σMY + IMY

)
. (A26)

Note that since R̂MR→MY is trace preserving, the dual map,
R̂†MY→MR , is unital, i.e., R̂(IMY ) = IMR . We can now write
the variational condition for the optimum, δL/δMR = 0,

δL(σMR)

δMR

= − log2 σM + R̂†(log2 σMY − log2 σY

)
+α(log2 σM + log2 σR − log2 σMR) − �̃R = 0,

(A27)

where we have absorbed an operator proportional to IMR

into the Lagrange multiplier �̃R and suppressed the identity
operators in tensor products to keep the notation as clean as

possible. Rearranging this, we have

σMR = exp

(
log2 σM + log2 σR − 1

α
HMR − �̃R

)
, (A28)

where HMR is defined in Eq. (20).
In Eq. (A28), the Hermitian operator �̃R must be chosen

such that trMσMR = ρR . Since this involves varying d2
X real

Lagrange multipliers, finding such a �̃R is costly. A better
approach is to rewrite the exponential

exp(log2 σM + log2 σR − HMR/α − λ̃R)

= CR exp(log2 σM − HMR/α)C†
R,

where CR is an operator acting nontrivially on system R only.
To see that this is possible, consider the Zassenhaus formula
for the expansion of an exponential [52],

eX+Y = eXeY

∞∏
n=2

eCn(X,Y ), (A29)

where Cn(X,Y ) is a polynomial of degree n in X and Y that can
be written in terms of nested commutators of the two operators
(with [X,Y ] as the innermost commutator). For example, the
three first Cn(X,Y ) are

C2(X,Y ) = − 1
2 [X,Y ],

C3(X,Y ) = 1
3 [Y,[X,Y ]] + 1

6 [X,[X,Y ]],

C4(X,Y ) = 1
24 4[[[X,Y ],X],X] + 1

8 [[[X,Y ],X],Y ]

+ 1
8 [[[X,Y ],Y ],Y ].

To apply this to Eq. (A28), we identify X = log2 σM − HMR/α

and Y = log2 σR − �̃R , so that Y is an operator on system
R only. It is then clear that the commutator [X,Y ] acts
nontrivially on system R only as well. We can therefore write

eX+Y = eX+Y/2eY/2
∞∏

n=2

eCn(X+Y/2,Y/2)

=
( ∞∏

n=2

eCn(X+Y/2,Y/2)

)†

eY/2eX+Y/2

=
( ∞∏

n=2

eCn(X,Y/2)

)†

eY/2eX+Y/2

=
( ∞∏

n=2

eCn(X,Y/2)

)†

eY/2eXeY/2

( ∞∏
n=2

eCn(X,Y/2)

)

=CReXC
†
R.

In the first line we have applied the Zassenhaus formula. In
the second line we have used that X, Y , and exp(X + Y ) are
Hermitian. In the third line we have used that Y/2 commutes
with itself. In the fourth line we applied the Zassenhaus
formula again.

The operator CR must be chosen such that σMR is positive
and the constraint trMσMR = ρR holds. This can be guaranteed
by choosing

CR = ρ
1/2
R Z

−1/2
R , (A30)

012338-12



QUANTUM PREDICTIVE FILTERING PHYSICAL REVIEW A 94, 012338 (2016)

where

Z
−1/2
R =

{
trM

[
exp

(
log2 ρM − 1

α
HMR

)]}−1/2

. (A31)

We thus have the following self-consistent equation for an
optimal solution σMR:

σMR = ρ
1/2
R Z

−1/2
R exp

(
log2 σM − 1

α
HMR

)
Z

−1/2
R ρ

1/2
R .

(A32)

The associated conditional state, given through Eq. (A9), thus
has the form claimed in Eq. (19).

2. Classical memories

We now consider a situation where M is restricted to be
classical, while X (R) and Y are not. More precisely, we
consider the same optimization problem as before, but now
restricted to optimizing over classical-quantum states of the
form

σMR =
∑
m

p(m)|m〉〈m| ⊗ σR|m, (A33)

for a fixed basis {|m〉} on M and arbitrary states σR|m on R.
The constraint trMσMR = ρR must still be satisfied. Note that
the set of all such states is convex when the basis for M is
fixed.

The optimization proceeds as before, leading to Eq. (A32),
which when using Eq. (A33) gives us

pmσR|m = pm ρ
1/2
R Z

−1/2
R exp

[
1

α
R†(log2 σY |m − log2 σY

)]

× Z
−1/2
R ρ

1/2
R , (A34)

ZR =
∑
m

pm exp

{
1

α
R†[log2(σY |m) − log2 σY

]}
.

Together with

pm = tr[pmσR|m],

σY |m = R(σR|m),
(A35)

this is a self-consistent equation for pmσR|m.

3. Fully classical setup

We now consider a situation where all three systems are
entirely classical in the sense that we can write

ρR =
∑

x

p(x)|x〉〈x|, (A36)

ρMR =
∑
m,x

p(m,x)|m〉〈m| |x〉〈x|, (A37)

ρMY =
∑
m,y

p(m,y)|m〉〈m| |y〉〈y|, (A38)

and

RY |R =
∑
x,y

p(y|x)|y〉〈y||x〉〈x|, (A39)

where |m〉, |x〉, and |y〉 are orthonormal bases for the three
respective systems, M , X, and Y , p(x), p(m,x), and p(m,y)

are joint probability distributions, and p(y|x) is a conditional
probability distribution. By plugging this into Eq. (A32), it is
straightforward to show that we can write

p(m,x) = p(m)

p(x)
exp

{
1

α

∑
y

p(y|x) log2

[
p(m,y)

p(m)p(y)

]}
Z−1

R ,

(A40)

where

p(m) =
∑

x

p(m,x)

p(m,y) =
∑

x

p(y|x)p(m,x).

The normalization factor now reads

ZR =
∑
m

p(m) exp

{
1

α

∑
y

p(y|x) log2

[
p(m,y)

p(m)p(y)

]}
.

(A41)

This is identical to the result for the classical information
bottleneck derived in [26].

APPENDIX B: PROPERTIES OF AN
OPTIMAL SOLUTION

1. The negative of Ipred as “energy” in the low α limit

In Sec. III A we noted that for small α, the conditional
quantum operator in Eq. (19) has a form analogous to a thermal
state, with α playing the role of temperature and HMR the role
of Hamiltonian. We now show that the expectation value of
this operator is just the negative of the predictive power:

〈HMR〉 := trMR[σMRHMR]

= − trMR{σMRR̂†[log2 σMY − log2(σM ⊗ σY )]}
= − trMY {R̂(σMR)[log2 σMY − log2(σM ⊗ σY )]}
= − trMY {σeMY [log2 σMY − log2(σY ⊗ σY )]}
= − I (σMY )

= − Ipred. (B1)

In the second line we inserted the definition of HMR , in the
third we used the defining property of the dual map, R̂†, in
the fourth that σMY = R̂(σMR), and in the last two lines we
simply used the definitions of the mutual information and Ipred,
respectively.

2. No quantum advantage for classical processes

In this section we prove that there is no quantum advantage
for predictive inference on classical processes, as claimed in
Sec. III B.

Recall that the relevance channel, RR→Y , is said to be
classical if it can be written in terms of a conditional quantum
operator of the form

RY |R =
∑
x,y

p(y|x)|y〉〈y||x〉〈x|, (B2)
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where p(y|x) is a conditional probability distribution and |x〉
and |y〉 are orthonormal basis sets for the two systems R and
Y (recall also that R is isomorphic to X).

We first show that applying a map of this form to an arbitrary
state σMR results in a quantum-classical state on MY , i.e., a
state of the form

σMY = R̂(σMR) =
∑

y

p(y)σM|y |y〉〈y|, (B3)

where p(y) is a probability distribution and σM|y are quantum
states on M ,

R̂(σMR) = trR

[∑
x,y

p(y|x)|y〉〈y| |x〉〈x|σMR

]

=
∑
x,y

p(y|x)〈x|σMR|x〉 |y〉〈y|

=
∑

y

p(y)σM|y |y〉〈y|, (B4)

where

p(y)σM|y =
∑

x

p(y|x)〈x|σMR|x〉. (B5)

We next show that if the initial state, ρR , is diagonal in the
chosen basis |x〉,

ρR =
∑

x

p(x)|x〉〈x|, (B6)

then Eq. (19) implies that the optimal state ρ
opt
MR corresponding

to an optimal encoding is also quantum classical. For ease of
notation we drop the superscript “opt” for the rest of this
section.

Recall that we showed in Appendix A that the state ρMR

corresponding to an optimal encoding must satisfy

ρMR =ρ
1/2
R Z

−1/2
R exp

(
log2 ρM − 1

α
HMR

)
Z

−1/2
R ρ

1/2
R ,

(B7)

where

HMR =R̂†(log2 ρM + log2 ρY − log2 ρMY

)
, (B8)

Z
−1/2
R =

{
trM

[
exp

(
log2 ρM − 1

α
HMR

)]}−1/2

. (B9)

Using that ρMY is quantum-classical, we can write

log2 ρMY = log2

[∑
y

p(y)ρM|y |y〉〈y|
]

=
∑

y

log2

[
p(y)ρM|y

]|y〉〈y|

=
∑

y

[
log2 p(y) + log2 ρM|y

]|y〉〈y|

= log2 ρY +
∑

y

log2

(
ρM|y

)|y〉〈y|. (B10)

Thus,

HMR = R̂†

[
log2 ρM −

∑
y

log2(ρM|y)|y〉〈y|
]

= log2 ρM −
∑
x,y

p(y|x) log2(ρM|y)|x〉〈x|

=
∑

x

[
log2 ρM −

∑
y

p(y|x) log2(ρM|y)

]
|x〉〈x|,

(B11)

where we have used that R†(IY ) = IR = ∑
x |x〉〈x| and

R†(|y〉〈y|) =
∑

x

p(y|x)|x〉〈x|. (B12)

Using this, we have that

exp

(
log2 ρM − 1

α
HMR

)

=
∑

x

exp

[(
1 − 1

α

)
log2 ρM

+ 1

α

∑
y

p(y|x) log2(ρM|y)

]
|x〉〈x|

=
∑

x

τM|x |x〉〈x|, (B13)

where we have defined

τM|x = exp

[(
1 − 1

α

)
log2 ρM + 1

α

∑
y

p(y|x) log2(ρM|y)

]
.

(B14)

This means that we can write

ρMR =
∑

x

τM|xρ
1/2
R Z

−1/2
R |x〉〈x|Z−1/2

R ρ
1/2
R (B15)

and

ZR =
∑

x

trM [τM|x]|x〉〈x|. (B16)

Now it just remains to use that ρR = ∑
x p(x)|x〉〈x| to arrive

at

ρMR =
∑

x

p(x)ρM|x |x〉〈x|, (B17)

where

ρM|x = τM|x
tr[τM|x]

. (B18)

This proves the claim that ρMR is quantum classical.
The form of Eq. (B17) does not rule out some degree of

quantumness of the memory, since the states ρM|x need not be
orthogonal. However, we now show that this does not allow
for higher predictive power at fixed memory, thus ruling out
any quantum advantage.
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First of all, note that the maximum possible value of Ipred

for a classical process can be reached by a state of the form

ρMR =
∑
m,x

p(x)p(m|x)|m〉〈m| |x〉〈x|, (B19)

which we refer to as a classical state, since both M and R

are classical. This can be achieved by choosing M ∼= R and
p(m|x) = δm,x , where δm,x is the Kronecker δ. It is easily seen
that this gives the same output state ρMY as would a purification
ψXR sent through the relevance channel. We therefore have that
for any achievable predictive power there exists a classical state
of the form of Eq. (B19) that reaches this value.

Now consider the memory and predictive power of the state
Eq. (B17),

Imem[ρMR] =S(ρM ) −
∑

x

p(x)S(ρM|x), (B20)

Ipred[ρMR] =S(ρM ) −
∑

y

p(y)S(ρM|y), (B21)

where the output state, after sending through the relevance
channel, is

ρMY = R̂(ρMR) =
∑

y

p(y)ρM|y |y〉〈y|, (B22)

and p(y)ρM|y = ∑
x p(y|x)p(x)ρM|x . Using Eqs. (B18) and

(B14) we find that the Lagrangian, L(ρMR), that we wish to
maximize is

L(ρMR) = Ipred[ρMR] − αImem[ρMR]

=
∑

x

p(x) log2(tr τM|x). (B23)

Since the right-hand side only depends on the trace of τM|x , the
Lagrangian is invariant under a measurement of the memory
M in a chosen basis |m〉. This shows that quantum correlations
of the type where ρM|x are nonorthogonal are superfluous. We
conclude that optimal values of the Lagrangian can be reached
for classical states in the case of classical processes.

APPENDIX C: AN ITERATIVE ALGORITHM AND
DETERMINISTIC ANNEALING

In this Appendix we introduce an algorithm to find optimal
encodings for given initial data and relevance channel. This is
a direct quantum generalization of the information bottleneck
method [26] used to find such optimal encodings in the
classical case. The information bottleneck method employs
an iterative algorithm where a solution at one iteration is used
on the right-hand side of Eq. (19) to compute a solution for the
next iteration. This algorithm is similar to the Blahut-Arimoto
algorithm, for which each iteration is proven to converge
[53,54], but since the functional we are optimizing is not
convex over the product space of states on MR and MY

uniqueness is not guaranteed [26]. The information bottleneck
method has been used in several domains, and it has inspired
new algorithms as well as new insights into existing data-
analysis methods which can be derived from the elegant
conceptual framework (see, e.g., [10,55–65] and references
therein).

We introduce the following quantum generalization to find
an optimal encoding at a given value of α. Denoting the state at
the kth step by σ

(k)
MR , the state at the next step is found through

the following.
(1) Compute σ

(k)
M , σ

(k)
MY , and σ

(k)
Y according to

σ
(k)
M = trRσ

(k)
MR, σ

(k)
MY = R̂(σ (k)

MR), σ
(k)
Y = trMσ

(k)
MY .

(2) Compute the state for the next step according to

σ
(k+1)
MR = ρ

1/2
R

(
Z

(k)
R

)−1/2
exp

(
log2 σ

(k)
M − 1

α
H

(k)
MR

)

× (
Z

(k)
R

)−1/2
ρ

1/2
R ,

where

H
(k)
MR = R̂†( log2 σ

(k)
M + log2 σ

(k)
Y − log2 σ

(k)
MY

)
and

Z
(k)
R =trM

[
exp

(
log2 σ

(k)
M − 1

α
H

(k)
MR

)]
.

(3) Halt if L(k+1) − L(k) � ε, for some tolerance ε, where
L(k) = Ipred(σ (k)

MR) − αImem(σ (k)
MR).

Whenever we restrict to a situation where the memory is
classical, as discussed in Appendix A 2, we replace step 3 with
the following.

(4) Compute the state for a classical memory for the next
step according to

p(k+1)
m σ

(k+1)
R|m =p(k)

m ρ
1/2
R

(
Z

(k)
R

)−1/2

× exp

[
− 1

α
R̂†

(
log2 σ

(k)
Y − log2 σ

(k)
Y |m

)]

× (
Z

(k)
R

)−1/2
ρ

1/2
R ,

where

Z
(k)
R =

∑
m

p(k)
m exp

{
− 1

α
R̂†[ log2 σ

(k)
Y − log2

(
σ

(k)
Y |m

)]}
.

Step 2 is replaced with p(k)
m = tr[p(k)

m σ
(k)
A|m], and σ

(k)
B|m =

E(σ (k)
A|m). This allows us to compare the optimal solution found

for a classical memory to that of a quantum memory.
The iterative algorithm allows us to find a solution at given

α, where α parametrizes the tradeoff between Ipred and Imem.
By varying this parameter, we can trace out a curve in the
“information plane” [26,46] with Imem on the x axis and Ipred

on the y axis. This is analogous to a rate-distortion curve in
conventional rate-distortion theory. To trace out this curve, we
use the following scheme: We start at a large value of α with the
trivial solution ρ

opt
MR = ρM ⊗ ρR (ρM arbitrary) and gradually

“cool” the system by lowering α towards zero in small steps.
At each step we use a small perturbation of the solution at
the previous step as initial guess. This approach to clustering
problems has been dubbed “deterministic annealing,” due to
the analogy with statistical mechanics [66].

The annealing scheme allows us not only to find the optimal
solution at a fixed memory dimension, dM , but also to find the
smallest dM possible at each value of α. At very large α we
have the trivial solution ρM ⊗ ρR for arbitrary ρM , and we can
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therefore choose M to be a trivial system with Hilbert space
dimension dM = 1. As we lower α we compare the solution
for a memory of dimension dM to one with dimension dM + 1,
and increase the dimension for the next step, dM ← dM + 1,
only if the higher-dimensional system outperforms the lower-
dimensional one. In this way, the optimal solution will go

through a series of “phase transitions” [66] at critical values
of α, where the dimension is increased.

It is particularly interesting that in the α → 0 limit of
this annealing scheme one obtains a solution with maximal
predictive power equal to that of a purification, but potentially
at a lower Imem and memory dimension dM .
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