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Entanglement swapping of two arbitrarily degraded entangled states
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We consider entanglement swapping, a key component of quantum network operations and entanglement
distribution. Pure entangled states, which are the desired input to the swapping protocol, are typically mixed
by environmental interactions, causing a reduction in their degree of entanglement. Thus an understanding
of entanglement swapping with partially mixed states is of importance. Here we present a general analytical
solution for entanglement swapping of arbitrary two-qubit states. Our result provides a comprehensive method
for analyzing entanglement swapping in quantum networks. First, we show that the concurrence of a partially
mixed state is conserved when this state is swapped with a Bell state. Then, we find upper and lower bounds on
the concurrence of the state resulting from entanglement swapping for various classes of input states. Finally,
we determine a general relationship between the ranks of the initial states and the rank of the final state after
swapping.
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I. INTRODUCTION

Recent interest in quantum networks is driven by the
enticing possibility of powerful new network functionalities
that are unattainable by conventional classical communication
networks. Similarly to their classical counterparts, quantum
networks are comprised of a multitude of nodes interconnected
by quantum channels. While nodes generate, store, and
manipulate quantum states, the channels transfer or teleport
these states between the nodes with high fidelity, allowing
the distribution of quantum entanglement across the entire
network. This inherent ability to distribute and manipulate
entanglement between distant parties is the underpinning of
quantum applications.

Entanglement swapping is one of the basic quantum
operations used for entanglement distribution [1–3]. For
instance, it could be used for the creation of multipartite
entangled states [4] from bipartite entanglement or for over-
coming the transmission loss in establishing entanglement
over long distances via quantum repeaters [5–8]. Interestingly,
the entanglement swapping concept also lends itself to the
search for entanglement conserving quantities [9–12]. In
any experimental implementation the generated entangled
quantum states are not necessarily perfect and, in fact, could be
further degraded by transmission through the communication
channels. Entanglement swapping of certain classes of de-
graded states were considered recently [13–17]. However, the
nature of the intrinsic imperfections of any quantum network
and the exact decoherence mechanism of the transmission
channel itself are implementation dependent [18–21]. Thus
the need to understand how entanglement swapping of partially
degraded states works in all cases calls for a general solution
for swapping of arbitrary states.

In this paper we give an analytical description of entan-
glement swapping of general two-qubit states, which encom-
passes arbitrary two-qubit states resulting from any possible
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decoherence mechanisms. While entanglement swapping can
be accomplished by using projection on arbitrary basis states,
here we chose the Bell state basis for clarity and potential
realistic implementations for photonic qubits. We further
use our analytical results to numerically model how the
concurrence of the final states resulting from entanglement
swapping depend on the initial states used. We find that
entanglement swapping with any arbitrarily mixed two-qubit
state represented by density matrix M and a pure fully
entangled Bell state results in a state, the concurrence of
which is the same as that of M . Next, we determine that the
concurrence of a state resulting from entanglement swapping
of any two Bell diagonal states is upper bounded by the product
of the concurrences of the initial states. Lastly, we consider
entanglement swapping with arbitrarily entangled pure states.
We find a lower bound for this case and discuss how the rank of
input matrices affects the rank of output matrix. Specifically,
we find that entanglement swapping two states of rank R1 and
R2 results in a state with rank at least as high as max[R1,R2].
Finally, our general analytical solution incorporates a few
specific cases of entanglement swapping with particularly
restricted input states that have been published in recent years.

The paper is organized as follows. In Sec. II we first obtain
a closed-form expression for the output two-qubit density
matrix starting from two general density matrices as inputs.
Numerically we build a model for optical implementation
of a Bell state measurement (BSM) and use it to verify our
analytical results. In Sec. III we present an analysis of how the
concurrence of initial states is related to the concurrence of the
final states using both numerical and analytical methods. We
conclude with a discussion in Sec. IV.

II. ANALYTICAL SOLUTION FOR ENTANGLEMENT
SWAPPING

A. Bell states

In this first section we start with an instructional example
of entanglement swapping using Bell states. The setup we
consider is shown in Fig. 1, where the sources A,B are
independent photon-pair sources and thus the joint four-qubit
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FIG. 1. General layout for entanglement swapping. Source A

emits states entangled in modes 1 and 2, while source B emits states
entangled in modes 3 and 4. Entanglement between modes 1 and 4 can
sometimes be created when a BSM on modes 2 and 3 is performed.

state of the photons in modes 1,2,3,4 is given by the tensor
product of the states produced at the two sources,

ρ1,2,3,4 = ρ1,2 ⊗ ρ3,4. (1)

H1,H2 are the Hilbert spaces of the two qubits whose state
is described by ρ1,2 ∈ B(H1,2) � B(H1 ⊗ H2) and similarly,
H3,H4 are the spaces for the other pair ρ3,4 ∈ B(H3,4) �
B(H3 ⊗ H4), where B(Hi) is the space of operators on
the respective Hilbert spaces. In this section ρ1,2 and ρ3,4

are entangled two-qubit Bell states but could represent any
arbitrary two-qubit state in the rest of the paper.

If both sources A and B in Fig. 1 emit the φ+ Bell state,
then the initial system is given by

|φ+
1,2〉 ⊗ |φ+

3,4〉, (2)

where the Bell states are |φ±
i,j 〉 = 1√

2
(|H 〉i |H 〉j ± |V 〉i |V 〉j )

and |ψ±
i,j 〉 = 1√

2
(|H 〉i |V 〉j ± |V 〉i |H 〉j ) and i and j represent

the modes. As written, the state in Eq. (2) is the tensor
product of modes 1,2 and 3,4 emitted from sources A and
B, correspondingly. Rewriting this composite state in terms of
states with modes 2 and 3 together (the modes being measured)
and modes 1 and 4 together (the modes being entangled) we
obtain

1
2 [|φ+

1,4〉|φ+
2,3〉+|φ−

1,4〉|φ−
2,3〉 + |ψ+

1,4〉|ψ+
2,3〉+|ψ−

1,4〉|ψ−
2,3〉].

(3)
Note, that a Bell state measurement is a projection of modes
2,3 onto their Bell basis |φ±

2,3〉 and |ψ±
2,3〉. It is clear from Eq. (3)

that a BSM in modes 2,3 will result in an entangled state in
modes 1,4, the modes which have never interacted. Projection
of modes 2,3 onto other entangled basis states besides the Bell
basis is also capable of entangling modes 1,4. However, the
Bell state projection onto |ψ−

2,3〉 for photonic qubits could be
conveniently realized by using just a conventional balanced
beam splitter, hence motivating the use of BSM throughout
this paper. Information on physical implementations of BSM
can be found in Sec. II C. In Eq. (3), we see that for this
particular case the final state in modes 1,4 is the same as that
found in the BSM of modes 2,3, each outcome occurring with
equal probability 1

4 . When swapping Bell states the output and
input concurrences are all maximal and equal to 1.

B. Arbitrary states

We will now extend the above example to general density
matrices in order to find the state resulting from entanglement
swapping two arbitrarily mixed states. That is, we project the
joint density matrix ρ1,2,3,4 onto a Bell state in the subspace
of spatial modes 2,3, followed by tracing these modes out and
normalizing, resulting in a final state for ρ14. To accomplish
this projection for general input density matrices and for any
Bell state outcome, consider the input states for ρ1,2 and ρ3,4,
whose elements in the basis |HH 〉,|HV 〉,|V H 〉,|V V 〉 are ai,j

and bi,j , correspondingly. Then ρ1,2,3,4 takes form of

ρ1,2,3,4 = a11b11|H1H2〉|H3H4〉〈H1H2|〈H3H4|
+ a11b12|H1H2〉|H3H4〉〈H1H2|〈H3V4| + · · · . (4)

To facilitate the projection of modes 2 and 3 onto Bell
states we then express all terms in ρ1,2,3,4 as a sum of Bell
states. As an example of how this can be achieved on a
term-by-term basis, consider the first term |H1H2〉|H3H4〉,
which can be written as a linear sum of Bell states in modes 2
and 3 as 1

2 (|φ+
14〉|φ+

23〉 + |φ+
14〉|φ−

23〉 + |φ−
14〉|φ+

23〉 + |φ−
14〉|φ−

23〉).
Similar results can be calculated for all 256 terms in the sum
of Eq. (4).

The general output states for entanglement swapping ρ
ψ±
1,4

and ρ
φ±
1,4 can then be found in terms of the elements of

the initial input density matrices ρ1,2 and ρ3,4 by projecting
onto either |ψ±

2,3〉 or |φ±
2,3〉, respectively, followed by tracing

out modes 2,3. Thus with �
ψ±
2,3 = |ψ±

2,3〉 〈ψ±
2,3| ,�φ±

2,3 =
|φ±

2,3〉 〈φ±
2,3| as the projectors onto the distinct Bell states,

one has

ρ
ψ±
1,4 = Tr2,3

[
�

ψ±
2,3 ρ1,2,3,4�

ψ±
2,3

N±

]
, (5)

ρ
φ±
1,4 = Tr2,3

[
�

φ±
2,3ρ1,2,3,4�

φ±
2,3

M±

]
. (6)

The output states ρ
ψ±
1,4 and ρ

φ±
1,4 are the main analytical result

of the paper and serve as the basis of our analysis presented
below in Sec. III. (For explicit forms of ρ

ψ±
1,4 and ρ

φ±
1,4 and their

normalization factors N±,M± see Appendix A.) We verified
one of these results (ρψ−

1,4 ) by numerical simulation for an
optical implementation of a BSM that is described in Sec. II C.
Note that over the last few years several papers have treated
entanglement swapping for particularly restricted classes of
partially mixed input states, nearly all of which fall into the
broad category of X states [13–17]. We ascertain that our
general analytical solution of Eqs. (5) and (6) incorporates
each of those results. A detailed description of entanglement
swapping of X states is presented in Appendix B.

C. Photonic implementation with a beam splitter

Now we consider a physical implementation of the en-
tanglement swapping protocol using polarization-entangled
photons and a BSM which consists of a beam splitter and a
coincidence measurement. This model connects the results in
the previous sections to realizable experiments and also allows
us to verify the results of Sec. II B using a formal description
of the swapping setup. As an aside, the relative simplicity of
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this very BSM implementation motivates the choice of the Bell
basis as a basis to which project modes 2,3.

Implementation of the BSM pictured in Fig. 1 with a 50/50
beam splitter and a coincidence measurement selects on the
ψ− state by exploiting the antisymmetric nature of the singlet
state that yields coincidence counts. Identical photons will
bunch at the output of a beam splitter, which is known as the
Hong-Ou-Mandel effect [22]. However, the opposite effect can
occur if the input photons are in the singlet state, resulting in
each photon exiting in a different port. Since this antibunching
only occurs for the singlet state, we can perform a projective
measurement onto ψ−

2,3 by postselecting on joint detection at
the output ports of a balanced beam splitter [23–28].

We begin with the initial state ρ1,2,3,4 = ρ1,2 ⊗ ρ3,4 as
pictured in Fig. 1 and consider the action of a beam splitter
on modes 2,3. Specifically, photons in modes 2,3 are directed
as inputs to the two-input modes a,b, respectively, of a beam
splitter (of reflectivity η) whose action on the two input modes
is given by

â
†
i → i

√
ηâ

†
i +

√
1 − ηb̂

†
i ,

(7)
b̂
†
j →

√
1 − ηâ

†
j + i

√
ηb̂

†
j ,

where i,j = {H,V } are polarization labels for the photons
in modes a,b, for example, and â

†
H creates a horizontally

polarized photon in mode a of the beam splitter etc. This
means that an input pure-state to the beam splitter, |ψin〉 =
|i〉a |j 〉b = â

†
i b̂

†
j |0〉, yields an output

|ψout〉 = ÛBS |ψin〉
= (f (η)â†

i â
†
j + (1 − η)â†

j b̂
†
i − ηâ

†
i b̂

†
j + f (η)b̂†i b̂

†
j ) |0〉 ,

(8)

where f (η) = i
√

η(1 − η). From Eq. (8) one can see that terms
such as â

†
i â

†
j (b̂†i b̂

†
j ) create two photons in the same output

mode a(b). These doubly occupied output modes lie in the
complement HB of the part of the Hilbert space for the input-
output modes that we are interested in—the coincidence
subspace HC. The direct sum of these two subspaces gives
us the full mode space, Hmode = HC ⊕ HB, whose spans in
the |i〉a |j 〉b notation are

HB = Span{|H 〉a|H 〉a,|V 〉a|V 〉a,|H 〉a|V 〉a,
|H 〉b|H 〉b,|V 〉b|V 〉b,|H 〉b|V 〉b},

HC = Span |H 〉a |H 〉b , |H 〉a |V 〉b , |V 〉a |H 〉b ,

|V 〉a |V 〉b}. (9)

Clearly, Dim(Hmode) = Dim(HC) + Dim(HB) = 4 + 6 = 10.
Note that the coincidence space HC ⊂ Hmode is actually an

isometric embedding of H2 ⊗ H3 into Hmode. Denoting this
isometry by the map K̂ , we have that K̂ : H2 ⊗ H3 �→ Hmode,
Hmode

∼=isom H2 ⊗ H3, K̂†K̂ = 12,3. In fact, the projector �

onto the coincidence subspace is given by � = 1Coin ⊕
0Bunch = ∑4

α=1 |αi〉 〈αi | =
∑4

i=1 K̂ |i〉 〈i| K̂†=K̂(
∑4

i=1 |i〉 〈i|)
K̂† = K̂K̂†, where |αi〉 ,i = 1,2,3,4 is a basis for HCoin and
|i〉 ,i = 1,2,3,4 is a basis for H2 ⊗ H3 with |αi〉 = K̂ |i〉.
Clearly, �2 = K̂K̂†K̂K̂† = K̂(K̂†K̂)K̂† = K̂1K̂† = � and
�HCoin = HCoin,�HBunch = 0.

The unitary ÛBS , introduced in Eq. (8), acts on the entire
ten-dimensional mode spaceHmode. Hence, before considering
the action of the unitary ÛBS on the 2,3 part of the four-qubit
input state ρ1,2,3,4 we need a basis change operator Ŵ such
that

Ŵ : (H2 ⊗ H3) ⊗ (H1 ⊗ H4) �→ Hmode ⊗ (H1 ⊗ H4), (10)

which can be achieved by Ŵ = K̂ ⊗ 11,4. The operator Ŵ is
thus a partial isometry on the original four-qubit space whose
action is to transform,

ρ1,2,3,4 �→ ρi
1,2,3,4 = Ŵρ1,2,3,4Ŵ

†

= (K̂ ⊗ 11,4)ρ1,2,3,4(K̂† ⊗ 11,4). (11)

In the new basis the unitary action of the beam splitter on
ρi

1,2,3,4 is given by the adjoint action of the operator ÛBS ,
resulting in the four-qubit density matrix ρii

1,2,3,4 in theHmode ⊗
(H1 ⊗ H4) basis:

ρii
1,2,3,4 = ÛBSρ

i
1,2,3,4Û

†
BS

= (ÛBS ⊗ 11,4)(K̂ ⊗ 11,4)ρ1,2,3,4

× (K̂† ⊗ 11,4)(Û †
BS ⊗ 11,4)

= (ÛBSK ⊗ 11,4)ρ1,2,3,4(K̂†Û †
BS ⊗ 11,4). (12)

Next we consider a coincidence measurement on the two
output channels of the beam splitter. Since we are interested in
the four-qubit state conditioned on the detection of a photon
in each of the two output modes of the beam splitter, we need
the conditional density matrix which is actually the operator
ρiii

1,2,3,4, obtained after normalizing the projection of ρii
1,2,3,4

onto the coincidence subspace HCoin,

ρiii
1,2,3,4 = �ρii

1,2,3,4�

Tr
(
�ρii

1,2,3,4�
) , (13)

where the trace in the denominator is the trace over the Hilbert
spaces of all four qubits. One now needs to transform the basis
of ρiii

1,2,3,4 from Hmode ⊗ (H1 ⊗ H4) to (H2 ⊗ H3) ⊗ (H1 ⊗
H4) to give ρiv

1,2,3,4 = Ŵ †ρiii
1,2,3,4Ŵ .

Finally, to yield the two-qubit density matrix ρiv we take a
partial trace over the Hilbert spaces of the qubits 2,3 in ρiv

1,2,3,4,
resulting in

ρv
1,2,3,4 = Tr2,3

(
ρiv

1,2,3,4

)

= 1

Tr
(
�ρii

1,2,3,4�
)

4∑
i=1

〈i|Ŵ †�ρii
1,2,3,4�Ŵ |i〉, (14)

where |i〉 is an orthonormal (ON) basis for H2 ⊗ H3,∑4
i=1 |i〉 〈i| = 12,3. Putting everything together, one has that

ρv
1,2,3,4 = 1

N

4∑
i=1

〈 i|(K̂†ÛBSK̂ ⊗ 11,4)ρ1,2,3,4

× (K̂†Û †
BSK̂ ⊗ 11,4)|i〉, (15)
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with

N = Tr
(
�ρii

1,2,3,4�
)

=
4∑

i,j=1

〈 i,j |(K̂†ÛBSK̂ ⊗ 11,4)ρ1,2,3,4

× (K̂†Û †
BSK̂ ⊗ 11,4)|i,j 〉, (16)

with |i〉 ,i = 1,2,3,4 an ON basis for H2 ⊗ H3 and |j 〉 =
1,2,3,4 an ON basis for H1 ⊗ H4.

Note, it can be shown [23] that the operator K̂†ÛBSK̂

appearing in Eqs. (15) and (16) may be expressed as the sum
of a projector onto the |ψ−

2,3〉 state of spatial modes 2,3 and an
operator that has states with one photon per spatial mode in its
kernel, i.e.,

K̂†ÛBSK̂ = |ψ−
2,3〉 〈ψ−

2,3| + Ô. (17)

Here, the operator Ô annihilates any joint state with one photon
in each mode 2,3 in our setup. Since it is only the latter kind
of states that we focus on in this work, Eq. (15) implies that
the output state ρiv is the reduced (and normalized) part on
subsystems 1,4 after projecting onto the maximally entangled
antisymmetric pure state |ψ−

2,3〉 in an operator expansion,

ρ1,2,3,4 = ∑
j ô

1,4
j ⊗ ô

2,3
j . Equation (15) establishes the con-

nection to the implementation-free approach of Secs. II A and
II B.

The results of this section are derived for a typical
physical setup of entanglement swapping based on photonic
qubits and a BSM relying on photon antibunching. For
consistency, we have implemented Eq. (15) programmatically
and can numerically find the final output state ρ14 given
two numerical inputs for ρ12 and ρ34. By comparing these
numerical outputs with those found from ρ

ψ−
1,4 of Eq. (5) for

the same inputs we have concluded that the two approaches are
identical.

III. CONCURRENCE RELATIONS

Using the results of the previous sections, we now apply an-
alytical and numerical methods to analyze how entanglement
swaps for various types of states. We prove some statements
analytically, and for others we come to conclusions based on
numerical simulations with large numbers of random density
matrices.

A. Entanglement swapping of a general state with a Bell state

The most important feature of Eqs. (5) and (6) is that they
can accept any input density matrix. In this section we make
use of this in order to show that when any input density
matrix M of any form is swapped with a Bell state, the
resulting concurrence is equal to that of M . In other words,
the concurrence of a partially mixed state is conserved when
it is swapped with a Bell state. We first illustrate this result
numerically for general input density matrices by using a
large number of Bures distributed random density matrices.
Then we consider the special case of M being an X state, and
prove this claim analytically (Appendix C), due to the ease
at which the concurrence of an X state can be calculated. In
order to sample uniformly from the space of possible density

FIG. 2. Resulting concurrence from entanglement swapping with
a general random density matrix (with concurrence CA) and a Bell
state (with concurrence CB = 1). The horizontal axis is the product of
the initial concurrences and the vertical axis is the final concurrence
(CF ) of the swapped state. The dashed red line is the diagonal.

matrices we have used 106 random density matrices distributed
according to the Bures metric [29]. More information about
how random matrices were calculated can be found in
Appendix E.

Here and in the analysis below, in order to simplify the
notations we label variables describing the first (second) input
state in modes 1,2 (3,4) as A (B) and the final state in modes
1,4 as F . For each of the random density matrices we calculate
the concurrence CA, and we then swap this matrix with a
Bell state according to Eqs. (5) and (6) and calculate the final
concurrence CF of the resulting matrix.

Figure 2 plots the final concurrence CF as a function of
a product CA and CB (CB being a concurrence of a Bell
state that is equal to unity in this case) as black dots. One
clearly sees that all the black dots lie exactly on the diagonal
marked by the dashed red line. That is the concurrence of
the final state after swapping is equal to the product of the
concurrences of the initial state. Note that in this figure we
project modes 2,3 onto ψ− with the BSM; however, the same
results are found regardless of which Bell state is projected
onto.

We point out that in the case considered in this section the
concurrence of the initial mixed state M can be viewed as
a conserved quantity because it is equal to the concurrence
of the final state after entanglement swapping. Quantities
which are conserved during entanglement swapping have been
studied in the past [9], and there has been considerable recent
interest in more general forms of conservation related to
entanglement [10–12].

This conservation result can be intuitively understood if
we interpret it is as a teleportation. Consider the case when
a general state M is in modes 1,2 and the Bell state is in
modes 3,4. Then the BSM is implementing a teleportation of
the state in mode 2 to mode 4, but without the step of applying
a unitary transformation to mode 4 to recover the original
state. However, since the entanglement of two-qubit states is
invariant under local unitary operations, the state ρ1,4 still has
the same concurrence as the initial M .
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B. Entanglement swapping of two Bell diagonal states

Next we consider Bell diagonal states and how the final
concurrence after swapping two Bell diagonal states depends
on the initial states. We will begin this section by showing
numerically that the concurrence of the final state after the
entanglement swapping of two Bell diagonal states is upper
bounded by the product of the concurrences of the input states.
An empirical lower bound for this case will also be found
numerically in terms of the product of the input concurrences.
Lastly, we will analytically demonstrate that the swapping of
the same two Bell diagonal states, which are restricted to rank
2, will always swap to a state with concurrence equal to the
numerical upper bound.

Bell diagonal states are a special set of X states which
consist of a mixture of Bell states. For example, a general Bell
diagonal state is given by

ρBell = α|ψ+〉〈ψ+| + β|ψ−〉〈ψ−| + γ |φ+〉〈φ+|
+δ|φ−〉〈φ−|, (18)

where the coefficients are non-negative and sum to unity.
In order to investigate how the concurrence of Bell diagonal

states behaves during entanglement swapping we randomly
generated 106 pairs of Bell diagonal states (where the two
states in the pair are in general different). These states were
generated by randomly sampling from the tetrahedron formed
by Bell states [29,30]. We then swapped each of these pairs
using Eqs. (5) and (6), calculated the resulting concurrence,
and plotted it in Fig. 3, where the horizontal axis is the product
of the two initial states’ concurrences and the vertical is the
final states’ concurrence. This figure clearly shows there exists
an upper bound on the concurrence of the final state given by
the product of the input concurrences.

In addition, from Fig. 3 we see that a lower bound is also
present. For simplicity we have numerically fit this line to
5CACB

4 − 1
4 , where CA and CB refer to the initial concurrences

for the input states pictured in Fig. 1. These results can all
be combined then to find the final inequality for entanglement

FIG. 3. Entanglement swapping with 106 random Bell diagonal
states. The horizontal axis is the product of the two initial concur-
rences (given by CA and CB ), and the vertical axis is the concurrence
of the final state (given by CF ). The upper and lower bounds are also
displayed.

swapping with Bell diagonal states:

max

[
0,

5CACB

4
− 1

4

]
� CF � CACB, (19)

where CF is the concurrence of the output state.
Further, the upper bound can be derived analytically for the

case of swapping a rank-2 Bell diagonal state with itself. This
result is shown in Appendix D.

C. Entanglement swapping of two pure states

Several past results have indicated that swapping could
result in improved final entanglement for certain input
states [9,14–16]. Here we find one extremely broad class of
input states (arbitrarily entangled completely pure state) is
often capable of increasing the final concurrence above the
product of the two initial concurrences. Moreover, the resulting
state concurrence is always higher than the product of the two
initial concurrences squared.

To randomly generate a large number of pure states of
various degrees of entanglement, we take the first column of a
Haar distributed random unitary matrix [31], or equivalently,
apply a Haar distributed random unitary transformation to a
pure state. More information about how we calculate Haar
distributed random matrices can be found in Appendix E.

Pictured in Fig. 4 is the result of entanglement swapping
with 106 pairs of random pure states, where each member
of the pair is in general different. Similarly to the procedure
employed for plotting previous figures, for each of the 106

pairs of random matrices the final state is calculated according
to Eqs. (5) and (6); its concurrence was evaluated and plotted
as a function of the product of the two initial concurrences.
For the data set presented in this figure we project on ψ−

2,3
in the BSM; however, the same results are obtained for any
of the three other possible BSM outcomes. The diagonal
has also been plotted as a dashed line in Fig. 4 to facilitate
comparisons between the three plots. We see that the square
of the product of the initial concurrences is always lower than
the final concurrence. Although the bound is not tight it is

FIG. 4. Comparison of concurrence before and after entangle-
ment swapping with pure states. The horizontal axis is the product of
the two input concurrences (given by CA and CB ), and the vertical
axis is the final concurrence (given by CF ). The dashed line is the
diagonal, and the solid line is the square of the x axis.
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FIG. 5. The concurrence (CF ) which results from swapping two
randomly generated pure states of concurrence CA and CB as a
function of these two concurrences, colored according to the ratio
of the concurrences of the two input states with dark blue nearest
unity. Shown here are the BSM results of ψ−; however, the density
of points is identical for all BSM outcomes.

qualitatively useful for determining the “worst case” scenario
for entanglement swapping with pure states. For completeness
we have also found an empirical lower bound from the
numerical data by fitting the minimum points to an exponential
given approximately by −0.318 + 0.323e1.404CACB , where CA

and CB denote the concurrences of the two input states. It is
obvious from Fig. 4 that there are lots of final states whose
concurrence is relatively high, and in particular, is greater than
the product of the two initial concurrences.

To clarify which pairs of states increase concurrence after
swapping, we consider the final concurrence as a function
of both initial concurrences CA and CB . Figure 5 plots the
106 points in the three spatial dimensions CA, CB , and CF .
The points are colored based on the ratio of the larger of the
initial concurrences to the smaller one. The color progressively
changes from dark red (high ratio of the initial concurrences)
to blue (ratio near unity).

The set of points in Fig. 5 appear to make up a solid bounded
volume. In agreement with Fig. 4, one clearly sees the lower
bound, but, interestingly, Fig. 5 shows an upper bound as well.
The bound seems to depend on the ratio of CACB . The main
feature of the data is that the final concurrence CF can approach
1 only if the ratio of CACB is close to unity irrespective of the
actual values of of CA, CB . That is, the final state may be
highly entangled even if the input states had low concurrences
as long as those initial concurrences were near equal.

This result generalizes earlier results which show that two
identical pure states which are not fully entangled can be
used for purification [9]. In that particular case, the identical
input states were imbalanced Bell states given, in the notation
of Sec. II B, as cos(θ )|HH 〉 + sin(θ )|V V 〉, with θ = π/4
corresponding to a “balanced” input Bell state. It was found
that these imbalanced states swap to the |ψ±〉 Bell states
upon a BSM outcome of |ψ±〉. The intuitive reason for this
is that the imbalance of the input state, which is between the
|HH 〉 and |V V 〉 terms, becomes balanced again for states

with terms involving only |HV 〉 and |V H 〉, since each term
has equal amounts of H and V . Since in this example the
purification occurs only when the two initial states are equally
imbalanced and independent of the degree of imbalance (the
angle θ ), we conjecture that this is the reason why Fig. 5
shows that states of similar concurrence are most likely to
increase entanglement, because those are the ones which are
most likely to fulfill these criteria.

D. General rank relationship for any input matrices

The above results indicate that, in general, the purity (or
the rank) of a state appears to have an important impact on
how it will function in an entanglement swapping setting. To
illustrate this we have considered how the rank of the output
state is related to the rank of the input states. Using 106 random
matrices uniformly distributed according to an induced mea-
sure (see Appendix E), we have found that the rank of the final
state RF is related to the rank of the input states RA and RB as

RF � max[RA,RB]. (20)

Further, we have found that the equality is satisfied when either
RA or RB are equal to one. In other words, entanglement swap-
ping a state of rank R with a pure state results in a state of the
same rank R, and two pure states will always swap into another
pure state. Interestingly, this result is analogous to relationships
between the rank of single-mode nonclassical states and their
entangled two-mode outputs after a beam splitter [10,32].

IV. CONCLUSION

We have given a general analytical solution for
entanglement swapping of two different arbitrary bipartite
states. We have shown how this solution simplifies when
input states are restricted to either X states or Bell states. In
addition, we have discussed an implementation of photonic
entanglement swapping.

We have found relationships between the input and output
concurrences for various classes of bipartite states. First, we
determined that the concurrence of an arbitrary entangled state
is preserved by swapping with a Bell state. Second, through
a mix of numerical and analytical means we defined both an
upper and lower bound on the concurrence of a state resulting
from entanglement swapping with two Bell diagonal states.
Specifically, the upper bound is the product of the two initial
concurrences. Finally, we demonstrated the impact of purity,
and rank in general, on entanglement swapping. We have
shown that the concurrence of the final state after entanglement
swapping of two pure states is lower bounded by the squared
product of the concurrences of the initial states.

The reliance of future quantum networks on entanglement
swapping makes these results an essential tool for predicting
and understanding network performance. Our analysis also
facilitates a deeper understanding of the subtle differences
of the entanglement swapping between various classes of
quantum states.

ACKNOWLEDGMENTS

We would like to acknowledge valuable discussions with
R. Brewster, J. D. Franson, G. T. Hickman, D. E. Jones,

012336-6



ENTANGLEMENT SWAPPING OF TWO ARBITRARILY . . . PHYSICAL REVIEW A 94, 012336 (2016)

T. B. Pittman, and L. Roa. B.K. acknowledges support through
an Oak Ridge Associated Universities (ORAU) postdoctoral
fellowship; this research was sponsored by the Army Research
Laboratory under Cooperative Agreement Number W911NF-
12-2-0019. This work was supported in part by the Office of
the Secretary of Defense, Quantum Science and Engineering
Program.

APPENDIX A: GENERAL FORM OF OUTPUT DENSITY
MATRICES FOR ENTANGLEMENT SWAPPING OF

ARBITRARY STATES

It is convenient to use the matrix form of Eqs. (5) and (6) for
calculations. For this reason we show here the explicit forms
of the final density matrices after entanglement swapping in
terms of the elements of the input density matrices:

ρ
ψ±
1,4

= 1

N±

⎛
⎜⎜⎝

a22b11 ± a21b13 ± a12b31 + a11b33 a22b12 ± a21b14 ± a12b32 + a11b34 a24b11 ± a23b13 ± a14b31 + a13b33 a24b12 ± a23b14 ± a14b32 + a13b34

a22b21 ± a21b23 ± a12b41 + a11b43 a22b22 ± a21b24 ± a12b42 + a11b44 a24b21 ± a23b23 ± a14b41 + a13b43 a24b22 ± a23b24 ± a14b42 + a13b44

a42b11 ± a41b13 ± a32b31 + a31b33 a42b12 ± a41b14 ± a32b32 + a31b34 a44b11 ± a43b13 ± a34b31 + a33b33 a44b12 ± a43b14 ± a34b32 + a33b34

a42b21 ± a41b23 ± a32b41 + a31b43 a42b22 ± a41b24 ± a32b42 + a31b44 a44b21 ± a43b23 ± a34b41 + a33b43 a44b22 ± a43b24 ± a34b42 + a33b44

⎞
⎟⎟⎠,

(A1)

ρ
φ±
1,4

= 1

M±

⎛
⎜⎜⎝

a11b11 ± a12b13 ± a21b31 + a22b33 a11b12 ± a12b14 ± a21b32 + a22b34 a13b11 ± a14b13 ± a23b31 + a24b33 a13b12 ± a14b14 ± a23b32 + a24b34

a11b21 ± a12b23 ± a21b41 + a22b43 a11b22 ± a12b24 ± a21b42 + a22b44 a13b21 ± a14b23 ± a23b41 + a24b43 a13b22 ± a14b24 ± a23b42 + a24b44

a31b11 ± a32b13 ± a41b31 + a42b33 a31b12 ± a32b14 ± a41b32 + a42b34 a33b11 ± a34b13 ± a43b31 + a44b33 a33b12 ± a34b14 ± a43b32 + a44b34

a31b21 ± a32b23 ± a41b41 + a42b43 a31b22 ± a32b24 ± a41b42 + a42b44 a33b21 ± a34b23 ± a43b41 + a44b43 a33b22 ± a34b24 ± a43b42 + a44b44

⎞
⎟⎟⎠.

(A2)

The normalization constants are given as follows:

N± = a22b11 + a44b11 ± a21b13 ± a43b13

+a22b22 + a44b22 ± a21b24 ± a43b24

±a12b31 ± a34b31 + a11b33 + a33b33

±a12b42 ± a34b42 + a11b44 + a33b44,

M± = a11b11 + a33b11 ± a12b13 ± a34b13

+a11b22 + a33b22 ± a12b24 ± a34b24

±a21b31 ± a43b31 + a22b33 + a44b33

±a21b42 ± a43b42 + a22b44 + a44b44. (A3)

APPENDIX B: ANALYTICAL SOLUTION FOR
ENTANGLEMENT SWAPPING WITH X STATES

Naturally, the general output states of Eqs. (A1) and (A2)
can be simplified significantly for specific inputs such as X

states. Due to the considerable recent interest in X states, of

which the Werner states and Bell diagonal states are a special
case [33], we will consider them in more detail here.

X states are two-qubit density matrices with decoupled
parity sectors {|HV 〉,|V H 〉} and {|HH 〉,|V V 〉}. Thus in the
ordered basis for two qubits |HH 〉,|HV 〉,|V H 〉,|V V 〉 an X

state is a density matrix of the following form:

χc =

⎛
⎜⎝

c11 0 0 c14

0 c22 c23 0
0 c32 c33 0

c41 0 0 c44

⎞
⎟⎠. (B1)

If the input density matrix for modes 1,2 is given by Eq. (B1)
and the input for modes 3,4 is given by

χd =

⎛
⎜⎝

d11 0 0 d14

0 d22 d23 0
0 d32 d33 0

d41 0 0 d44

⎞
⎟⎠, (B2)

then it follows from Eqs. (5) and (6) that the resulting output
density matrices after entanglement swapping is again an X

state in the form of

χ
ψ±
1,4 = 1

N
χ
±

⎛
⎜⎝

c22d11 + c11d33 0 0 ±c23d14 ± c14d32

0 c22d22 + c11d44 ±c23d23 ± c14d41 0
0 ±c41d14 ± c32d32 c44d11 + c33d33 0

±c41d23 ± c32d41 0 0 c44d22 + c33d44

⎞
⎟⎠, (B3)

χ
φ±
1,4 = 1

M
χ
±

⎛
⎜⎝

c11d11 + c22d33 0 0 ±c14d14 ± c23d32

0 c11d22 + c22d44 ±c14d23 ± c23d41 0
0 ±c32d14 ± c41d32 c33d11 + c44d33 0

±c32d23 ± c41d41 0 0 c33d22 + c44d44

⎞
⎟⎠. (B4)
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TABLE I. Output Bell states for various combinations of input
Bell states when the BSM of spatial modes 2,3 results in ψ−. The top
row and first column represent the input states in modes 1,2 and 3,4,
and the corresponding table element represents the final state in 1,4
after entanglement swapping.

ψ+ ψ− φ+ φ−

ψ+ ψ− ψ+ φ− φ+

ψ− ψ+ ψ− φ+ φ−

φ+ φ− φ+ ψ− ψ+

φ− φ+ φ− ψ+ ψ−

The normalization constants are given by N
χ
± = c22d11 +

c44d11 + c22d22 + c44d22 + c11d33 + c33d33 + c11d44 + c33d44

and M
χ
± = c11d11 + c33d11 + c11d22 + c33d22 + c22d33 + c44

d33 + c22d44 + c44d44. The results of Eqs. (B3) and (B4) agree
with those of Roa et al. [17]; however, their results are found
by projecting onto a different set of modes than ours.

We now consider Bell state inputs as a special case of X

states. This allows us to reproduce results of the example given
in Sec. II A using the more general formalism above. By using
the |φ+〉 Bell state as the input states for both ρ1,2 and ρ3,4 of
Eqs. (A1) and (A2) or of (B3) and (B4),

ρ1,2 = ρ3,4 = |φ+〉〈φ+| =

⎛
⎜⎜⎝

1
2 0 0 1

2
0 0 0 0
0 0 0 0
1
2 0 0 1

2

⎞
⎟⎟⎠, (B5)

we obtain

μ
ψ±
1,4 = |ψ±〉〈ψ±| =

⎛
⎜⎜⎝

0 0 0 0
0 1

2 ± 1
2 0

0 ± 1
2

1
2 0

0 0 0 0

⎞
⎟⎟⎠, (B6)

μ
φ±
1,4 = |φ±〉〈φ±| =

⎛
⎜⎜⎝

1
2 0 0 ± 1

2
0 0 0 0
0 0 0 0

± 1
2 0 0 1

2

⎞
⎟⎟⎠, (B7)

where μ
ψ±
1,4 and μ

φ±
1,4 represent the final density matrix of modes

1,4 and the superscript indicates which Bell state was projected
onto in modes 2,3. The output matrix is one of the four Bell
states in modes 1,4, and exactly which one is determined by the
specific BSM in modes 2,3 is performed. This is in agreement
with the results we found in Eq. (3).

Generalization to the other Bell state input combination
is summarized in Table I, which lists the resulting state in
modes 1,4 assuming the result of the BSM is ψ−. We have
chosen to show the results for projection ψ− since it is the
most readily implementable BSM in optical experiments, as
further illustrated in the next section.

APPENDIX C: ANALYTICAL DEMONSTRATION THAT
SWAPPING X STATES AND BELL STATES PRESERVES

THE CONCURRENCE OF THE X STATE

If we assume we have an initial X state given by Eq. (B1),
then the result of swapping this state with, for example, the

Bell state φ− results in

σ
ψ±
1,4 =

⎛
⎜⎝

x11 0 0 ∓x14

0 x22 ∓x23 0
0 ∓x32 x33 0

∓x41 0 0 x44

⎞
⎟⎠, (C1)

σ
φ±
1,4 =

⎛
⎜⎝

x33 0 0 ∓x32

0 x44 ∓x41 0
0 ∓x14 x11 0

∓x23 0 0 x22

⎞
⎟⎠, (C2)

where the superscript on σ is the result of the BSM and we
have changed c to x to avoid confusion. As expected, all of
these states are X states.

The concurrence of an X state has a straightforward
algebraic solution [33]. Specifically, the concurrence of the
X state in Eq. (B1) is given by

C(χc) = 2max[0,|c14| − √
c22c33,|c23| − √

c11c44]. (C3)

We can easily determine, with the use of Eq. (C3), the
concurrence of the final states. For example, for σφ+ we find
a concurrence of

C(σφ+) = 2max[0,|x32| − √
x44x11,|x41| − √

x33x22]. (C4)

We can see that this is equivalent to that of the initial X-
state concurrence, given by Eq. (C3), because |x41| = |x14|
and |x32| = |x23|, due to the Hermiticity condition on a density
matrix. The same results are found for every combination of
Bell state input and choice of BSM projection.

APPENDIX D: ANALYTICAL UPPER BOUND FOR
SWAPPING RANK-2 BELL DIAGONAL STATES WITH

THEMSELVES

Bell diagonal states of the form shown in Eq. (18),
which have only two nonzero coefficients, are rank-2 density
matrices. We will now show analytically that for any rank-2
Bell diagonal state with concurrence Cr that entanglement
swapping this state with itself results in a state with concur-
rence C2

r , which is the upper bound for the general case. To
illustrate this by a specific example, consider the input state
given by

σ = α|ψ+〉〈ψ+| + β|ψ−〉〈ψ−|, (D1)

where α + β = 1. In matrix form this state becomes

σ =

⎛
⎜⎜⎝

0 0 0 0
0 1

2
1
2 (α − β) 0

0 1
2 (α − β) 1

2 0
0 0 0 0

⎞
⎟⎟⎠. (D2)

The concurrence of this state can be found from Eq. (C3) and
after algebra is given by |α − β|.

Using Eq. (5) we find that entanglement swapping of state
Eq. (D2) with itself results in⎛

⎜⎜⎝
0 0 0 0
0 1

2 − 1
2 (α − β)2 0

0 − 1
2 (α − β)2 1

2 0
0 0 0 0

⎞
⎟⎟⎠ (D3)

when ψ− is the result of the BSM.
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The resulting concurrence can again be found from Eq. (C3)
and is given by (α − β)2, which is exactly the square of the
input concurrence. Performing this same analysis with any
Bell diagonal states with only two nonzero terms and for any
BSM outcome has a similar outcome.

APPENDIX E: METHODS FOR CREATING RANDOM
DENSITY MATRICES

Random density matrices were calculated according to [34].
As mentioned in the text we have used either an induced
measure such as the Hilbert-Schmidt metric or the Bures
metric, depending on the situation.

One way to generate a random density matrix is by starting
with a pure state in a higher dimension and tracing the
ancillary space out to reduce the state to the desired size. This
procedure results in density matrices distributed according to
an induced probability distribution μn,k , where k defines the
size of the ancilla space which is to be traced out, with n = k

resulting in the Hilbert-Schmidt ensemble [29,34]. An n × n

density matrix distributed uniformly according to μn,k can be

calculated as

G(n,k)G†(n,k)

tr[G(n,k)G†(n,k)]
, (E1)

where G(n,k) is an n × k Ginibre matrix. This ensemble is
used in the main text when the rank of the output density
matrix is important, as in Sec. III C, because the rank of the
resulting matrix is equal to k when k � n.

Alternatively, an n × n Bures distributed random density
matrix can be calculated from

(1 + U )G(n,n)G†(n,n)(1 + U †)

tr[(1 + U )G(n,n)G(n,n)†(1 + U †)]
, (E2)

where U is an n × n Haar distributed random unitary matrix.
In order to calculate U we have used the methods described
in [31], which involved a QR decomposition. The eigenvalues
of a unitary matrix have a magnitude of 1 and are complex. If a
set of unitary matrices is Haar distributed then the phases of the
eigenvalues will be uniformly distributed along the unit circle.
To check this we calculated the eigenvalues of 106 random 4 ×
4 unitary matrices and found the mean and standard deviation
to be −0.000 925 005 and 1.813 86, respectively, as expected
for a uniform distribution.
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