
PHYSICAL REVIEW A 94, 012334 (2016)
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We study optomechanical entanglement between an optical cavity field and a movable mirror coupled to
a non-Markovian environment. The non-Markovian quantum-state diffusion approach and the non-Markovian
master equation are shown to be useful in investigating entanglement generation between the cavity field and
the movable mirror. The simple model presented in this paper demonstrates several interesting properties of
optomechanical entanglement that are associated with environment memory effects. It is evident that the effective
environment central frequency can be used to modulate the optomechanical entanglement. In addition, we
show that the maximum entanglement may be achieved by properly choosing the effective detuning, which is
significantly dependent on the strength of the memory effect of the environment.
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I. INTRODUCTION

Macroscopic quantum coherence has a long history that
may date back to the famous Schrödinger’s cat paradox [1].
Although current research in quantum mechanics does not im-
pose a strict boundary between quantum and classical realms,
realizing reliable microscopic-macroscopic entanglement is
still a challenge due to the so-called decoherence processes,
which are especially severe for a macroscopic object. This
explains that entanglement is most commonly observed in the
microscopic world. In recent years, several attempts to estab-
lish entanglement in macroscopic or mesoscopic systems have
been made [2–13]. In the same spirit, quantum entanglement
between a microscopic object and a macroscopic object is
expected to be a useful resource for emerging quantum tech-
nology such as quantum information processing and quantum
computing. In addition, a deeper understanding of the micro-
macro entanglement and its decoherence process may be
important for a better understanding of transition from classical
to quantum realms [14,15]. Apart from the motivation from
theoretical research activities, the latest developments in exper-
imental entanglement generation, control, and manipulation
have provided a direct impetus for further explorations of this
important setting based on optomechanical systems [16–21].

The radiation pressure in an optical cavity is capable of
producing entanglement between the quantized cavity modes
(microscopic system) and a movable mirror [22]. When the
mass of the mirror is on the macroscopic scale, such an
optomechanical system provides a natural testing bed for
macroscopic quantum mechanical phenomena [23–29]. The-
oretically, Markov Langevin equations or the corresponding
master equations may be used to deal with an optomechanical
system when the environmental noises can be treated as
a weak perturbation and the noisy memory effect can be
ignored [30]. However, it becomes clear that, from both
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the theoretical and the experimental viewpoint, memory
effects play a pivotal role in micro-macro entanglement
dynamics in non-Markovian regimes [12,31,32]. Notably, a
recent experimental observation [33] has explicitly shown
that a heat bath coupled to an optomechanical system is
in non-Markovian regimes. Moreover, the non-Markovian
properties are shown to be useful in preserving optomechanical
entanglement [34]. In addition, an environmental engineering
technique for a non-Markovian bath demonstrated in an
optical experiment [35] has suggested a promising future
in manipulating non-Markovian environments to control the
quantum dynamics of the system of interest. Hence, it is highly
desirable to develop a systematic approach to investigate the
dynamics of optomechanical system in the non-Markovian
regime.

The purpose of this paper is to investigate the entanglement
between the light field in a Fabry-Pérot cavity and one movable
reflection mirror of the cavity (Fig. 1). The movable mirror is
assumed to be embedded in a non-Markovian environment
modeled by a bosonic bath. We begin our discussion with
an exact quantum description of the optomechanical system
consisting of cavity modes and the movable mirror. The
advantage of the exact treatment is that the memory effect
in this model can be treated in a systematic way without intro-
ducing any ad hoc parameters to represent the environmental
noises. We use the non-Markovian quantum state diffusion
(NMQSD) equation to solve quantum open systems coupled to
a non-Markovian bosonic or fermionic environment [36–49].
This stochastic approach provides a very powerful tool in both
analytical treatments and numerical simulations, especially
in dealing with non-Markovian perturbation and solving the
corresponding master equation for open quantum systems.
With our approach, the model considered in this paper can
be solved efficiently to exhibit the non-Markovian properties
that affect the dynamics of optomechanical entanglement.
More specifically, our results show that the environmental
memory can significantly alter the speed of optomechanical
entanglement generation between the cavity field and the mov-
able mirror. Our approach can also incorporate importantly
the high-frequency back reaction of the environment, which

2469-9926/2016/94(1)/012334(9) 012334-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.94.012334


QINGXIA MU, XINYU ZHAO, AND TING YU PHYSICAL REVIEW A 94, 012334 (2016)

(ω,Ω)

b(ω )m
(ω )ca

x
FIG. 1. Schematic of a typical optomechanical system, in which

an optical cavity driven by a coherent laser is coupled to a mechanical
mode.

is shown to significantly preserve the generated entangle-
ment. Furthermore, we show that a proper choice of the
detuning is also crucial for optimizing the optomechanical
entanglement.

The paper is organized as follows. In Sec. II, we present
the interacting model and derive the master equation based
on the NMQSD equation. Section III analyzes in detail the
environmental memory effects on entanglement between the
mechanical mode and the intracavity mode. In particular, we
show how the effective environment central frequency can
be used to modulate the optomechanical entanglement. In
addition, we show that the maximum entanglement may be
achieved by properly choosing the effective detuning, which
is significantly dependent on the strength of the memory effect
of the environment. Finally, we conclude the paper in Sec. IV.
Some details about the equations of motions for the mean
values are left to the Appendixes.

II. MODEL AND SOLUTION

We consider a single-sided optomechanical system, with
a mechanical mode coupled to an optical mode which
is driven by a coherent laser, as shown schematically in
Fig. 1. The Hamiltonian of this system may be written
as H1 = ωca

†
1a1 + ωmb

†
1b1 + ga

†
1a1(b1 + b

†
1) + �d (a1e

iωt +
a
†
1e

−iωt ) [50], where a1 and b1 are annihilation operators of
the cavity field and mechanical mode, with respective resonant
frequencies ωc and ωm. The parameter g is the single-photon
optomechanical coupling strength, and �d is the driving rate
of the coherent laser with frequency ω. We assume that
the intracavity field is strong enough that the Hamiltonian
can be linearized with a1 ≡ a + α, b1 ≡ b + β. Here a and
b represent quantum fluctuations of optical and mechanical
modes around their mean values, α and β, respectively. They
are determined by [i(ω − ωc) − ig(β + β∗) − κa]α − i�d =
0 and −iωmβ − ig|α|2 = 0, where κa is the classical leakage
rate of the cavity. The Hamiltonian of the system can be
linearized as [20]

HS = −�a†a + ωmb†b + G(a† + a)(b† + b), (1)

where G = αg is the effective coupling rate and � =
ω − ωc + 2G2/ωm is the optomechanical-coupling modified
detuning.

We assume that the optomechanical system is coupled to
a bosonic bath which can be described by a set of harmonic
oscillators as

HB =
∑

j

ωj c
†
j cj , (2)

where cj and c
†
j are annihilation and creation operators

satisfying [cj ,c
†
j ′ ] = δj,j ′ . The interaction between the system

and the bosonic bath is given by

HI =
∑

j

gj (Lc
†
j + L†cj ), (3)

where gj are the system-bath coupling strength, and L = b

describes the damping of the mirror. Here, the interaction is
written in rotating-wave-approximation form; a more general
interaction for the mirror and bath would be H ′

I = ∑
j gj (b +

b†)(c†j + cj ). If the coupling strength is weak compared to
the system (gj � ωm) [51,52], this approximation is valid.
Actually the interaction H ′

I can also be incorporated in the
NMQSD approach. The method for solving an H ′

I type of
interaction can be found in Ref. [40].

More general discussions of the issue may include decoher-
ence channels concerning cavity leakage and thermal damping
of the mirror. To reduce the technical complexity of our model,
we focus exclusively on the vacuum environment, leaving a
more complete model description to Appendix A, where we
provide a full solution of the NMQSD equation. Our major
concern in this paper is the temperature effect not on the
decoherence rate but, rather, on the non-Markovian properties
of the environment.

Assuming that the system and the environment are initially
uncorrelated, it can be proved that the state of the optomechan-
ical system can be represented by a stochastic pure state called
the quantum trajectory, |ψt (z∗)〉, governed by the NMQSD
equation [37,38],

∂t |ψt (z
∗)〉 =

[
−iHS + bz∗

t − b†
∫ t

0
dsα(t,s)

δ

δz∗
s

]
|ψt (z

∗)〉,

(4)

where α(t,s) = ∑
j |gj |2e−iωj (t−s) is the environmental corre-

lation function, and z∗
t = −i

∑
j gj z

∗
j e

iωj t is a complex Gaus-
sian process satisfying M[zt ] = M[ztzs] = 0 and M[z∗

t zs] =
α(t,s). Here M[·] ≡ ∫

dz2

π
e−|z|2 [·] stands for the statistical

average over the noise zt . Note that the above dynamical
equation, (4), contains a time-nonlocal term depending on the
whole evolutionary history from 0 to t . For the purpose of
practical applications, we can replace the functional derivative
contained in Eq. (4) with a time-dependent operator O

satisfying δ|ψt (z∗)〉
δz∗

s
= O(t,s,z∗)|ψt (z∗)〉. Then the NMQSD

equation can be transformed to

∂t |ψt (z
∗)〉 = [−iHS + bz∗

t − b†Ō(t,z∗)]|ψt (z
∗)〉, (5)

where Ō(t,z∗) ≡ ∫ t

0 dsα(t,s)O(t,s,z∗) and the initial condi-
tion O(t,s = t,z∗) = b is satisfied.

It should be noted that Eq. (5) [as well as Eq. (4)] is derived
directly from the microscopic Hamiltonians (1), (2), and (3)
without any approximation. It is the exact dynamic equation
governing the dynamics of the optomechanical system coupled
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to the environment, whether the environment is in Markov
or non-Markovian regime. The environmental impact on the
dynamics of the optomechanical system is reflected in the
terms bz∗

t and −b†Ō(t,z∗) in Eq. (5). If these two terms are 0,
the equation is reduced to ∂t |ψt (z∗)〉 = −iHS |ψt (z∗)〉, which
is the Schrödinger equation for the closed system. Moreover,
the non-Markovian properties are reflected by the operators
Ō in Eq. (5). If there is no correlation between two separate
time points t and s, namely, α(t,s) = δ(t,s), the operator Ō

is reduced to Ō = b. As a result, Eq. (5) is reduced to the
commonly used Markov quantum trajectory equation [53,54].
Here, and throughout the paper, the correlation function of
the environment is chosen as the Ornstein-Uhlenbeck (OU)
correlation function,

α(t,s) = �γ

2
e−(γ+i�)|t−s|, (6)

in which the parameter 1/γ measures the memory time,
� is the environmental decay rate, and � is the central
frequency of the environment. The Ornstein-Uhlenbeck-type
correlation function corresponds to the Lorentzian spectrum
density J (ω) = �γ 2/2π

(ω−�)2+γ 2 of the environment, which has been
widely used in research on cavity optomechanics [20,58]. A
more generic correlation function or spectrum density may be
needed in many other interesting situations. We would like
to emphasize that our derivation is independent of a specific
form of the correlation functions α(t,s), so that Eq. (5) is
applicable to an arbitrary correlation function. The reason
we use the Ornstein-Uhlenbeck correlation function here is
that it is convenient to observe the crossover properties of
the non-Markovian and Markov transition by modulating
the single parameter γ . If the memory time 1/γ is very
short, α(t,s) is approximately reduced to α(t,s) ≈ δ(t,s),
which means that the environment is reduced to a Markov
environment.

The key to solving the dynamic equation, (5), is to find the
operator O. The exact solution of the O operator contains all
the non-Markovian information for the environment. The exact
O is also essential for the derivation of the corresponding exact
master equation. According to Refs. [37] and [38], O satisfies
the following equation:

∂

∂t
O = [−iHS + Lz∗

t − L†Ō,O] − L† δ

δz∗
s

Ō. (7)

Clearly, finding the exact O operator for a particular model
is not easy. Therefore, for most practical problems, of central
importance in applications is the perturbation approach [39].
Notably, it is shown that the exact O operator for the model in
this paper can be found,

O(t,s,z∗) =
4∑

j=1

fj (t,s)Oj + i

∫ t

0
ds ′f5(t,s,s ′)z∗

s ′O5, (8)

where the basis operators are given by

O1 = b, O2 = b†, O3 = a, O4 = a†, O5 = I, (9)

and fj (j = 1 . . . 5) are time-dependent coefficients. Substi-
tuting Eq. (8) into Eq. (7), the differential equations for the

coefficients in the O operator can be determined as

∂

∂t
f1(t,s) = iωmf1 + iGf3 − iGf4 + f1F1,

∂

∂t
f2(t,s) = −iωmf2 + iGf3 − iGf4 − f2F1

+ 2f1F2 − f4F3 + f3F4 − F ′
5,

(10)
∂

∂t
f3(t,s) = −i�f3 + iGf1 − iGf2 + f1F3,

∂

∂t
f4(t,s) = i�f4 + iGf1 − iGf2 + f1F4,

∂

∂t
f5(t,s,s ′) = f1F

′
5(t,s ′),

where Fj (t) = ∫ t

0 dsα(t,s)fj (t,s) (j = 1 . . . 4) and F ′
5(t,s ′) =∫ t

0 dsα(t,s)f5(t,s,s ′). The boundary conditions are given by

f1(t,s = t) = 1,

f2(t,s = t) = f3(t,s = t) = f4(t,s = t) = 0,
(11)

f5(t,s = t,s ′) = 0,

f5(t,s,s ′ = t) = f2(t,s).

In Eq. (5), the non-Markovian properties are reflected by
the correlation function. If the correlation is α(t,s) = δ(t,s), Ō
is reduced to Ō = O1 = b, and as a result, Eq. (5) is reduced
to the Markov quantum trajectory equation investigated in
Refs. [53] and [54]. Clearly, the additional terms Oi(i =
2,3,4,5) contribute to the non-Markovian corrections. In
Fig. 2, we plot the time evolution of the time-dependent co-
efficients Fi (i = 1,2,3,4) and F5(t) = ∫ t

0 ds ′α(t,s ′)F ′
5(t,s ′).

From the right panel in Fig. 2, when γ is increased, the
environment approaches the well-known Markov limit, hence,
the non-Markovian corrections Fi (i = 2,3,4,5) become ig-
norable. On the contrary, in the case of a small γ as plotted
in the left panel in Fig. 2, the non-Markovian corrections
Fi (i = 3,4) become more notable compared with the right
panel. Figure 2 roughly shows the corrections to the Markov
case caused by the finite memory time and the transition
from non-Markovian to Markov regimes. Clearly, the non-
Markovian environment not only causes the additional terms
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FIG. 2. Time evolution of the coefficients in the O operator. For
the case γ = 0.6,

|F5|
|F1| ≈ 0.43% at ωmt = 15.
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Oi(i = 2,3,4,5), but also changes the dynamical behavior,
especially in the early stage of evolution. Compared with the
right panel, we see that the left panel exhibits some transient
oscillation in the early stage. This oscillatory evolution directly
represents the information exchange between the system and
its environment due to the memory effect. In the Markov
limit, the environment typically makes the system converge
to a steady state quickly. As an interesting observation, our
discussion later in the paper shows that these oscillations
eventually result in different entanglement generations. It is
also notable that in both panels in Fig. 2, the fifth term F5

always gives the smallest correction. Hence, this term might
be dropped in an approximation approach.

For the purpose of numerical simulation, one can directly
simulate the NMQSD equation, (5), together with the O

operator given in Eq. (8). Repeatedly solving Eq. (5) with
stochastic noise z∗

t and taking the statistical mean of all
the generated trajectories, the reduced density matrix can be
recovered as

ρt = M[|ψt (z
∗)〉〈ψt (z

∗)|]. (12)

The advantage of using this pure-state stochastic trajectory
approach is that the required computational resource is reduced
from N2 (for storage density matrix) to N (for to storage
pure-state vector). Alternatively, one can also use the NMQSD
equation to derive the corresponding exact master equation for
the system by following the method in Refs. [40] and [48].
In this paper, we take a straightforward step to truncate the
O operator to the noise-free terms, called the zeroth-order
approximation, which turns out to be appropriate for many
practical purposes as discussed in Ref. [49]. Here, as shown
before, the fifth term is typically much smaller than the other
four terms, so we take the first four terms of the O operator as
an approximate O operator:

O(t,s,z∗) ≈ O(0)(t,s) =
4∑

j=1

fj (t,s)Oj . (13)

More systematic discussion of the validity of this approxima-
tion can be found in Ref. [49]. The corrections from the rest
terms with stochastic variables usually contribute up to the
fourth order of the coupling strength gj [49]. When gj � ωm,
the higher order corrections are negligible. Moreover, it is
shown quite clearly in Fig. 2 that the contribution of F5 is
always negligible even in the non-Markovian case. With the
noise-free O operator above, (13), the master equation takes a
very simple form:

d

dt
ρ = i�(a†aρ − ρa†a) − iωm(b†bρ − ρb†b)

− iG(b†a†ρ − ρb†a†) − iG(b†aρ − ρb†a)

− iG(ba†ρ − ρba†) − iG(baρ − ρba)

+ {F ∗
1 (bρb† − ρb†b) + F ∗

2 (bρb − ρbb) + F ∗
3 (bρa†

− ρa†b) + F ∗
4 (bρa − ρab) + H.c.}. (14)

It should be noted that the derivation of the master equation
is also irrespective of the format of the correlation function
α(t,s), namely, the master equation here is applicable to an
arbitrary correlation function. As we have discussed, when

α(t,s) = δ(t,s) (setting � = 1), it is straightforward to show
that F1(t) = 0.5 while Fj (t) = 0 (j = 2,3,4,5) [see Eqs. (10)
and (11)]. Therefore, O(t,s) = b, and Eq. (4) is reduced to
the traditional Markov quantum trajectory equation [53,54].
Correspondingly, the master equation, (14), with O = b is
reduced to

d

dt
ρ = −i[HS,ρ] + {[b,ρb†] + H.c.}. (15)

This is just the standard Lindblad master equation obtained in
the Markov approximation [30].

III. NUMERICAL RESULTS AND DISCUSSION

Solving the optomechanical model by the above non-
Markovian approaches, we are capable of analyzing the
properties of the entanglement between the cavity field and the
movable mirror in a non-Markovian regime. For a continuous
variable system, several separability criteria exist [55–57].
Here, we employ the logarithmic negativity [57] to measure
the optomechanical entanglement. For a two-mode Gaussian
state, it is convenient to write the momentum operator p and
the position operator q in vector form as

ξ = (q1,p1,q2,p2), (16)

where p1 = −i(a − a†), q1 = (a + a†), p2 = −i(b − b†),
q2 = (b + b†). Then the commutation relations can be written
as

[ξα,ξβ] = 2iMαβ, (17)

where

M =
[
J 0
0 J

]
, J =

[
0 1

−1 0

]
. (18)

The entanglement properties of the two-mode Gaussian state
are completely determined by the variance matrix V , which is
defined as

Vαβ = 〈{�ξα,�ξβ}〉 = 〈(�ξα�ξβ + �ξβ�ξα)/2〉, (19)

where �ξα = ξα − 〈ξα〉. The variance matrix can be written in
block form as

V =
[

A C

CT B

]
. (20)

Finally, the logarithmic negativity is defined as

En(V ) = max[0, − ln ν−], (21)

where ν− is the smallest eigenvalue of the variance matrix V ,
which can be computed as

ν− =
√

[�(V ) −
√

�(V )2 − 4 det V ]/2, (22)

and �(V ) = det A + det B − 2 det C.
In order to compute the logarithmic negativity, we need

to compute a set of mean values of operators by using the
non-Markovian master equation or NMQSD equation,

d

dt
〈A〉 = d

dt
M[〈ψt (z

∗)|A|ψt (z
∗))] = tr

(
A

d

dt
ρ

)
. (23)

For this particular model, it is more straightforward to use
the derived master equation. However, we pointed out that
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FIG. 3. Memory-effect-enhanced entanglement generation. Solid
red, dashed green, and dotted blue lines are plotted with different
memory times 1/γ . The other parameters are chosen as ωm = 1, � =
1, G = 0.1, � = 0, � = 2. The initial state is chosen as |ψi〉 = |00〉.
As a comparison, the Markov case is also plotted, as the dash-dotted
black line.

we can always use the NMQSD equation without deriving the
corresponding master equation. The details of the equations for
the mean values of operators can be found in the Appendixes.

A. Memory-enhanced entanglement generation

The memory-modulated entanglement dynamics problem
has recently received interest [59–62]. Therefore, it is desirable
to examine how the environmental parameters γ and �

affect the entanglement generation between the optical field
and the mechanical mode. Figure 3 shows the dynamics of
the entanglement En with different memory times. As a
comparison, the Markov evolution is also plotted in the figure
by setting the correlation function α(t,s) as δ(t,s). It should
be noted that according to Fig. 3, we see that a longer memory
time (small γ ) will cause faster entanglement generation.
Meanwhile, it is found that the longer the memory times,
the longer the duration of the optomechanical entanglement.
Since the major decoherence agent in this model is the
amplitude damping, the environmental memory plays the role
of slowing down the dissipative process due to the back
reaction or information backflow. Therefore, one expects that
the dissipative dynamics will experience temporal revivals due
to the memory effect. On the contrary, the Markov environment
causes the system excitations to decay into the environment
exponentially without any information backflow. More im-
portantly, the non-Markovian properties of the environment
may also affect the residue entanglement in the steady state
(t → ∞). In Fig. 3, a longer memory time gives rise to
a greater degree of residue entanglement in the long-time
limit. Markov steady-state entanglement in an optomechanical
system is discussed in many references, such as [22]. In the
non-Markovian case considered in this paper, our results show
that the dissipation and the backflow from the environment
may reach a new balance so that the steady entanglement has
a memory of its history. Namely, the steady entanglement may
be dependent on the environmental memory time. This finding
may be understood from the fact that the steady states of a
non-Markovian dynamical system are sensitively dependent
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FIG. 4. Time evolution of entanglement for different �’s.
(a) Contour plot of the time evolution of the entanglement indicator En
for various values of �. (b) Two-dimensional plot of the entanglement
generation for different values of � at the fixed time ωmt = 20. The
initial state is chosen as |ψi〉 = |00〉. The other parameters are chosen
as ωm = 1, � = 1, G = 0.1, and γ = 1.

on the environmental memory parameter γ . In summary, as
seen in the numerical simulations, the environmental memory
can significantly affect the entanglement generation in both
the short-time and the long-time limits.

B. Environmental central frequency and
entanglement generation

Apart from the memory time, another important feature
of the environment is dictated by the environmental central
frequency �, which is shown to be important in entanglement
generation [49]. In Fig. 4, we plot the time evolution of
entanglement for different �’s. The numerical results show
that a large � is useful in generating optomechanical entan-
glement. The parameter � indicates the oscillation frequency
of the correlation function α(t,s) = �γ

2 e−(γ+i�)|t−s|. A larger
� gives rise to a faster oscillation. Therefore, this explains
why a large � can help to preserve entanglement since the
system is less sensitive to high-frequency random noise (i.e.,
when � is large). Therefore, the high-frequency oscillation
effectively causes less entanglement degradation after the
cavity-mirror entanglement is formed. It is noteworthy that this
phenomenon can be observed only in the non-Markovian case.
In the Markov limit, α(t,s) = δ(t,s), the O operator becomes
a time-independent function with constant coefficients. This
is an important feature showing the remarkable difference
between the non-Markovian and the Markovian cases. In
the non-Markovian case, the information backflow from
the environment to the system can effectively protect the
entanglement, while in the Markovian case the dissipation
is monotonic, and the information, once dissipated into the
environment, will never come back to the system of interest.

In an experimental context, a new engineering technique
for simulating a non-Markovian environment shed new light
on controlling the environmental memory effect [35]. These
new findings are certainly of interest for motivating more the-
oretical studies on the artificial non-Markovian environment.
For example, in precise quantum measurement [36], the probe
can be an effective environment with highly non-Markovian
features. In a similar fashion, one can view a pseudomode
coupled to an external Markov reservoir as an effectively
non-Markovian environment.
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FIG. 5. Time evolution of entanglement for different effective
detunings �/ωm. The initial state is chosen as |ψi〉 = |00〉. (a) The
memory time is (a) γ = 1.5 and (b) γ = 0.8. The other parameters
are chosen as ωm = 1, � = 0, G = 0.1, and � = 4.

C. Entanglement generation and detuning

In Fig. 5, we illustrate the dynamics of entanglement as a
function of the effective laser detuning � and ωmt . Compared
with the environmental spectrum, the driving laser detuning is
a more convenient parameter that is effectively controllable.
In order to achieve the maximum entanglement generation,
one needs to adjust the effective detuning properly. More
importantly, the choice of effective detuning substantially
depends on the non-Markovian properties of the environment.
As illustrated in Fig. 5(a), when the memory effect parameter
γ = 1.5 (relatively weak non-Markovian case), the maximum
entanglement appears at �/ωm ≈ 2.3. In comparison, in
Fig. 5(b), when the memory effect parameter γ = 0.8 (rel-
atively strong non-Markovian), the maximum entanglement
appears at �/ωm ≈ 1.9. The multiple dependence of the
entanglement generation on the parameters � and ω shows
that the optimal entanglement generation in an experiment
may benefit from a detailed analysis of the parameter space.
Given a non-Markovian environment, one needs to choose
a suitable laser detuning in order to generate the maximum
entanglement. It was shown in Ref. [22] that the choice of
the effective laser detuning depends on several parameters
of the optomechanical system. Here, we emphasize that the
non-Markovian properties are also an important factor that
can significantly affect the choice of effective detuning. The
results in Fig. 5 may prove to be useful in the future when an
experiment on generating optomechanical entanglement in a
non-Markovian environment is conducted.

IV. CONCLUSION AND SUMMARY

Recent experimental progress has shown that an optome-
chanical system can be realized in several interesting settings
including traditional cavity-QED systems as well as some

artificial circuit-QED systems [63]. More remarkably, with
the development of new technology, the environment can be
engineered to purposely control the properties of the desired
quantum entanglement [35]. Thus, it is useful to develop
a versatile theoretical protocol to manipulate entanglement
based on the non-Markovian features of the environment.

Our presented results show that the entanglement of an
optomechanical system can be strongly affected by several
features dictated by a non-Markovian environment. As we
show in Fig. 3 and Fig. 4, the entanglement dynamics of an
optomechanical system is sensitively dependent on the choice
of model parameters. And optomechanical entanglement can
be generated in many ways sensitively dependent on the
correlation time and the environmental central frequency
as well as the detuning. Our analysis is not expected to
unveil all interesting aspects of the environmental effect
on optomechanical systems. Rather, our current research
should be regarded as an attempt to incorporate environmental
memory effects in a more systematic way. Indeed, as shown in
this paper, the standard Markov approximation is not adequate
for many interesting physical systems. This is particularly
important for the macroscopic system, as the decoherence
time could be comparable with the Markov time, so the
Markov approximation is deemed to be inadequate when the
temporal behavior of entanglement is of interest. We show
that the residue entanglement in the non-Markovian case can
be distinctively different from that in the Markov steady state.

In summary, we have presented a proposal to entangle a
macroscopic vibrating mirror with a cavity field by taking the
environmental memory effects into account. We show how
to use the NMQSD method to solve a model involving an
optomechanical system coupled to a non-Markovian environ-
ment. In particular, entanglement generation and duration are
fully investigated in non-Markovian regimes. We conclude by
pointing out that further research is currently being conducted
on physical models where the quantum system-bath coupling
is beyond the rotating-wave approximation.
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APPENDIX A: OPTOMECHANICAL SYSTEM WITH
BOTH CAVITY LEAKAGE AND THERMAL

DAMPING OF THE MIRROR

Here, we consider a general case that contains all the
possible decoherence mechanisms of the system, namely, the
L operator in Eq. (3) can be written as L = a + b. In order
to incorporate the finite-temperature bath, we can transform
the finite-temperature case into an effective zero-temperature
model by introducing a fictitious bath [41]. The initial state
of the bath for the finite-temperature case is the thermal
equilibrium state ρB(0) = e−βHB

Z
, where Z = tr[e−βHB ] is the

partition function with β = 1/kBT . The occupation number
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for mode k should be

〈c†kck〉 = n̄k = 1

e−βωk − 1
, (A1)

which is the well-known Bose-Einstein distribution. By intro-
ducing a fictitious bath, HC = −∑

k ωkc
′†
k c′

k , without direct
interaction with the system and the real bath HB , it is possible
to map the finite-temperature problem into a zero-temperature
problem with two individual baths. Under the Bogoliubov
transformation

ck =
√

n̄k + 1dk + √
n̄ke

†, (A2)

c′
k =

√
n̄k + 1ek + √

n̄kd
†, (A3)

it is easy to check that the vacuum state |0〉 = |0〉d ⊗ |0〉e satis-
fies 〈0|d〈0|ec†kck|0〉d |0〉e = n̄k . Therefore, solving the original
model plus the fictitious bath Htot = HS + HB + HI + HC

with the initial vacuum state |0〉d ⊗ |0〉e is equivalent to
solving HS + HB + HI with the thermal initial state ρB(0) =
e−βHB /Z. Now, we need to solve the Hamiltonian in the
interaction picture as

H
(I )
tot (t) = Hs +

∑
k

(fke
−iωktL†dk + fke

iωktLd
†
k )

+
∑

k

(hke
−iωktL†e†k + hke

iωktLek), (A4)

where fk = √
n̄k + 1gk and hk = √

n̄kgk are the effective
coupling constants, and the Lindblad operator is

L = a + b, (A5)

implying that both the cavity leakage and the mirror damping
are taken into consideration.

The non-Markovian NMQSD equation for the finite-
temperature case is given by [41]

∂

∂t
|ψ(t,z∗,w∗)〉

=
[
−iHs + Lz∗

t + L†w∗
t − L†

∫ t

0
dsα1(t,s)

δ

δz∗
s

− L

∫ t

0
dsα2(t,s)

δ

δw∗
s

]
|ψ(t,z∗,w∗)〉, (A6)

where z∗
t = −i

∑
k fkz

∗
ke

iωkt and w∗
t = −i

∑
k h∗

kw
∗
k e

−iωkt are
two statistically independent Gaussian noises, and α1(t,s) =∑

k |fk|2e−iωk (t−s) and α2(t,s) = ∑
k |hk|2eiωk (t−s) are corre-

lation functions for the two effective baths. Then we can
replace the functional derivatives in Eq. (A6) with two O

operators,

O1(t,s,z∗,w∗)|ψ(t,z∗,w∗)〉 = δ

δz∗
s

|ψ(t,z∗,w∗)〉, (A7)

O2(t,s,z∗,w∗)|ψ(t,z∗,w∗)〉 = δ

δw∗
s

|ψ(t,z∗,w∗)〉, (A8)

and the O operators satisfy the equations

∂

∂t
O1 = [−iHs + Lz∗

t + L†w∗
t − L†Ō1 − LŌ2,O1]

− L† δ

δz∗
s

Ō1 − L
δ

δz∗
s

Ō2, (A9)

∂

∂t
O2 = [−iHs + Lz∗

t + L†w∗
t − L†Ō1 − LŌ2,O2]

− L† δ

δw∗
s

Ō1 − L
δ

δw∗
s

Ō2, (A10)

with the initial condition O1(t,s = t,z∗,w∗) =
L and O2(t,s = t,z∗,w∗) = L†, where Ōi =∫ t

0 αi(t,s)Oi(t,s,z∗,w∗)ds (i = 1,2). For this particular
model, the O operator can be solved as

Oi (t,s,s ′) = xi1(t,s)a + xi2(t,s)a† + xi3(t,s)b + xi4(t,s)b†

+
∫ t

0
yi1(t,s,s ′)z∗

s ′ds ′ +
∫ t

0
yi2(t,s,s ′)w∗

s ′ds ′ (i = 1,2), (A11)

∂

∂t
xi1(t,s) = −i�xi1 + iGxi3 − iGxi4 + X11xi1 − 2X21xi2 + X22xi1

− X23xi4 + X24xi3 + X11xi3 − X21xi4 − Y2i(t,s), (A12)

∂

∂t
xi2(t,s) = i�xi2 + iGxi3 − iGxi4 − X11xi2 + 2X12xi1 − X13xi4

+ X14xi3 − X22xi2 + X12xi3 − X22xi4 − Y1i(t,s), (A13)

∂

∂t
xi3(t,s) = iωmxi3 + iGxi1 − iGxi2 + X13xi1 − X23xi2 + X13xi3

− X21xi2 + X22xi1 − 2X23xi4 + X24xi3 − Y2i(t,s), (A14)

∂

∂t
xi4(t,s) = −iωmxi4 + iGxi1 − iGxi2 + X14xi1 − X24xi2 − X11xi2

+ X12xi1 − X13xi4 + 2X14xi3 − X24xi4 − Y1i(t,s), (A15)

∂

∂t
yik(t,s,s ′) = Y1k(t,s ′)(xi1 − xi3) + Y2k(xi4 − xi2) (i,k = 1,2), (A16)
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where Xij = ∫ t

0 αi(t,s)xij (t,s)ds and Ykl = ∫ t

0 αk(t,s)
ykl(t,s,s ′)ds. The boundary conditions for these equations are

x11(t,t) = x13(t,t) = x22(t,t) = x24(t,t) = 1, (A17)

x12(t,t) = x14(t,t) = x21(t,t) = x23(t,t) = 0, (A18)

yij (t,t,s ′) = 0, (A19)

yi1(t,s,t) = xi2(t,s) + xi4(t,s), (A20)

yi2(t,s,t) = −xi1(t,s) − xi3(t,s). (A21)

Given Eqs. (A11)–(A21), the O operator can be fully deter-
mined, therefore Eq. (A6) is solved.

Using Eq. (A6) with the exact O operator in Eq. (A11), one
can also derive the master equation as

∂

∂t
ρS = −i[HS,ρS] + [L,M{PtŌ

†
1}] − [L†,M{Ō1Pt }]

+ [L†,M{PtŌ
†
2}] − [L,M{Ō2Pt }], (A22)

where Pt ≡ |ψ(t,z∗,w∗)〉〈ψ(t,z,w)| is the stochastic density
operator. For details of deriving the master equation, one can
follow the examples in Refs. [40,47], and [48].

APPENDIX B: EQUATIONS FOR MEAN VALUES

In this section, we show the methods we have used to
compute the evolution of entanglement. According to Eq. (14)
and Eq. (23), the equations for the mean values of the operators
can be obtained as

d

dt
〈b〉 = −iωm〈b〉 − iG〈a†〉 − iG〈a〉 −

4∑
i=1

Fi〈Oi〉, (B1)

d

dt
〈b†〉 = iωm〈b†〉 + iG〈a†〉 + iG〈a〉 −

4∑
i=1

F ∗
i 〈O†

i 〉, (B2)

d

dt
〈a〉 = i�〈a〉 − iG〈b†〉 − iG〈b〉, (B3)

d

dt
〈a†〉 = −i�〈a†〉 + iG〈b†〉 + iG〈b〉, (B4)

d

dt
〈aa〉 = 2i�〈aa〉 − 2iG〈ab†〉 − 2iG〈ab〉, (B5)

d

dt
〈aa†〉 = iG〈ab†〉 + iG〈ab〉 − iG〈a†b†〉 − iG〈a†b〉,

(B6)

d

dt
〈ab〉 = i�〈ab〉 − iωm〈ab〉 − iG(〈aa†〉 + 〈bb†〉 − 1)

− iG〈aa〉 − iG〈bb〉 −
4∑

i=1

Fi〈aOi〉, (B7)

d

dt
〈ab†〉 = i�〈ab†〉 + iωm〈ab†〉 − iG〈b†b†〉 − iG(〈bb†〉

− 〈aa†〉) + iG〈aa〉 −
4∑

i=1

F ∗
i 〈O†

i a〉, (B8)

d

dt
〈a†a†〉 = −2i�〈a†a†〉 + 2iG〈a†b†〉 + 2iG〈a†b〉, (B9)

d

dt
〈a†b〉 = −i�〈a†b〉 − iωm〈a†b〉 − iG〈a†a†〉 − iG(〈aa†〉

− 〈bb†〉) + iG〈bb〉 −
4∑

i=1

Fi〈a†Oi〉, (B10)

d

dt
〈a†b†〉 =

[
d

dt
〈ab〉

]†
, (B11)

d

dt
〈bb〉 = −2iωm〈bb〉 − 2iG〈a†b〉 − 2iG〈ab〉

−
4∑

i=1

2Fi〈bOi〉, (B12)

d

dt
〈bb†〉 = −iG〈a†b†〉 − iG〈ab†〉 + iG〈a†b〉 + iG〈ab〉

−
{

4∑
i=1

F ∗
i 〈O†

i b〉 + H.c.

}
, (B13)

d

dt
〈b†b†〉 = 2iωm〈b†b†〉 + 2iG〈ab†〉 + 2iG〈a†b†〉

−
4∑

i=1

2F ∗
i 〈O†

i b
†〉. (B14)

With the equations above, the V matrix as well as the
entanglement can be computed.
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