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Quantum communication without a shared reference frame or the construction of a relational quantum theory
requires the notion of a quantum reference frame. We analyze aspects of quantum reference frames associated with
noncompact groups, specifically, the group of spatial translations and Galilean boosts. We begin by demonstrating
how the usually employed group average, used to dispense of the notion of an external reference frame, leads
to unphysical states when applied to reference frames associated with noncompact groups. However, we show
that this average does lead naturally to a reduced state on the relative degrees of freedom of a system, which was
previously considered by Angelo et al. [J. Phys. A: Math. Theor. 44, 145304 (2011)]. We then study in detail the
informational properties of this reduced state for systems of two and three particles in Gaussian states.
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I. INTRODUCTION

The central lesson of relativity is that all observable
quantities are relations: length, time, and energy, which were
once thought to be absolute, only have meaning with respect to
an observer. The same is true of a quantum state. For example,
when we write the quantum state |↑〉, say up in z, what we mean
is somebody in a laboratory with an appropriately aligned
measuring apparatus will measure a specific outcome. This is
the description of a quantum state with respect to a classical
object, in this example, the macroscopic laboratory.

This state of affairs is not fully satisfactory, since a
quantum system is being described with respect to a classical
system, that is, by mixing elements of conceptually different
frameworks. If we believe that our world is completely
described by quantum mechanics, we should seek a theory in
which quantum systems are described with respect to quantum
systems. Much work has been done on this subject, known as
quantum reference frames [1], and it has found applications
in quantum interferometry [2], quantum communication [3],
and cryptography [4], as well as offering an explanation of
previously postulated superselection rules [5,6].

Additionally, treating reference frames quantum mechan-
ically is a crucial step towards the goal of constructing a
relational quantum theory [7,8]. By relational it is meant a
theory that does not make use of an external reference frame
to specify its elements. The main motivation for this is general
relativity, which does not use an external reference frame in its
construction. It is believed that a theory of quantum gravity will
inherent this property, and thus, a theory of quantum gravity
will necessarily include a theory of quantum reference frames
[9,10].

The natural language of reference frames is that of group
theory, owing to the fact that the transformations that describe
the act of changing reference frames form a group. Most
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discussion of quantum reference frames revolves around
reference frames defined with respect to compact groups. For
example, the relevant group used to describe a phase reference
in quantum optics is U(1) or the group used to describe the
transformation between orientations of a laboratory is SO(3).

However, if we would like to apply the established formal-
ism to more general groups, such as the Poincaré group and
more generally to systems in curved spacetimes, we will need
to understand quantum reference frames that are associated
with noncompact groups. The purpose of this paper is to
embark on such an inquiry.

We begin in Sec. II by introducing the G-twirl, which is
a group average over all possible orientations of a system
with respect to an external reference frame, and demonstrate
its failure when naively applied to situations involving the
noncompact groups of translations in position and velocity.
However, we find that the G-twirl over these groups naturally
introduces a reduced state obtained by tracing out the center-
of-mass degrees of freedom of a composite system. In Sec. III
we examine informational properties of this reduced state for
systems of two and three particles in fully separable Gaussian
states with respect to an external frame. Specifically, we study
the entanglement that appears when moving from a description
of the system with respect to an external frame to a fully
relational description, which can alternatively be interpreted
in terms of noise. This study is motivated by the need to
determine how best to prepare states in the external partition in
order to encode information in relational degrees of freedom,
which will be useful for various communications tasks [11].
We conclude in Sec. IV with a discussion and summary of the
results presented.

II. RELATIONAL DESCRIPTIONS

In constructing a relational quantum theory, one essential
task will be the description of a quantum system with respect
to another quantum system. We thus seek a way in which
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to remove any information contained in a quantum state
that makes reference to an external reference frame. This is
accomplished by the G-twirl, which we introduce in Sec. II A
and apply to the group of translations and boosts1 in Sec. II B.

A. Relational description for compact groups

When the state of a system is described with respect to an
external reference frame, such that the transformations that
generate a change of this reference frame form a compact
group, the relational description is well studied [1].

Suppose we have a quantum system in the state ρ ∈ B(H),
where B(H) is the space of bounded linear operators on the
Hilbert spaceH, described with respect to an external reference
frame. Changes of the orientation of the system with respect to
the external frame are generated by U (g) acting on ρ, where
U (g) is the unitary representation of the group element g ∈ G,
and G is the compact group of all possible changes of the
external reference frame. The relational description of ρ, that
is, the quantum state that does not contain any information
about the external frame, is given by an average over all
possible orientations of ρ with respect to the external frame,
with each possible orientation given an equal weight

G[ρ] :=
∫

dμ(g) U (g)ρU †(g), (1)

where dμ(g) is the Haar measure of the group G; this
averaging is referred to as the G-twirl. By averaging over
all elements of the group, the G-twirl removes any relation
to the external reference frame that was implicitly made use
of in the description of ρ. What remains is information about
only the relational degrees of freedom within the system. For
example, if ρ ∈ B(H) describes a composite system of two
particles such that H = H1 ⊗ H2, what remains in G[ρ] is
information about the relational degrees of freedom between
the two particles. Notice that the G-twirl is performed via the
product representation U (g) = U1(g) ⊗ U2(g), where U1 and
U2 are representations of the group G for system 1 and system
2, respectively.

This relational description is used extensively in the
study of quantum reference frames involving compact groups
[1–3,12,13]. However, when the G-twirl operation is gener-
alized to the case where the group G is noncompact, and
thus does not admit a normalized Haar measure, it results in
un-normalized states.

For example, let us consider the G-twirl of the state
ρ ∈ B(H), where H ∼= L2(R), over the noncompact group of
spatial translations T generated by the momentum operator P̂ .
Expressing ρ in the momentum basis we find

GT[ρ] =
∫

dg e−igP̂

(∫
dpdp′ ρ(p,p′) |p〉 〈p′|

)
eigP̂

= 2π

∫
dp ρ(p,p) |p〉 〈p| , (2)

where dg is the Haar measure associated with T and in going
from the first to the second line we have used the definition of

1By boost it is meant Galilean boost as opposed to a Lorentz boost.

the Dirac δ function 2πδ(p − p′) = ∫
dg eig(p−p′). Although

the averaging operation is mathematically well defined, the
resulting state G[ρ] is not normalized, as the trace of GT[ρ]
is infinite. This is a result of the Haar measure associated
with T not being normalized, i.e., the integral

∫
dg is infinite.

This issue does not arise when twirling over a compact
group for which there exists a normalized Haar measure.
Thus the relational description constructed by averaging a
system over all possible orientations of a reference frame fails
when the group describing changes of the reference frame is
noncompact.

One may try to remedy this problem by introducing a
measure p(g) on the group such that

∫
dg p(g) = 1 and

interpreting p(g) as representing a priori knowledge of how
the average should be performed [14]. However, in general
there is no objective way to choose p(g)—if we want a
normalized measure it cannot be invariant.

B. Relational description for noncompact groups

We now construct a relational description of quantum
states suitable for systems described with respect to reference
frames associated with the noncompact groups of boosts and
translations. We begin by twirling the state of a system of
particles ρ ∈ B(H) over all possible boosts and translations of
the external reference frame ρ is specified with respect to. The
result of this twirling is an un-normalized state proportional
to ICM ⊗ ρR , where ICM is the identity on the center-of-mass
degrees of freedom and ρR = trCM ρ is a normalized density
matrix describing the relative degrees of freedom of the system.
In doing so, we connect two approaches to quantum reference
frames that have been studied in the past, specifically, the
approach introduced by Bartlett et al. [1], which makes use
of the twirl to remove any information the state may have
about an external reference frame, and the approach of Angelo
et al. [15], in which they trace over center-of-mass degrees of
freedom to obtain a relational state.

Consider a composite system of N particles each with
mass mn. We may partition the Hilbert space H of the entire
system as H = ⊗N

n=1 Hn where Hn
∼= L2(R3), which spans

the degrees of freedom defined with respect to an external
frame associated with the nth particle; we will refer to
this as the external partition of the Hilbert space. We may
alternatively partition the Hilbert space as H = HCM ⊗ HR ,
where HCM

∼= L2(R3) is associated with the degrees of
freedom of the center of mass defined with respect to an
external frame, and HR

∼= L2(R3N−3) is associated with the
relative degrees of freedom of the system defined with respect
to a chosen reference particle; we will refer to this partition as
the center-of-mass and relational partition of the Hilbert space.

As was done in Sec. II A for reference frames associated
with compact groups, to obtain a relational state we will
average the state of our system over all possible orientations—
intended in a generic sense, meant here to be about translations
and boosts—with respect to the external frame. Here we
consider the system to be described with respect to an
inertial external frame. Thus a change of the external frame
corresponds to acting on the system with an element of the
Galilean group, and the average over all possible orientations
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of the system with respect to the external frame will be an
average over the Galilean group.

The Galilean group Gal is a semidirect product of the
translation group T4, the group of boosts B3, and the rotation
group SO(3):

Gal ∼= T4 � (B3 � SO(3)). (3)

We will restrict our analysis to an average over spatial trans-
lations T3, where T4

∼= T1 � T3, and boosts B3, as averages
over SO(3), the orientation of a system with respect to an
external frame, have been well studied in literature [1], and we
are primarily interested in issues associated with noncompact
groups. Further, we do not average over time translations T1, as
this would require us to introduce a Hamiltonian to generate
time translations, and for now we are interested only in a
relative description of the state at one instant of time and
not its dynamics. Suppose the state of a system is given with
respect to an external reference frame with a specific position
and velocity. The operator that results from these restricted
averages is related to the state as seen from an observer who
is ignorant of both the position and velocity of the external
reference frame.

The position and momentum operators associated with
the center of mass, X̂CM and P̂CM , and relational degrees
of freedom, X̂i|1 and P̂i|1, may be expressed in terms of
the operators X̂n and P̂n associated with the position and
momentum operators of each of the N particles with respect
to the external frame as

X̂CM = 1

M

N∑
n=1

mnX̂n, (4a)

P̂CM =
N∑

n=1

P̂n, (4b)

X̂i|1 = X̂i − X̂1 for i ∈ {2, . . . ,N}, (4c)

P̂i|1 = P̂i − mi

M
P̂CM for i ∈ {2, . . . ,N}, (4d)

where M := ∑N
n=1 mn is the total mass, and without loss

of generality we have chosen to define the relative degrees
of freedom with respect to particle 1. The above operators
satisfy the canonical commutation relations [X̂CM,P̂CM ] =
[X̂i|1,P̂i|1] = i, with all other combinations vanishing.

With the exception of the two-particle case, P̂i|1 is not equal
to the usually defined relative momentum

P̂ri
:= μ1i

(
P̂i

mi

− P̂1

m1

)
	= P̂i|1 for i ∈ {2, . . . ,N}, (5)

where μ1i := m1mi/(m1 + mi) is the reduced mass of particle
1 and the ith particle, as one might expect. Alternatively, one
may begin with the set relative momentum operators {P̂ri

| i =
2, . . . ,N} and construct canonically conjugate relative position
operators. However, we restrict ourselves to considering the
operators given in Eq. (4) and refer the reader to [15] for a
more detailed discussion of the nonuniqueness of canonically
conjugate operators on HR .

The action of a translation g ∈ R3 ∼= T3 and boost h ∈
R3 ∼= B3 of the external frame in the external partition H =⊗N

n=1 Hn is given by

UT(g) =
N⊗

n=1

e−ig·P̂n , (6a)

UB(h) =
N⊗

n=1

eimnh·X̂n , (6b)

and in the center-of-mass and relational partition HCM ⊗ HR

is given by

UT(g) = e−ig·P̂CM ⊗ IR, (7a)

UB(h) = eiMh·X̂CM ⊗ IR. (7b)

To carry out the average over T3 and B3, let us express ρ in
the HCM ⊗ HR partition in the momentum basis

ρ =
∫

d pCM d p′
CM d pR d p′

R ρ(pCM,p′
CM,pR,p′

R)

× |pCM〉 〈p′
CM | ⊗ |pR〉 〈p′

R| , (8)

where pCM and p′
CM denote the momentum vector of the center

of mass and pR and p′
R denote the N − 1 relative momentum

vectors. Making use of Eq. (7a), we may average over all
possible spatial translations of the external frame,

GT[ρ] =
∫

d pCM d p′
CM d pR d p′

R ρ(pCM,p′
CM,pR,p′

R)
∫

d g UT(g) |pCM〉 〈p′
CM | UT(g)† ⊗ |pR〉 〈p′

R|

= 2π

∫
d pCM d pR d p′

R ρ(pCM,pCM,pR,p′
R) |pCM〉 〈pCM | ⊗ |pR〉 〈p′

R| . (9)

From Eq. (9) we see the effect of twirling over the group of translations T3 is to project ρ into a charge sector of definite
center-of-mass momentum.

Similarly, we can average ρ over all possible boosts of the external frame with the result

GB[ρ] =
∫

d xCM d x′
CM d xR d x′

R ρ(xCM,x′
CM,xR,x′

R)
∫

d h UB(h) |xCM〉 〈x′
CM | UB(h)† ⊗ |xR〉 〈x′

R|

= 2π

M

∫
d xCM d xR d x′

R ρ(xCM,xCM,xR,x′
R) |xCM〉 〈xCM | ⊗ |xR〉 〈x′

R| , (10)
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where xCM and x′
CM denote the position vector of the center of mass, xR and x′

R denote the N − 1 relative position vectors, and
ρ(xCM,x′

CM,xR,x′
R) = 〈xCM | 〈xR| ρ |xCM〉 |xR〉. From Eq. (10) we see the effect of twirling over the group of boosts B3 is to

project ρ into a charge sector of definite center-of-mass position.
Now, averaging Eq. (9) over all boosts, using Eq. (7b), yields

GB ◦ GT[ρ] =2π

∫
d h

∫
d pCM d pR d p′

R ρ(pCM,pCM,pR,p′
R)UB(h) |pCM〉 〈pCM | UB(h)† ⊗ |pR〉 〈p′

R|

= 2π

∫
d h

∫
d pCM d pR d p′

R ρ(pCM − Mh,pCM − Mh,pR,p′
R) |pCM〉 〈pCM | ⊗ |pR〉 〈p′

R|

= 2π

M

∫
d h

∫
d pCM d pR d p′

R ρ(h,h,pR,p′
R) |pCM〉 〈pCM | ⊗ |pR〉 〈p′

R|

= 2π

M

∫
d pCM |pCM〉 〈pCM | ⊗

∫
d pR d p′

R

(∫
d h ρ(h,h,pR,p′

R)

)
|pR〉 〈p′

R|

= 2π

M
ICM ⊗ ρR, (11)

where in the last line

ρR :=
∫

d pR d p′
R

(∫
d h ρ(h,h,pR,p′

R)

)
|pR〉 〈p′

R|

= trCM ρ, (12)

and we have made use of the resolution of the identity
ICM = ∫

d pCM |pCM〉 〈pCM |. The action of GB ◦ GT may be
expressed as

GB ◦ GT[ρ] = 2π

M
(DCM ⊗ IR)[ρ], (13)

where DCM denotes the operation that takes every operator
on HCM to the identity operator on that space and IR denotes
the identity map on HR . Note, as the generators of T3 and B3

commute to a multiple of the identity, [X̂CM,P̂CM ] = iICM , by
application of the Baker-Campbell-Hausdorff equality, it can
be shown that GB ◦ GT = GT ◦ GB.

From the appearance of DCM , the analog of the complete
depolarizing channel on HCM

∼= L2(R3), in Eq. (13), we
see that GB ◦ GT[ρ] contains no information about the center
of mass, and thus no information about the external frame.
However, all the information about the relational degrees of
freedom of the system is encoded in ρR , which is normalized.

By twirling over all possible boosts and translations of
the system, we see from Eq. (11) that the reduced state ρR

naturally appears. We have thus connected the use of ρR that
is made by Angelo et al. [15,16] when analyzing absolute and
relative degrees of freedom, with the usual quantum reference
formalism [1].

In general, when transforming from the external partition
H = ⊗N

n=1 Hn, to the center-of-mass and relational partition
H = HCM ⊗ HR , entanglement will appear between the
center-of-mass and relational degrees of freedom, as well as
within the relational Hilbert space HR . Thus the state ρR

will be mixed, reflecting the fact that information about the
external degrees of freedom has been lost. This is analogous
to information about the external frame being lost in Eq. (1)
when averaging over all elements of a compact group.

III. GAUSSIAN QUANTUM MECHANICS
AND THE RELATIONAL DESCRIPTION

We now examine in detail the informational properties of
the reduced state ρR of the relational degrees of freedom
given in Eq. (12) by examining systems of two and three
particles in one dimension distinguished by their masses. As
mentioned earlier, in general, entanglement will appear when
moving from the external partition, H = ⊗N

n=1 Hn, to the
center-of-mass and relational partition,H = HCM ⊗ HR . This
entanglement is crucial in determining how to describe physics
relative to a particle within the system [15]. For example,
if there is entanglement between the center-of-mass and the
relational degrees of freedom, an observer identified with the
reference particle, particle 1 as chosen in Eq. (4), will describe
the rest of the system as being in a mixed state.

As a concrete example of the entanglement that can emerge
when changing from the external partition to the center-of-
mass and relational partition of the Hilbert space, we consider
systems of two and three particles in Gaussian states in the
external partition. The advantage of considering Gaussian
states in the external partition is that the transformation which
takes the state from being specified in the external partition to
being specified in the center-of-mass and relational partition
is a Gaussian unitary, that is, a state which is Gaussian in the
external partition will also be Gaussian in the center-of-mass
and relational partition. Further, if we are interested in the
reduced state ρR defined in Eq. (12), and the state of the
particles in either partition is a Gaussian state, then the trace
over the center-of-mass degrees of freedom also results in
a Gaussian state. Thus, by considering Gaussian states in the
external partition we are able to make use of the extensive tools
developed in the field of Gaussian quantum information. We
begin here by briefly reviewing relevant aspects of Gaussian
quantum information; for more detail the reader may consult
one of the many good references on the topic [17–19].

A. The Wigner function and Gaussian states

Any density operator has an equivalent representation as a
quasiprobability distribution over phase space. To see this, we
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introduce the Weyl operator

D(ξ ) := exp(ix̂T �ξ ), (14)

where x̂ := (q̂1,p̂1, . . . ,q̂n,p̂n) is a vector of phase-space
operators, ξ ∈ R2n, and � is the symplectic form defined as

� =
n⊕

i=1

ω, with ω =
(

0 1
−1 0

)
. (15)

A density operator ρ ∈ B(H) has an equivalent representation
as a Wigner characteristic function χ (ξ ) := tr[ρD(ξ )], or by
its Fourier transform, known as the Wigner function,

W (x) :=
∫
R2n

d2n ξ

(2π )2n
exp(−ixT �ξ )χ (ξ ), (16)

where x := (q1,p1, . . . ,qn,pn) is a vector of phase-space
variables.

An n-particle Gaussian state is a state whose Wigner
function is Gaussian, that is,

W (x; x̄,V) = exp
[− 1

2 (x − x̄)T V−1(x − x̄)
]

(2π )n
√

det V
, (17)

where x̄ := (q̄1,p̄1, . . . ,q̄n,p̄n) is given by a vector of
averages

x̄i := 〈x̂i〉 = tr[x̂iρ], (18)

and V is the real 2n × 2n covariance matrix with
components

Vij := 1
2 tr[{x̂i − x̄i ,x̂j − x̄j }ρ], (19)

where we have made use of the anticommutator {A,B} :=
AB + BA.

B. Two particles

We begin our analysis by considering two particles with
masses m1 and m2 to be in a tensor product of Gaussian
states ρE = ρ1 ⊗ ρ2, where ρ1 ∈ B(H1) and ρ2 ∈ B(H2) in
the external partitionH = H1 ⊗ H2. Due to the tensor product
structure of ρE , the Wigner function of the composite system
is a product of the Wigner functions associated with particles
1 and 2:

W (x; x̄E,VE) = W (x; x̄1,V1)W (x; x̄2,V2). (20)

The reason for considering factorized states in the external
partition, apart from their common usage in the literature
[3,13], is that if we are to use the composite system for
communication, the tensor product structure is easily prepared
as it does not require an entangling operation. Further, if one
party wishes to communicate a string of classical bits (or
qubits), they can try to encode one bit (or qubit) per physical
qubit, and this string can be decoded sequentially. The sender
does not need to know at the outset the entire message they
wish to communicate, and the receiver does not need to store
the entire message before decoding it [3].

As we will only be interested in the entanglement generated
in moving from the external partition to the center-of-mass
and relational partition, we may, without loss of generality,
set x̄1 = x̄2 = 0, as these averages can be arbitrarily adjusted
via local unitary operations in either partition and thus do not
affect the entanglement properties under consideration.

Making use of Eq. (17), we find the covariance matrix
associated with ρE is given by VE = V1 ⊕ V2; the direct sum
structure resulting from the fact that we chose ρE to be a tensor
product state in the external partition. Using Williamson’s
theorem [20], one can show that the most general form of
the covariance matrices V1 and V2 is given by

Vi = 1

μi

R(θi)S(2ri)R(θi)
T = 1

μi

(
cosh 2ri − cos 2θi sinh 2ri sin 2θi sinh 2ri

sin 2θi sinh 2ri cosh 2ri + cos 2θi sinh 2ri

)
, (21)

where the free parameter μi = 1/
√

det Vi ∈ (0,1] is the purity
tr(ρ2

i ) of the state ρi , R(θi) is a rotation matrix specifying
a phase rotation by an angle θi ∈ [0,π/4], and S(2ri) is a
diagonal symplectic matrix specifying a squeezing of the
Wigner function parameterized by ri ∈ R.

1. Transforming to the center-of-mass and relational partition

For two particles in one dimension the transformation
from the external degrees of freedom xE := (x1,p1,x2,p2),
where xi and pi denote the position and momentum of
the ith particle with respect to an external frame, to the
center-of-mass and relational degrees of freedom xCMR :=
(xcm,pcm,x2|1,p2|1), where xcm and pcm are the position and
momentum of the center of mass with respect to an external
frame and x2|1 and p2|1 are the position and momentum of
particle 2 with respect to particle 1, is given by Eq. (4) with
N = 2 and vectors of operators replaced by a single operator.
Under this transformation the external covariance matrix VE

transforms to VCMR = M2VEMT
2 , where M2 is given by

M2 :=

⎛
⎜⎜⎝

m1
m1+m2

0 m2
m1+m2

0
0 1 0 1

−1 0 1 0
0 − m2

m1+m2
0 1 − m2

m1+m2

⎞
⎟⎟⎠. (22)

As both the external and center-of-mass and relational posi-
tion and momentum operators obey the canonical commutation
relations, it follows that M2 is a symplectic transformation,
i.e., it preserves the symplectic form M2�MT

2 = �. Since
M2 is symplectic, the associated transformation preserves the
Gaussianity of the state, that is, if a state is Gaussian in the
external partition, it will also be Gaussian in the center-of-mass
and relational partition.

The relational state ρR , given in Eq. (12), is a Gaussian
state whose covariance matrix V2|1 is obtained by deleting the
first and second rows and columns of VCMR . Taking the most
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general form of V1 and V2 yields

V2|1= 1

μ1μ2

(
μ2f

−
1 + μ1f

−
2 −μ2m̃2g1 + μ1m̃1g2

−μ2m̃2g1 + μ1m̃1g2 μ2m̃
2
2f

+
1 + μ1m̃

2
1f

+
2

)
,

(23)

where

f ±
i := cosh 2ri ± cos 2θi sinh 2ri,

gi := sin 2θi sinh 2ri,

and m̃i := mi/(m1 + m2).

2. Entanglement between the center-of-mass and relational
degrees of freedom

As a measure of entanglement we will employ the logarith-
mic negativity [21]

EN (ρ) := log ‖ρ
A‖1, (24)

where 
A is the partial transpose and ‖ · ‖1 denotes the
trace norm, with log(·) denoting the natural logarithm. The
logarithmic negativity is a measure of the failure of the partial
transpose of a quantum state to be a valid quantum state and
is a faithful measure of entanglement for the 1 × N mode
Gaussian states [22].

For Gaussian states the logarithmic negativity is given by

EN := −
∑

k

log ṽk ∀ ṽk < 1, (25)

where {ṽk} is the symplectic spectrum of the partially trans-
posed covariance matrix Ṽ, i.e., the eigenspectrum of |i�Ṽ|.
The partial transpose of a covariance matrix is

Ṽ = θ1|2Vθ1|2, (26)

where θ1|2 = diag(1,1,1,−1).
We will use the logarithmic negativity to quantify the en-

tanglement between the center-of-mass and relational degrees
of freedom in VCMR = M2VEMT

2 , for VE = V1 ⊕ V2, which
corresponds to the two particles being in a factorized state
ρ1 ⊗ ρ2 in the external partition. V1 and V2 will necessarily
be of the form given in Eq. (21).

Plots of the logarithmic negativity of the state associated
with VCMR for different choices of V1 and V2 are given in
Figs. 1 (identical state parameters), 2 (differing purity), and 3
(differing squeezing). Several trends emerge from a perusal of
these figures.

We first note that equal-mass systems suppress entan-
glement between center-of-mass and relational degrees of
freedom. When particles in the external partition are prepared
such that they have identical covariance matrices we find
vanishing entanglement in the equal-mass case, regardless of
the amount of squeezing and rotation. This occurs for both
pure and mixed situations, respectively, illustrated in Figs. 1
and 2. As one of the masses gets larger, center-of-mass and
relational entanglement increases for any fixed value of the
squeezing parameter r .

The next trend we observe is that phase rotation, corre-
sponding to squeezing along a rotated axis in phase space,
appears to play a more important role than squeezing. For
a phase rotation θ = θ1 = θ2 = 0, we find the entanglement

(a) (b)

(c) (d)

0 0.5 1.0 1.5 2.0

FIG. 1. The logarithmic negativity, as a measure of the entangle-
ment between the center-of-mass and relation degrees of freedom,
of the state associated with VCMR , when V1 = V2 and both ρ1

and ρ2 are pure, i.e., det V1 = det V2 = 1, is plotted as a function
of the squeezing parameter r = r1 = r2 and the ratio of masses
m1/(m1 + m2) for different phase rotations θ = θ1 = θ2: (a) θ = 0,
(b) θ = π/32, (c) θ = π/8, and (d) θ = π/4.

between the center-of-mass and relational degrees of freedom
is insensitive to the amount of squeezing. As θ increases
we see that squeezing plays an increasingly important role,
particularly as the ratio of the masses increasingly departs
from unity. Not surprisingly, entanglement is greater for the
pure case, shown in Fig. 1, than for the mixed case, shown in
Fig. 2.

Asymmetric squeezing, r2 = αr1 where α ∈ R+, illustrated
in Fig. 3, modifies this situation. When there is no squeezing,
r1 = r2 = 0, entanglement between the center-of-mass and
relational degrees of freedom vanishes when the masses of
the two particles are equal. However, as r1 departs from zero,
the ratio of masses, m1/(m1 + m2), at which entanglement
between the center-of-mass and relational degrees of freedom
vanishes, increases [Fig. 3(a)], a trend that is less pronounced
as α approaches unity [Fig. 3(b)]. Again, we see that phase
rotation plays a significant role; Figs. 3(c) and 3(d) demonstrate
that if the squeezing of the particles is different and along a
rotated axis, entanglement between the center-of-mass and
relational degrees of freedom can vanish entirely.

Decreasing the purity of the states of the particles in the
external partition, shown in Fig. 2, indicates the same trends as
for the pure case (Fig. 1). The main effects of decreased purity
are to decrease the overall entanglement between the center-
of-mass and relational degrees of freedom and to widen the
range of ratio of masses for which this entanglement vanishes.
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(a) (b)

(c) (d)

0 0.5 1.0 1.5 2.0

FIG. 2. The logarithmic negativity, as a measure of the entangle-
ment between the center-of-mass and relation degrees of freedom, of
the state associated with VCMR , when r = r1 = r2, θ = θ1 = θ2, and
particle 2 is a pure state, μ2 = 1, and particle 1 is not, for different
purities of particle 1, μ1, and phase rotations θ . In (a,b) θ = 0 and
(c,d) θ = π/4. In (a,c) μ1 = 0.6 and (b,d) μ = 0.2. Plots for θ = 0
and μ1 = 1 and θ = π/4 and μ1 = 1 are shown in Figs. 1(a) and 1(d),
respectively.

In Figs. 1–3 we have plotted the logarithmic negativity as
a measure of the entanglement between the center-of-mass
and relational degrees of freedom for a wide variety of
separable states in the external partition. The more entangled
these degrees of freedom are, the more mixed the reduced
state ρR of the relational degrees of freedom will be. The
practical consequence of this is that if one wishes to encode
quantum information in the relational degrees of freedom of
two Gaussian states, perhaps to communicate this information
to another party who does not have access to their external
reference frame, then the purity and amount and direction of
squeezing should be chosen in accordance with Figs. 1–3 as
to minimize the entanglement between the center-of-mass and
relational degrees of freedom.

C. Three particles

We consider now a similar analysis for a system of three
particles with masses m1, m2, and m3. When transforming a
fully factorized state in the external partition H = H1 ⊗ H2 ⊗
H3 to the center-of-mass and relational partition H = HCM ⊗
HR , there will again be entanglement generated between the
center-of-mass and relational degrees of freedom. In addition,
there will be entanglement generated among the relational
degrees of freedom, a new feature not possible for the two-
particle system considered above.

(a) (b)

(c) (d)

0 0.5 1.0 1.5 2.0

FIG. 3. The logarithmic negativity, as a measure of the entangle-
ment between the center-of-mass and relation degrees of freedom,
of the state associated with VCMR when det V1 = det V2 = 1 for
r2 = αr1, and for different phase rotations θ = θ1 = θ2 and values
α. In (a,b) θ = 0 and (c,d) θ = π/4. In (a,c) α = 0 and (b,d) α = 0.5.
Plots for θ = 0 and α = 1 and θ = π/4 and α = 1 are shown in
Figs. 1(a) and 1(d), respectively.

The center-of-mass position and momentum operators,
along with the relative position and momentum operators, are
again defined via Eq. (4). The transformed covariance matrix
is given by VCMR = M3VEMT

3 , where

M3 :=

⎛
⎜⎜⎜⎜⎜⎜⎝

m1
M

0 m2
M

0 m3
M

0
0 1 0 1 0 1

−1 0 1 0 0 0
0 −m2

M
0 1 − m2

M
0 −m2

M

−1 0 0 0 1 0
0 −m3

M
0 −m3

M
0 1 − m3

M

⎞
⎟⎟⎟⎟⎟⎟⎠

. (27)

The relational state V23|1 of particles 2 and 3 as described
by particle 1 is obtained by deleting the first and second rows
and columns of VCMR . We observe that in the limit when m3

vanishes and the columns and rows of M3 associated with
particle 3 are deleted, that is, the last two rows and columns,
M2 as defined in Eq. (22) is recovered.

We assume the state of the three-particle system in the
external partition is a fully factorized Gaussian state with
the covariance matrix VE = V1 ⊕ V2 ⊕ V3. For simplicity
we restrict ourselves to the case when V1 = V2 = V3 and
det VE = 1, in other words, a pure state, with each of the three
particles identically squeezed in the same direction.

In Fig. 4 the logarithmic negativity as a measure of en-
tanglement between the center-of-mass and relational degrees
of freedom in VCMR is plotted for different choices of VE . In
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(a) (b)

(c) (d)

0 0.5 1.0 1.5 2.0

FIG. 4. The logarithmic negativity is plotted, as a measure of
the entanglement between the center-of-mass and relation degrees
of freedom, of the state associated with VCMR describing three
particles for different equal phase rotations θ1 = θ2 = θ3 = θ with
det V1 = det V2 = det V3 = 1. In (a) and (b) the logarithmic neg-
ativity is plotted for the case when m2 = m3, as a function of
the ratio m1/(m1 + m2 + m3) and equal squeezing parameter r1 =
r2 = r3 = r , with θ = 0 and θ = π/4, respectively. In (c) and (d)
the logarithmic negativity is plotted as a function of the two mass
ratios m1/(m1 + m2 + m3) and m2/(m1 + m2 + m3) for θ = 0 and
θ = π/4, respectively, with the equal squeezing parameter fixed at
r = 0.7.

Fig. 5 the logarithmic negativity between the relational degrees
of freedom in V23|1 is plotted for different choices of VE .

We see similar trends for the center-of-mass and relational
entanglement as for the two-particle case but qualitatively
different behavior of the internal-relational entanglement, i.e.,
the entanglement generated among the relational degrees of
freedom—in the case at hand, the entanglement between
particles 2 and 3 as described by particle 1.

The internal-relational entanglement, illustrated in Fig. 5,
shows strikingly different behavior. Such entanglement is
maximized in the equal-mass case, shown in Figs. 5(b)
and 5(d), provided there is some phase rotation. In the absence
of phase rotation, this effect vanishes. For all values of the
(equal) phase rotation parameter, we observe that as the mass
of the reference particle m1 becomes infinite, the entanglement
between particles 2 and 3 vanishes. This is as expected, since
this limit corresponds to particle 1 behaving as a classical
reference frame with a large mass. Indeed, we notice that in
the limit m1 → ∞, the 4 × 4 lower-right submatrix of M3

becomes the identity matrix, and the only effect of the change
of coordinates is that of redefining the origin in space for the
coordinates of the second and third particle.

(a) (b)

(c) (d)

0 0.5 1.0 1.5 2.0

FIG. 5. The logarithmic negativity of the relative state of particles
2 and 3 described by V23|1 is plotted, characterizing the entanglement
among the relational degrees of freedom, for different equal phase
rotations θ1 = θ2 = θ3 = θ with det V1 = det V2 = det V3 = 1. In (a)
and (b) the logarithmic negativity is plotted for the case m2 = m3

as a function of the ratio m1/(m1 + m2 + m3) and equal squeezing
parameters r1 = r2 = r3 = r for θ = 0 and θ = π/4, respectively.
In (c) and (d) logarithmic negativity is plotted as a function of the
mass ratios m1/(m1 + m2 + m3) and m2/(m1 + m2 + m3) for equal
squeezing parameter r = 0.7 and θ = 0 and θ = π/4, respectively.

IV. DISCUSSION AND OUTLOOK

We have highlighted issues involving quantum reference
frames associated with noncompact groups. We began in
Sec. II A by introducing the usually employed G-twirl as a
relational description between quantum systems and demon-
strated how it leads to un-normalized states when applied
to noncompact groups. In Sec. II B we demonstrated that a
lack of reference frame associated with the translation group
and the group of Galilean boosts leads to a superselection
rule on the respective momentum and position of the center
of mass of a multiparticle system. Further, we saw how the
G-twirl over these groups leads to the appearance of the
reduced state on the relational degrees of freedom previously
considered by Angelo et al. [15]. We then examined the
consequences of this relational description in Sec. III by
studying the entanglement that emerges between the center-of-
mass degrees of freedom and the relational degrees of freedom,
as well as the entanglement among the relational degrees
of freedom, for a system of particles when moving from a
description of the quantum system entirely with respect to an
external frame, to a description in which only the center of
mass is specified with respect to an external frame and all
other degrees of freedom are relational.
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Two main observations emerged from studying the reduced
state ρR on the relational degrees of freedom, introduced
in Eq. (12), for systems of two and three particles. First,
for fully separable Gaussian states in the external partition
with identical second moments, entanglement between the
center-of-mass degrees of freedom and relational degrees of
freedom is minimized when the masses of the particles are
the same. Second, again for fully separable Gaussian states
in the external partition with identical second moments, in
the limit when the mass of the reference particle, that is,
the particle for which the relational degrees of freedom are
defined with respect to, becomes infinite, the entanglement
among the relational degrees of freedom vanishes. This second
observation suggests a meaningful way to interpret the external
reference frame, with which we usually describe a quantum
state with respect to, as the limit of a physical system, say
a particle, in which its mass is taken to infinity [23]. The
consequences of this second observation will be explored in
future work.

It may be possible to gain further physical intuition into the
behavior of the informational properties of ρR by comparing
ρR with the behavior of nonclassical states of light passing
through a beam splitter, as this scenario has been well studied
in the field of quantum optics and the formalism of Gaussian
quantum information was developed with this situation in
mind.

The primary motivation for examining quantum reference
frames associated with noncompact groups is to apply the
quantum reference frame formalism to relativistic systems,
in which the natural group associated with changes of a
reference frame is the Poincaré group. We note that the
approach taken in Sec. II B was to introduce the relative and
center-of-mass partition of the Hilbert space and then show
that the relative degrees of freedom form a decoherence-free
subsystem, whereas the center-of-mass degree of freedom
forms a decoherence-full subsystem [see Eq. (11)]. This
approach may not be possible for the Poincaré group as the
usually defined center of mass is not covariant [24]. In this
case, the decoherence-free and decoherence-full subspaces
will need to be identified from the structure of the Poincaré
group.

Two other possible applications of the formalism intro-
duced come to mind. The first is in constructing a relativity
principle for quantum mechanics by studying changes of
quantum reference frames, which was first suggested in
Ref. [13]. The second is to construct a relational quantum
theory, similar to what was done in Ref. [9], for the Galilean
group using the relational description in Eq. (12) and examine
how the usual “nonrelational” theory emerges.
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APPENDIX: PURITY OF THE RELATIONAL STATE

The covariance matrices considered in Secs. III B 1
and III B 2 were of the form VE = V1 ⊕ V2, where both V1 and
V2 were given by Eq. (21). The purity of VCMR = M2VEMT

2
is given by

μCMR = 1√
det VCMR

= μ1μ2, (A1)

where μ1 and μ2 are the purities associated with V1 and V2,
respectively.

The purity of the relational state V2|1 in Eq. (23), that is,
the state obtained from VCMR by taking the partial trace over
the center-of-mass degrees of freedom, is

μ2|1 = 1√
det V2|1

= μ1μ2
[
μ2

2m̃
2
2f

−
1 f +

1 + μ1μ2
(
m̃2

1f
−
1 f +

2 + m̃2
2f

+
1 f −

2

)
×μ2

1m̃
2
1f

−
2 f +

2 − μ2
2m̃

2
2g

2
1 + 2μ1μ2m̃1m̃2g1g2

−μ2
1m̃

2
1g

2
2

]−1/2
, (A2)

where we have introduced the notation m̃i = mi/(m1 + m2).
If VCMR is pure, which corresponds to both V1 and V2

being pure, then μCMR = 1 and μ2|1 is a genuine measure
of entanglement between the center-of-mass and relational
degrees of freedom. In this case, μ−2

2|1 simplifies to

μ−2
2|1 = (m̃2 − m̃1)[sinh(2r1) cosh(2r2) cos(2θ1)

− sinh(2r2) cosh(2r1) cos(2θ2)]

+ (2m̃1m̃2 + 1) cosh(2r1) cosh(2r2)

− sinh(2r1) sinh(2r2)[2m̃1m̃2 cos[2(θ1 + θ2)]

+ cos(2θ1) cos(2θ2)] + m̃2
1 + m̃2

2. (A3)

If the mass of the two particles are equal m1 = m2, μ−2
2|1

further simplifies to

μ−2
2|1 = 1

4 [−2 sinh(2r1) sinh(2r2) cos[2(θ1 − θ2)]

+ cosh[2(r1 − r2)] + cosh[2(r1 + r2)] + 2]. (A4)

For the case when m1 	= m2, r1 = r2 = r , and θ1 = θ2 = θ ,
corresponding to Fig. 1, μ−2

2|1 becomes

μ−2
2|1 = 2

m2
1 + m2

2

(m1 + m2)2
+ sin2(2θ )

×
(

m2
1 + m2

2

(m1 + m2)2
sinh2(2r) − 2

m1m2

(m1 + m2)2

)
. (A5)

From Eq. (A5), we observe that when the masses of the two
particles are identical m1 = m2, the reduced state V2|1 is pure,
i.e, μ2|1 = 1, which corresponds to vanishing entanglement
between the center-of-mass and relational degrees of freedom
in VCMR . This agrees with the plots of the logarithmic
negativity in Fig. 1.

When the mass of either particle becomes infinite we find

μ−2
2|1 =2 + sinh2(2r) cos2(2θ ). (A6)
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