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Holonomic quantum computation in the ultrastrong-coupling regime of circuit QED
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We present an experimentally feasible scheme to implement holonomic quantum computation in the
ultrastrong-coupling regime of light-matter interaction. The large anharmonicity and the Z2 symmetry of
the quantum Rabi model allow us to build an effective three-level �-structured artificial atom for quantum
computation. The proposed physical implementation includes two gradiometric flux qubits and two microwave
resonators where single-qubit gates are realized by a two-tone driving on one physical qubit, and a two-qubit gate
is achieved with a time-dependent coupling between the field quadratures of both resonators. Our work paves the
way for scalable holonomic quantum computation in ultrastrongly coupled systems.
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I. INTRODUCTION

The extensive progress in quantum information science has
motivated continuous demand for implementing high-fidelity
quantum operations. Holonomic quantum computation (HQC)
represents a promising approach to achieve this goal because
of its intrinsic noise-resilience features [1,2]. The holonomic
gates can be achieved by using either Abelian [3,4] or non-
Abelian [5,6] geometric phases. The Abelian approach [7–9]
utilizes quantum two-level systems (qubits) as elementary
units, and the underlying idea is to choose a pair of orthogonal
states that will evolve cyclically. In contrast, the non-Abelian
approach [1,10] embeds qubits in a proper subspace of the
total Hilbert space. Recently, a scheme to build fast holonomic
gates through the non-Abelian approach has been proposed in
Refs. [2,11]. The advent of this idea has triggered off a set
of new proposals [12,13]. Apart from the theoretical interest,
high fidelity gates based on fast HQC schemes have been
demonstrated in different systems such as transmon-based
superconducting qubits [14], NMR systems [15], and diamond
NV centers [16,17].

On the other hand, the light-matter interaction has been
the focus of interest in recent years owing to the experimental
realizations of the ultrastrong-coupling (USC) regime [18–24].
In this case, the light-matter coupling strength is comparable
to the cavity and the qubit frequencies [25], and in the dipolar
approximation, it is described by the quantum Rabi model
(QRM) [26,27]. Apart from the fundamental interest of the
USC regime, it has been intensively studied for demonstrating
novel quantum optics phenomena [28–32], implementing
quantum information tasks [33,34], as well as fast quantum
computation [35–39] within circuit quantum electrodynamics
(QED) [40,41]. The latter provides a promising solid-state
architecture for performing quantum computation due to the
desirable properties of superconducting qubits, such as long
coherence times, and most importantly, its controllability and
scalability [42].
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Meanwhile, many efforts have also been made to implement
HQC in the cavity QED system with natural atoms [43] and
artificial atoms [44], as well as the circuit QED system with su-
perconducing qubits [45]. While the HQC scheme in Ref. [43]
is performed adiabatically, the schemes in Refs. [44,45]
are designed in a nonadiabatic fashion in addition to their
decoherence-free subspace (DFS) encoding, and thus integrate
both the noise resilience of DFS and the operational robustness
of holonomies. However, all of those schemes [43–45] are
based on the strong coupling of light-matter interaction, which
can be well described by the Jaynes-Cummings model. To the
best of knowledge, so far no scheme has ever been proposed
to construct holonomic gates in the ultrastrong-coupling
regime with the quantum Rabi model. Ultrastrong coupling
offers the possibility for ultrafast quantum gate operations
even in the time scale of subnanosecond [39], therefore,
the realization of HQC in USC is of particular interest yet
challenging.

In this work, we propose an experimentally feasible
scheme to implement universal nonadiabatic HQC in the USC
regime of light-matter interaction. The large anharmonicity
and the Z2 symmetry of the QRM allow us to construct an
effective three-level �-type system for quantum computing.
We show that noncommuting single-qubit holonomic gates
can be obtained by means of a two-tone driving on one
physical qubit, and nontrivial two-qubit holonomic gates can
be achieved with a time-dependent coupling between the field
quadratures of two bosonic modes. Moreover, we discuss
the physical implementation by considering two gradiometric
flux qubits each galvanically coupled to its transmission line
resonator, which are then connected to each other through
a superconducting quantum interference device. Compared
to the existing proposals for implementing HQC in circuit
QED, the strategy we pursue is different in the sense that
we exploit the discrete Z2 symmetry of the quantum Rabi
model instead of the continuous U(1) symmetry of the Jaynes-
Cummings model. Therefore, our proposal works well in the
ultrastrong-coupling regime, and it may find compelling ap-
plications for quantum information processing in ultrastrong-
coupling and deep strong-coupling regimes for various
systems.
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FIG. 1. Schematic representation of our model. A system of a
single qubit and a single cavity mode that interact in the ultrastrong-
coupling regime constitutes the quantum Rabi system. The interaction
between the two quantum Rabi systems is mediated by cavities
through a time-dependent coupling of strength J (t).

II. SELECTION RULES IN THE QUANTUM RABI MODEL

The model that we consider is schematically depicted in
Fig. 1. It includes two ultrastrongly coupled qubit-cavity
systems, which interact via a time-dependent coupling of
strength J (t). Each ultrastrongly coupled system, onwards
called quantum Rabi system (QRS), is described by

Hp = �ωca
†a + �

ωa

2
σz + �gσx(a† + a), (1)

where ωa,ωc, and g stand for the qubit frequency, cavity
frequency, and the qubit-resonator coupling strength, respec-
tively. In addition, a(a†) is the bosonic annihilation (creation)
operator, and σz, σx are the Pauli matrices of the qubit.

In the ultrastrong-coupling regime [46,47], which is char-
acterized by the ratio range 0.1 � g/ωc < 1, the bosonic field
and the qubit merge into dressed-state systems that feature the
discrete Z2 symmetry, as shown in Fig. 2, where we plot the
energy spectrum of the quantum Rabi model as a function of
the coupling strength g/ωc. This symmetry is characterized

FIG. 2. Energy levels of the quantum Rabi model as a function
of the dimensionless parameter g/ωc with ωa/ωc = 0.8. Energies are
rescaled in order to set the ground level to zero. The parity of the
corresponding eigenstates is identified, continuous-blue line for even
states and dashed-red lines for odd states.

by the parity operator P = eiπ(a†a+σ+σ−), such that P|ψe〉 =
|ψe〉, P|ψo〉 = −|ψo〉. Note that in Fig. 2, even (|ψe〉) and
odd (|ψo〉) eigenstates are represented by continuous-blue and
dashed-red lines, respectively. The QRM can be rewritten as

Hp =
∑
s=0

�ωs |s〉〈s|, (2)

where we consider both even and odd parity states together
and labeled them as eigenstates |s〉 of increasing energy �ωs .

Formally, the parity in quantum mechanics is intimately
related to the selection rules. For the QRM it can be shown that
the matrix elements of an even operator are zero between states
of different parity, 〈ψe|Ae|ψo〉 = 〈ψo|Ae|ψe〉 = 0, while the
matrix elements of an odd operator are zero between states
of equal parity 〈ψe|Ao|ψe〉 = 〈ψo|Ao|ψo〉 = 0. Also, from
Fig. 2, we see that the spectrum is anharmonic enough
such that the dressed states may be used as a computational
basis for quantum information processing. In particular, when
g/ωc = 0.3, one can build an effective three-level system by
choosing the lowest three levels, |0〉 ≡ |ψe,0〉, |1〉 ≡ |ψo,0〉, and
|2〉 ≡ |ψo,1〉 to implement holonomic quantum computation
schemes.

III. SINGLE-QUBIT GATE

In this section we show how to construct an arbitrary single-
qubit gate in the dressed-state basis of the quantum Rabi model
with a nonadiabatic non-Abelian scheme [2]. We choose the
two lower levels |0〉 and |1〉 to form the qubit subspaceS1(0) ≡
{|0〉,|1〉}, leaving the upper level |2〉 as an auxiliary state.

In this encoding, the states |0〉 and |2〉 belong to different
parity subspaces, such that the transitions between them can
be induced by an odd parity operator, i.e., σx . Similarly, the
states |1〉 and |2〉 have the same parity and the transition
between them can be induced by an even parity operator such
as σz. Therefore, a single-qubit holomonic quantum gate can
be realized by making use of a two-tone driving scheme on the
physical qubit. This can be modeled by the Hamiltonian,

Hd =�1(t) cos(ω̄1t + ϕ1)σx + �2(t) cos(ω̄2t + ϕ2)σz. (3)

The qubit driving Hamiltonian Eq. (3) can be written in the
dressed-state basis by using the completeness relation I =∑

s |s〉〈s|,

Hd = �1(t) cos(ω̄1t + ϕ1)
∑
s,t

xst |s〉〈t |

+ �2(t) cos(ω̄2t + ϕ2)
∑
s,t

zst |s〉〈t |, (4)

where the transition elements are given by xst = 〈s|σx |t〉 and
zst = 〈s|σz|t〉. Notice that according to the selection rule for
even and odd operators, xst = 0 if |s〉 and |t〉 belong to the same
parity subspace, and zst = 0 if |s〉 and |t〉 belong to a different
parity subspace. Furthermore, we can interpret the projector
|s〉〈t | as a flip operator between dressed states of either equal or
different parity depending on the nature of the system operator
(in our case, either σx or σz). Therefore, such a Hamiltonian
Eq. (4) induces coherent excitation transfer between all the
possible dressed states.

012328-2



HOLONOMIC QUANTUM COMPUTATION IN THE . . . PHYSICAL REVIEW A 94, 012328 (2016)

FIG. 3. Rabi oscillations for the lowest three dressed states in the
quantum Rabi model by driving the physical qubit: (a) only in the
x direction with strength �1 = 0.02ω20, �2 = 0; (b) only in the z
direction with strength �1 = 0, �2 = 0.02ω21; (c) both in the z and x
directions with strengths �1 = �2 = 0.02ω21. Pi(t) (i = 0,1,2) is the
probability of the state |i〉 as a function of time. The parameters are
ωa = 0.8ωc, g = 0.3ωc, and driving frequencies ω̄1 = ω21, ω̄2 = ω20.

As we have shown in Fig. 2, for g/ωc � 1, the energy spec-
trum of the quantum Rabi system has a large anharmonicity
such that one can access one particular transition frequency
ωts = ωt − ωs . Let us consider the total Hamiltonian H =
Hp + Hd , and we move to the interaction picture with respect
to the Rabi Hamiltonian in Eq. (2). If the condition |�j (t)| �
min{|ωt,s |,ω̄j } is satisfied, one can apply the RWA and neglect
fast oscillating terms. Moreover, when bringing the frequency
of the driving close to resonance with the transitions in which
we are interested, i.e., ω̄1 = ω20 and ω̄2 = ω21, the interaction
Hamiltonian reads

HI = �1(t)

2
e−iϕ1 x20|2〉〈0|

+ �2(t)

2
e−iϕ2 z21|2〉〈1| + H.c., (5)

with x20 = 〈2|σx |0〉 and z21 = 〈2|σz|1〉. Therefore, by engi-
neering the driving amplitudes and frequencies, Rabi oscilla-
tions between two specific dressed states can be performed.

In Fig. 3, we show Rabi oscillations for the lowest three
dressed states in the quantum Rabi model. This simulation
has been performed by making use of the full Hamiltonian
H = Hp + Hd . As shown in Fig. 3(a), by driving the qubit
in the σx direction on resonance with the transition ω̄1 = ω20,
we observe Rabi oscillations between the two different parity
states |2〉 and |0〉. Similarly, by driving the qubit in the
σz direction on resonance with the transition ω̄2 = ω21, the
complete population transfer between the two same parity
states |2〉 and |1〉 is shown in Fig. 3(b). Moreover, by tuning

the driving frequency and amplitude to make both σx and σz

rotations, we may have full control of any structured three-level
system built from the dressed states of the quantum Rabi
model, as shown in Fig. 3(c). In this manner, we are able
to implement the effective Hamiltonian in Eq. (5).

Now we show how to construct an arbitrary holonomic
single-qubit gate with the effective Hamiltonian HI . By setting
�2(t) = (�2

1(t)|x20|2 + �2
2(t)|z21|2)/4, ϕ = ϕ2 − ϕ1, and θ =

−2 arctan[(�1(t)x20)/(�2(t)z21)], we can rewrite Eq. (5) as
follows:

HI = �(t)

(
eiϕ sin

θ

2
|2〉〈0| − cos

θ

2
|2〉〈1| + H.c.

)
. (6)

In this case, we construct a �-system Hamiltonian in the
dressed-state basis, from which an arbitrary single-qubit
holonomic gate can be obtained. The effective Hamiltonian
HI in Eq. (6) can be recast as the auxiliary state |2〉
coupled to the bright state |b〉 = e−iϕ sin θ

2 |0〉 − cos θ
2 |1〉 and

decoupled from the dark state |d〉 = eiϕ sin θ
2 |1〉 + cos θ

2 |0〉.
Initially, quantum information is stored in the qubit states of
subspace S1(0). When HI is applied, the subspace S1 is driven
out of S1(0), and we obtain the Rabi oscillation between
states |b〉 and |2〉 with Rabi frequency of �(t). When the
condition

∫ τ

0 �(t)dt = π is satisfied, the system states return
to the original subspace S1(0) after a cyclic evolution. The
corresponding unitary operator UI (τ ) acting on S1(0) reads
UI (τ ) = n · σ , where n = (sin θ cos ϕ, sin θ sin ϕ, cos θ ) and
σ = (σx,σy,σz) being Pauli operators [2]. It is clear that
two noncommuting single-qubit holonomic quantum gates
can be achieved based on UI (τ ). Moreover, there is no
dynamical contribution to UI (τ ) since 〈m|HI |n〉 = 0 (m,n ∈
N) and hence 〈m(t)|HI |n(t)〉 = 0. The result shows the pure
geometric nature of the obtained gate. Therefore, the desired
single-qubit gates for universal quantum computation can
be implemented in our system based on the nonadiabatic
non-Abelian scheme [2,11].

The holonomic single-qubit gate performance under loss
mechanisms in the ultrastrongly coupled system can be studied
by means of the time-convolutionless projection operator
method [48]. In this approach the master equation reads

ρ̇ = 1

i�
[Hs,ρ]

+
∑

n=z,x,c

(UnρSn + SnρU †
n − SnUnρ − ρU †

nSn), (7)

where Sn are Hermitian system operators, and the operators
Un are defined as

Un =
∫ ∞

0
dτνn(τ )e−(i/�)Hsτ Sne

(i/�)Hsτ ,

νn(τ ) =
∫ ∞

−∞
dω

γn(ω)

2π
[N̄n(ω)eiωτ + (N̄n(ω) + 1)e−iωτ ].

(8)

Here, we consider independent thermal baths for each loss
mechanism acting on the system described by the Hamiltonian
Hs(t) = �(t)(ϒ0|2〉〈0|) + ϒ1|2〉〈1| + H.c.) [cf. Eq. (6)]. In
our simulation we include loss mechanisms acting on the
dressed-state system via transversal noise (γx), longitudinal
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FIG. 4. Performance of the Hadamard gate under loss mecha-
nisms acting upon the ultrastrongly coupled system. The fidelity is
averaged on an ensemble of 4000 input states uniformly distributed
over the Bloch sphere. In this simulation we have considered
parameters g = 0.3ωc, ωa = 0.8ωc, γx = γz = γc = 10−2ωc.

noise (γz), and noise acting on the field quadrature (γc), through
operators Sx = σx , Sz = σz, and Sc = a + a†, respectively.
In our treatment, each loss mechanism is described by
independent thermal baths with bare loss rates γj . This leads
to γj (ω) = (γj/ωj )ω�(ω), where �(ω) is the Heaviside step
function.

Following Ref. [2] we have studied the performance of
the Hadamard gate under loss mechanisms through the gate
fidelity F = 〈χ |U †(C)ρoutU (C)|χ〉, where U (C) = (σx +
σz)/

√
2, and ρout is the density matrix of the output state

obtained from the master equation (7). The gate fidelity is
computed numerically for 4000 input states |χ〉, uniformly
distributed over the Bloch sphere. In Hs(t), we choose

�(t)(ϒ0,ϒ1) = βsech(βt)(1,(
√

2 − 1))/
√

2(2 − √
2), and the

pulse is truncated where the amplitude is β/1000, which gives
the pulse with a length τ = (2/β)arcsech(1/1000). The result
is shown in Fig. 4 for parameters g = 0.3ωc, ωa = 0.8ωc,
and γx = γz = γc = 10−2ωc. Note that loss mechanisms in
the dressed-state basis, including even and odd operators in
the parity Hilbert space, will induce a complete decay to the
fundamental state |0〉 at a scale time of ∼ 100/ωc. Despite this,
if the pulse is sufficiently short compared with the decay time,
i.e., β/γx 
 1, the fidelity of the nonadiabatic gate approaches
to unity.

IV. TWO-QUBIT GATE

In what follows, we will demonstrate a nontrivial two-
qubit gate by using a nonadiabatic Abelian scheme [9] in a
four-dimensional space spanned by the encoded logic qubit
statesS2 ≡ {|0l0r〉,|1l0r〉,|0l1r〉,|1l1r〉}. This can be proven by
considering two ultrastrongly coupled systems that interact via
a time-dependent coupling strength J (t), as depicted in Fig. 1.
The Hamiltonian describing the whole system is composed of
the sum of two quantum Rabi models and a coupling between

the field quadratures [49,50],

Htot = Hp,l + Hp,r + Hint,

Hint = �J (t)(a†
l + al)(a

†
r + ar ), (9)

with Hp,j (j = l,r) being the Hamiltonian for the left and
right quantum Rabi system.

By using the completeness relation, the system Hamiltonian
Eq. (9) can be rewritten as

Htot =
∑
s=0

(
�ωs,l |sl〉〈sl| + �ωs,r |sr〉〈sr |

) + �J (t)

×
[ ∑

sl ,tl>sl

(
fsl tl |sl〉〈tl| + H.c.

)

⊗
∑

ur ,vr>ur

(
furvr

|ur〉〈vr | + H.c.
)]

, (10)

where fsj tj = 〈sj |(aj + a
†
j )|tj 〉, j = l,r , is the transition ma-

trix elements for the left (l) and right (r) system. Here, we
have used the fact that the transition matrix elements are zero
between states of the same parity, i.e., fsj sj

= 0. Similar to the
single-qubit case, the operator |sj 〉〈tj | is the raising operator
for the left or the right system. Let us consider the interaction
picture with respect to Hamiltonian Hp,l + Hp,r . In this case,
the interaction Hamiltonian reads

HI
int = �J (t)

[ ∑
sl ,tl>sl

(
fsl tl |sl〉〈tl|e−iωtl sl

t + H.c.
)

×
∑

ur ,vr>ur

(
furvr

|ur〉〈vr |e−iωvr ur t + H.c.
)]

, (11)

where ωtj sj
= ωt,j − ωs,j > 0. In particular, the cavity-cavity

coupling parameter can be a time-dependent function J (t) =
J0(t) cos(ωdt + ϕd ). In this case, if one chooses the resonance
condition for two specific dressed states, i.e., ωd = ωvrur

−
ωtlsl

and the cavity-cavity coupling strength satisfies the con-
dition |J0(t)| � ωtlsl

+ ωvrur
, we can apply the rotating-wave

approximation and the interaction Hamiltonian effectively
reduces to

Hint = �
J0(t)

2
fsl tl f

∗
urvr

e−iϕd |sl〉〈tl| ⊗ |vr〉〈ur | + H.c.. (12)

It is clear that such a Hamiltonian produces entanglement and
induces coherent excitation transfer between specific dressed
states |sl〉 and |tl〉 of the left and the right systems [50]. It is
worth noting that the coupling operator (a†

l + al)(a
†
r + ar ) is

an odd operator for the left and right quantum Rabi system
individually, so it only induces transitions between states with
opposite parity. Specifically, if we choose ωd = ω1r 0r

− ω1l0l
,

the system can be effectively described:

Hint = �
J0(t)

2
f0l1l

f ∗
0r 1r

e−iϕd |0l1r〉〈1l0r | + H.c., (13)

which gives the interaction between two specific states |0l1r〉
and |1l0r〉. Meanwhile, Eq. (13) is our target Hamiltonian for
the two-qubit HQC with the lowest three states in the dressed
state basis. The interaction Hamiltonian (13) also indicates

012328-4



HOLONOMIC QUANTUM COMPUTATION IN THE . . . PHYSICAL REVIEW A 94, 012328 (2016)

that, out of the nine possible tensor states in the Hilbert space
of the total system H = Hp,l ⊗ Hp,r , there are only two states
that are correlated. This restricts us to a two-dimensional
subspace which is spanned by vectors {|1l0r〉,|0l1r〉}, and
allows us to demonstrate a two-qubit gate based on Abelian
geometric phases. To illustrate our scheme, we encode the
states |1l0r〉 and |0l1r〉 into logical single-qubit states |1〉L
and |0〉L, respectively. In the logical representation, Eq. (13)
reads

Hint = �
J0(t)

2
f0l1l

f ∗
0r 1r

(cos ϕd Sx + sin ϕd Sy), (14)

where Sx and Sy are Pauli operators on the logical basis.
In what follows, we demonstrate a nontrivial two-qubit gate

based on the Hamiltonian Eq. (14) according to the nona-
diabatic Abelian scheme presented in Ref. [9]. A geometric
phase shift gate Uβ acting on the eigenstates of Sx , namely
|±〉L = (|0〉L ± |1〉L)/

√
2, can be achieved by letting the

system evolve along a cyclic path based on properly designed
four-step evolution up to a global phase. Step 1. By setting
ϕd = π/2, we apply a rotation eiπSy/4 to the basis, changing
the states from |+〉L and |−〉L to |0〉L and −|1〉L, respectively.
Step 2. By setting ϕd = 0, the states |0〉L and |1〉L are swapped
with each other by a rotation eiπSx/2. Step 3. With a proper
choice of the parameter ϕd = β = mπ (m ∈ N), we evolve the
states from |0〉L and |1〉L to eiβ |1〉L and e−iβ |0〉L respectively,
by a rotation eiπ(cos βSx+sin βSy )/2. Step 4. By choosing ϕd = π/2
again, the resulting states |0〉L and −|1〉L can be changed back
to −|+〉L and |−〉L by using the rotation e−iπSy/4, eliminating
the minus sign obtained in the first step. Therefore, the system
undergoes a cyclic evolution,

|+〉L → |0〉L → |1〉L → e−iβ |0〉L → e−iβ |+〉L, (15)

|−〉L → −|1〉L → −|0〉L → −eiβ |1〉L → eiβ |−〉L, (16)

and the obtained geometric phase shift gate Uβ written in the
states |±〉L is of the following form,

Uβ =
(

e−iβ 0
0 eiβ

)
. (17)

There is no dynamical phase accompanied during the cyclic
evolution since the evolution is along geodesic lines. Equa-
tion (17) is nothing but a nontrivial two-qubit gate in the basis
{|0l0r〉,|1l0r〉,|0l1r〉,|1l1r〉} with

U2 =

⎛
⎜⎝

1 0 0 0
0 cos β −i sin β 0
0 −i sin β cos β 0
0 0 0 1

⎞
⎟⎠. (18)

It is apparent that U2 is nontrivial when β = mπ with m ∈ N.
Together with the noncommuting single-qubit gates, we have
demonstrated a universal set of holonomic quantum gates for
the ultrastrongly coupled system.

V. PHYSICAL IMPLEMENTATION

Here, we propose the use of a gradiometric flux qubit
with a tunable gap galvanically connected to a cavity (see

FIG. 5. Schematic of circuit QED design for the holonomic
quantum computation. Two transmission line resonators (cavities)
are grounded through a SQUID. Each cavity is galvanically coupled
to a gradiometric tunable-gap flux qubit, that is constituted by four
Josephson junctions. The time-dependent interaction between two
resonators can be realized by modulating the external magnetic flux
�e(t) through the SQUID.

Fig. 5) to implement HQC. This circuit QED architecture
in the strong-coupling regime has been implemented in
[51]. Also, the ultrastrong-coupling regime may be achieved
by implementing a longer and thinner shared line between
the gradiometric flux qubit and the microwave resonator
[52].

We stress that the gradiometric configuration is unaffected
by homogenous magnetic fields, so it has the advantage
to overcome flux crosstalk [51]. Also, an inhomogenous
magnetic field in the outer loop of the flux qubit enables the
coupling to a microwave resonator. The additional α loop in
the gradiometric configuration allows for a tunable qubit gap.
This mechanism is completely independent of the flux line that
controls the frustration parameter in the outer loop [51,52].
Therefore, our two-tone driving scheme for the single-qubit
gate may be implemented in the gradiometric qubit by applying
two independent magnetic fluxes of different frequencies to the
outer loop and the α loop [37].

The time-dependent coupling J (t) between the two cavities
can be implemented by means of a superconducting quantum
interference device (SQUID) [49], threaded by an external
flux �e(t), as shown in Fig. 5. Although the effective cavity
length is oscillating with small deviations from its average
value, we can still consider the system as a single-mode
resonator; see Ref. [49] for a detailed discussion. In par-
ticular, the specific form of cavity-cavity coupling strength
(J (t) = J0(t) cos(ωdt + ϕd )) required for the two-qubit gate,
may be achieved by choosing the time-dependent external
magnetic flux �e(t) to be composed of the sum of a
small amplitude-modulated signal oscillating at the driving
frequency ωd and a constant offset �̄, namely, �e(t) = �̄ +
���(t) cos (ωdt + ϕd ). By controlling the driving frequency
ωd , it will allow us to selectively activate the interaction
between two specific energy states of the system and to obtain
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the effective Hamiltonian Eq. (13) for the two-qubit gate; see
the appendix for a detailed discussion.

VI. CONCLUSION

In conclusion, we have presented a proposal to implement
a holonomic quantum computation scheme in the ultrastrong-
coupling regime of circuit QED. The effective three-level �

artificial atom to carry out the quantum gate operations is built
from the eigenstates of the quantum Rabi model in the dressed-
state basis, which is based on its large anharmonicity and the
Z2 symmetry. Arbitrary non-Abelian single-qubit gates can
be achieved by selectively driving the physical qubit in both
σx and σz directions with different frequencies. A nontrivial
Abelian two-qubit quantum phase gate can be demonstrated
by controlling both the frequency and the amplitude of
the time-dependent cavity-cavity coupling strength J (t) =
J0(t) cos(ωdt + ϕd ) between the field quadratures, and by
performing a four-step cyclic evolution scheme. Furthermore,
we have proposed an experimentally feasible circuit QED
architecture for the physical implementation of our scheme.
Here, each gradiometric tunable-gap flux qubit is connected
galvanically to the center conductor of a transmission line
resonator to reach the USC regime. The resonators are con-
nected to the same edge of a grounded SQUID, which is sur-
rounded by a time-dependent external magnetic flux. Our pro-
posal provides novel applications of the ultrastrong-coupling
regime of light matter for scalable holonomic quantum
computation.
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APPENDIX

1. Quantization of the circuit model and its
quantum dynamics

A detailed analysis of circuit quantization of Fig. 5 can be
found in Ref. [49]. The full system Hamiltonian that includes
the two quantum Rabi models and the resonator-resonator
coupling reads

H =Hp,l + Hp,r + �

∑
j=l,r

[
J̄j + Jj (t) cos(ωdt + ϕd )

]

× (aj + a
†
j )2 + �

[
J̄0 + J0(t) cos(ωdt + ϕd )

]
× (al + a

†
l )(ar + a†

r ), (A1)

with

J̄j = φ0

4Ic cos φ̄

ωj

Z2
jCj

, J̄0 = 2
√

J̄l J̄r ,

Jj (t) = φ0

4Ic

sin φ̄

cos2 φ̄

ωj

Z2
jCj

�φ�(t), J0(t) = 2
√

Jl(t)Jr (t).

(A2)

The above circuit Hamiltonian is obtained by considering a
weak harmonic magnetic flux with frequency ωd applied to
the SQUID, that is,

�e(t) = �̄ + ���(t) cos (ωdt + ϕd ), (A3)

with �� � �̄ and �(t) being the normalized temporal
envelope of the applied flux. It implies φ̄ = π�̄/�0 and
�φ = π��/�0.

Notice that the above Hamiltonian Eq. (A1) is different
from the Hamiltonian discussed in the main text (9). In
particular, except the time-depentdent resonator-resonator
coupling terms, the Hamiltonian (A1) also includes
single-mode squeezing terms and time-independent coupling
terms. Nonetheless, one can demonstrate that Eq. (A1) reduces
to Eq. (11) if we consider realistic system parameters. In order
to see this correspondence, let us assume identical resonators,
ωl = ωr = ωc, with impedances Zj = 80� and capacitances
Cj = 200 fF. For the critical current of the SQUID we
consider Ic = 180μA. Notice that recent experiments in
circuit QED have considered critical currents in the range of
1 − 2μA [53], however, one can increase the critical current
to a larger value or even a few orders of magnitude into
the mA regime by making the junctions bigger; this would
involve a trilayer fabrication process [54,55]. Moreover, we
consider a flat (�(t) = 1) magnetic flux pulse applied to
the SQUID with parameters φ̄ = π/4 and �φ = 0.1φ̄. The
reduced flux quantum is φ0 = �/(2e) = 3.2911 × 10−16Wb.

FIG. 6. Population inversion between states |1l0r〉 and |0l1r〉
for nonidentical quantum Rabi systems with parameters ωl = 1,
ωa,l = 0.8ωl , gl = 0.3ωl for the left quantum Rabi system, and
ωr = 1, ωa,r = ωr , gr = 0.9ωr for the right quantum Rabi system.
These values lead to an effective cavity-cavity coupling strength
Jeff ≈ 5.5 × 10−4ωr . This simulation has been performed with the
full Hamiltonian (A1) through the Runge-Kutta algorithm.
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These parameters lead to J̄j ≈ 5 × 10−4ωc, J̄0 ≈ 10−3ωc,
Jj ≈ 4 × 10−5ωc, and J0 ≈ 8 × 10−5ωc.

Now we consider the completeness relation for both
quantum Rabi systems so that (A1) can be expressed as

H =
∑
s=0

(
�ωs,l |sl〉〈sl| + �ωs,r |sr〉〈sr |

) +
∑
j=l,r

[
J̄j + Jj (t) cos(ωdt + ϕd )

]

×
{ ∑

sj ,tj >sj

(
Xsj tj |sj 〉〈tj | + X∗

sj tj
|tj 〉〈sj |

) +
∑
sj

Xsj sj
|sj 〉〈sj |

}

+ [
J̄0 + J0(t) cos(ωdt + ϕd )

]{ ∑
sl ,tl>sl

(
fsl tl |sl〉〈tl| + H.c.

) ⊗
∑

ur ,vr>ur

(
f r

urvr
|ur〉〈vr | + H.c.

)}
, (A4)

where Xsj tj = 〈sj |(aj + a
†
j )2|tj 〉 and fsj tj = 〈sj |(aj + a

†
j )|tj 〉. Notice that the single mode squeezing operator (aj + a

†
j )2 is an

even operator according to the parity symmetry of the system. It means that will connect states within the same parity subspace.
Now, if we go to an interaction picture with respect to Hp,l + Hp,r , the Hamiltonian (A4) reads

HI (t) =
∑
j=l,r

[
J̄j + Jj (t) cos(ωdt + ϕd )

]{ ∑
sj ,tj >sj

(
e
−iωtj sj

t
Xsj tj |sj 〉〈tj | + e

iωtj sj
t
X∗

sj tj
|tj 〉〈sj |

) +
∑
sj

Xsj sj
|sj 〉〈sj |

}

+ [
J̄0 + J0(t) cos(ωdt + ϕd )

]{ ∑
sl ,tl>sl

(
e−iωtl sl

t fsl tl |sl〉〈tl| + H.c.
) ⊗

∑
ur ,vr>ur

(
e−iωtr sr t furvr

|ur〉〈vr | + H.c.
)}

. (A5)

If we restrict the three lowest energy levels for each quantum Rabi system, the above Hamiltonian reads

HI (t) =
∑
j=l,r

[
J̄j + Jj cos(ωdt + ϕd )

]{(
e
−iω2j 1j

t
X1j 2j

|1j 〉〈2j | + e
iω2j 1j

t
X∗

1j 2j
|2j 〉〈1j |

) +
2∑

sj =0

Xsj sj
|sj 〉〈sj |

}

+ [J̄0 + J0 cos(ωdt + ϕd )]
(
e−iω1l 0l

t f0l1l
|0l〉〈1l| + e−iω2l 0l

t f0l2l
|0l〉〈2l | + H.c.

)
⊗ (

e−iω1r 0r t f0r 1r
|0r〉〈1r | + e−iω2r 0r t f0r 2r

|0r〉〈2r | + H.c.
)
. (A6)

For nonidentical quantum Rabi systems, the above Hamiltonian can produce single excitation transfer if the resonance condition
for the driving frequency is ωd = ω1r 0r

+ J̄j (X1r 1r
− X0r 0r

) − [ω1l0l
+ J̄j (X1l1l

− X0l0l
)]. Notice that single-mode squeezing

terms J̄jXsj sj
produce energy shifts for each dressed state. Furthermore, the rotating-wave approximation holds under conditions

J̄j |X1j 2j
| � ω2j 1j

, Jj |X1j 2j
| � |ω2j 1j

± ωd |, Jj |Xsj sj
| � ωd , and J̄0f

∗
0l1l

f0r 1r
� |ω1l0l

− ω1r 0r
|. The effective coupling strength

between the two specific dressed states of the two quantum Rabi models is given by Jeff = (J0/2)f ∗
0l1l

f0r 1r
.

We have performed ab initio numerics by considering the Hamiltonian (A1). Figure 6 shows the population inversion between
states |1l0r〉 and |0l1r〉 for nonidentical quantum Rabi systems; see the caption to check parameters. For simplicity we have taken
ϕd = 0; its correspondence to Hamiltonian (13) discussed in the main text is quite clear.
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