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We identify and study a security loophole in continuous-variable quantum key distribution (CVQKD)
implementations, related to the imperfect linearity of the homodyne detector. By exploiting this loophole, we
propose an active side-channel attack on the Gaussian-modulated coherent-state CVQKD protocol combining
an intercept-resend attack with an induced saturation of the homodyne detection on the receiver side (Bob). We
show that an attacker can bias the excess noise estimation by displacing the quadratures of the coherent states
received by Bob. We propose a saturation model that matches experimental measurements on the homodyne
detection and use this model to study the impact of the saturation attack on parameter estimation in CVQKD. We
demonstrate that this attack can bias the excess noise estimation beyond the null key threshold for any system
parameter, thus leading to a full security break. If we consider an additional criterion imposing that the channel
transmission estimation should not be affected by the attack, then the saturation attack can only be launched if the
attenuation on the quantum channel is sufficient, corresponding to attenuations larger than approximately 6 dB.
We moreover discuss the possible countermeasures against the saturation attack and propose a countermeasure
based on Gaussian postselection that can be implemented by classical postprocessing and may allow one to distill
the secret key when the raw measurement data are partly saturated.
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I. INTRODUCTION

Quantum key distribution (QKD) [1] enables two remote
parties Alice and Bob to share common secure keys that
are unknown to a potential eavesdropper. Unconditional
security of QKD is based on the fundamental laws of
quantum mechanics. Side-channel attacks nevertheless remain
a crucial problem to guarantee the security of practical
implementations. As a matter of fact, the models used in
security proofs to describe QKD implementations may not
capture all the possible deviations associated with device
imperfections. This opens the possibility of attacks against
QKD implementations, exploiting either passive (information
leakage) or active (induced by the attacker) side channels.

In discrete-variable QKD (DVQKD), various quantum
hacking strategies exploiting some implementation imper-
fections have been proposed and some of them have been
demonstrated in experiments [2–4]. Most of the practical
attacks that have been demonstrated up to now in DVQKD
consist in attacks targeting the detection part of QKD systems
[2,4–9] and exploit imperfection of single-photon detectors.

Continuous-variable QKD (CVQKD) is another promising
approach to performing quantum key distribution. It relies on
continuous modulation of the light field quadratures, which
can be measured with coherent detectors such as homodyne
or heterodyne detections. Continuous-variable QKD inherits
several interesting features associated with the use of coherent
detection instead of single-photon detectors: At the system
level, CVQKD can be implemented with off-the-shelf compo-
nents that are also used and optimized in modern optical com-
munications, allowing for a convergence between quantum
and classical communications [10] and also simplifying the
path and the undertaking associated with photonic integration.
Coherent detectors moreover act as efficient and almost single-
mode filters, leading to a superior capacity for CVQKD to be
wavelength multiplexed with intense classical channels over
wavelength-division multiplexing networks [11].

The Gaussian-modulated coherent-state (GMCS) CVQKD
protocol [12] is proven secure against collective attacks
and recent works have shown progress in proving its se-
curity against arbitrary attacks [13,14]. However, similarly
to DVQKD, practical CVQKD systems can face security
threats linked to imperfect implementations. The validity of
security proofs indeed relies on assumptions that may be
violated in a practical setup, opening loopholes that may
be exploited by Eve to mount attacks. For example, direct
[15] or indirect [16–18] manipulation of local oscillator (LO)
intensity can fully compromise the security. This imposes the
monitoring of LO intensity and the use of filters to forbid
wavelength-dependent LO intensity manipulations. Moreover,
LO intensity fluctuations also can possibly compromise the
security of practical system [19,20] and a stabilization of LO
intensity is proposed to defend against such attacks [20].

In this work we have identify a loophole associated with the
finite range over which coherent detectors respond nonlinearly.
We have shown that it can be used to attack practical
implementations of the GMCS CVQKD protocol. Instead of
targeting the shot-noise calibration by manipulating the local
oscillator, we propose an attack that aims at the homodyne
detection located on Bob’s side and more specifically at the
electronics of the homodyne detection. We name our attack
a saturation attack: It combines the induced saturation of
the homodyne detection response with a full intercept-resend
attack [21]. Based on a realistic model of the homodyne
detection response and saturation behavior, we can show that
the saturation attack can be used to get information about
Alice-modulated input (via an intercept-resend attack, which
should in theory bring the key rate to zero) while jointly
manipulating the measurement results on Bob’s side (taking
advantage of the induced nonlinear response of the homodyne
detector). For some channel and protocol parameters, the
saturation attack can lead Alice and Bob to generate, at a
positive rate, a key that they consider as secure, although such
a key will be totally insecure due to the intercept-resend attack.
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Hence the attack can lead to a full security break. Importantly,
the attack is also practical and can be realistically launched
against existing implementations, since all practical coherent
detectors have a finite linearity domain and could be driven (if
not monitored) outside this domain of linearity by displacing
the mean value of the received quadratures. We however
propose a countermeasure that can be implemented simply,
by performing a numerical test on the measurement data. The
countermeasure consists in a precalibration of the linearity
domain of the homodyne detector and then application of a
Gaussian postselection filter to the quadrature measurements
results of Bob so that the postselected measurement results fall
within the linearity domain while the postselected input data
are guaranteed to be Gaussian.

This article is organized as follows. In Sec. II we present
the GMCS protocol and explain how parameter estimation
is performed in this protocol. In Sec. III we briefly review
existing work on the practical security of CVQKD and
propose the idea of the saturation attack in Sec. IV. In
Sec. V we study experimentally the influence of saturation
on a practical homodyne detector and propose a simple
saturation model to account for it. In Sec. VI we propose a
strategy to mount an active attack against the GMCS CVQKD
protocol, taking advantage of induced saturation. In Sec. VII
we perform numerical simulations to analyze the influence
of the saturation attack on parameter estimation, in particular
on channel transmission and excess noise, and then discuss
the impact on the secret key rate, under two different security
criteria. In Sec. VIII we discuss a possible countermeasure
and present and analyze a countermeasure based on Gaussian
postselection. Finally, in Sec. IX we summarize the main
results of our work and discuss some perspectives.

II. GAUSSIAN-MODULATED COHERENT-STATE
CONTINUOUS-VARIABLE QUANTUM KEY

DISTRIBUTION

A. Protocol

In the GMCS CVQKD protocol [12], Alice encodes
information on coherent states of light, which can be easily
produced by a laser. The information is encoded on the
quadratures XA and PA of coherent states, with a centered
bivariate Gaussian modulation of variance VA N0. Here N0

is the shot-noise variance that appears in the Heisenberg
uncertainty relation for the noncommuting quadratures; it
corresponds to the variance of the homodyne detection output
when the input signal is the vacuum field. Alice sends these
Gaussian-modulated coherent states, which constitute the
quantum signal, to Bob through the quantum channel. On
the reception side, Bob randomly chooses to measure either
quadrature X or quadrature P by performing a balanced
homodyne detection on the signal, using for that a strong
phase reference, called a local oscillator, and switching the
quadrature measurement by varying the relative phase of the
LO with respect the quantum signal to be either 0 or π/2.

Keeping track of modulated quadrature data XA (or PA)
and quadrature measurement results XB (or PB), Alice and
Bob obtain strings of correlated classical data by repeating this
process many times over successive pulses. They can then use

error correction to obtain identical strings from their correlated
data through reverse reconciliation [12,22] and further perform
privacy amplification to obtain a secret key.

In the analysis carried out in this article, which focuses
on the impact of a side channel on CVQKD, we do not
consider finite-size effects [23] and we assume that all
the estimations are performed in the asymptotic limit. We
moreover consider the security against collective attacks to
compute the secret key rate. One can moreover show that
Gaussian attacks are the optimal collective attacks against the
GMCS protocol in the asymptotic limit of an infinite number
of signals [24,25]. Hence we can analyze the security of the
protocol by considering a linear channel model with additive
Gaussian noise. In this Gaussian linear model, the Alice-Bob
channel is fully characterized by two parameters: the channel
transmission and the excess noise. The channel transmission
is related to the channel loss and can be derived from the
correlation between Alice’s and Bob’s data. The excess noise
is the variance of Bob’s quadrature measurements in excess
of the shot noise; it can be due to device imperfections (in
particular imperfect modulation and noisy detections) or an
eavesdropper’s actions on the channel.

B. Parameter estimation

In order to estimate parameters from Alice’s and Bob’s
correlated variables, the Gaussian linear model (1) with
additive Gaussian noise is considered:

XB = tXA + XN, (1)

where t = √
ηT , with T the channel transmission and η

the optical transmission through Bob’s setup (including the
homodyne detection’s finite efficiency). On Alice’s side, XA

is a Gaussian random variable centered on zero with variance
VA. Here XN is the total noise that follows a centered normal
distribution with variance σ 2

N = N0 + ηT ξ + vele. This vari-
ance includes shot noise N0, excess noise ξ , and electronic
noise of Bob vele.

In this article we follow the parameter estimation procedure
of Ref. [26]. We can obtain three equations relating modulated
data XA and measured data XB to the parameter estimation:

VA = Var(XA) = 〈(XA − 〈XA〉)2〉, (2)

VB = Var(XB) = 〈(XB − 〈XB〉)2〉
= ηT VA + N0 + ηT ξ + vele, (3)

Cov(XA,XB) = 〈XAXB〉 − 〈XA〉〈XB〉
=

√
ηT VA. (4)

Additionally, in order to measure the shot noise N0, Bob
needs to close the signal port so he can measure the variance
when the input signal is in a vacuum. When there is no
signal impinging on the homodyne detection, the variance of
homodyne detection is used to calibrate the value of the shot
noise. In this case Eq. (3) reduces to an additional equation,
obtained by performing a shot-noise calibration:

VB0 = N0 + vele. (5)
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Note that η and vele are also calibrated values, measured before
launching the protocol.

The parameters characterizing the quantum channel in the
Gaussian linear model, i.e., T and ξ , can then be estimated
from Eqs. (2)–(4):

T = Cov(XA,XB)2

η Var(XA)2
, (6)

ξ = Var(XB)

ηT
− Var(XA) − N0

ηT
− vele

ηT
. (7)

Additionally, by calibrating the shot-noise variance N0 from
Eq. (5), all variances and correlations can be normalized in
shot-noise units and can then be used to estimate the secret
key rate.

C. Security model and achievable secret key rate

In order to estimate the secret key rate, Alice and Bob need
to compute the mutual information between their data and
estimate an upper bound of Eve’s information. In this article
parameter estimation and secret key rates will be analyzed
in the context of collective attacks, in the asymptotic regime
[24]. Although the security of CVQKD can be analyzed in
a more general setting, we want to stress that extending our
analysis to more general (and complex) security models would
not qualitatively change the main finding of our article. As a
matter of fact, we exhibit an explicit attack strategy, exploiting
the saturation of the homodyne. As we will demonstrate, this
attack leads to a complete security break against an attacker
limited to collective attacks, assuming parameter estimation
is performed in the asymptotic regime. By extension, our
proposed attack would also lead to a complete security
break under more general security models, which consist in
increasing the power of the eavesdropper.

A lower bound on the secret key rate achievable against
collective attack (in the asymptotic limit) for the CVQKD
protocol can be expressed as R = βIAB − χBE [27]. It is
composed of two terms: IAB is the mutual information between
Alice and Bob, χBE is the Holevo bound of Eve’s knowledge,
and β ∈ [0,1] is the reconciliation efficiency, related to the
fact that practical error correction usually does not reach the
Shannon limit (which would correspond to the case β = 1).
Here IAB is a decreasing function of the excess noise, while
χBE is an increasing function of excess noise, hence any rise of
the excess noise will lead to a decrease of the secret key rate R.

III. PRACTICAL SECURITY ISSUES: LOOPHOLES AND
ATTACKS IN CVQKD

In practical CVQKD implementations [27,28], the local
oscillator is transmitted publicly on the optical line between
Alice and Bob, multiplexed with the quantum channel. Hence
the LO can be accessed, and thus manipulated, by an attacker
in practical implementations. It is important to note that
the LO can in principle be generated locally on Bob’s
side, as demonstrated in recent proof-of-principle experiments
[29–31], where the LO was phase locked with the quantum
signals emitted by Alice. However, phase locking two distant
lasers creates more complexity and noise and all practical
CVQKD full demonstrations have so far been performed

with a public LO. This opens the door to different attack
strategies based on LO manipulation. An eavesdropper can, for
example, modify several properties of the LO pulse, such as the
intensity, the wavelength, or the pulse shape [15–20,32]. The
eavesdropper can in particular bias the shot-noise calibration
(5) by manipulating the LO intensity or its overlap with the
quantum signal. We have indeed seen that the excess noise is
expressed in shot-noise units. If the shot noise is overestimated
while all the other measurements remain unchanged, the excess
noise in shot-noise units will then be underestimated. As a
consequence, Alice and Bob will then overestimate their secret
key rate, leading to a security problem.

Most existing attacks rely on shot-noise estimation induced
by different LO manipulations combined with specific strate-
gies. An equal-amplitude attack is described in Ref. [15].
By replacing the quantum signal and the LO pulse by two
squeezed states of equal amplitude, Eve can make Alice and
Bob measure an excess noise estimate that is much lower
than the actual shot noise. This attack may allow Eve to
break the security without being detected if Bob does not
monitor the LO intensity, which is strongly modified in this
attack. In Ref. [32] the authors propose a strategy where
Eve changes the shape of the LO pulse to introduce a delay
on the clock trigger. As a consequence, the variance of the
shot-noise measurement can be lowered without changing the
LO power. Such a calibration attack biases the estimation
of shot noise and thus the excess noise in shot-noise units.
The authors propose a countermeasure based on real-time
monitoring of the shot-noise method to prevent this LO
manipulation loophole. In Refs. [16,17], as an extension of the
equal-amplitude attack [15], a wavelength attack on a CVQKD
system using heterodyne detection has been proposed. In this
attack, by exploiting the wavelength-dependent property of
the homodyne detection’s beam splitter, Eve can bias the
intensity transmissions of the LO and signal. By inserting
light pulses at different wavelengths, this attack allows Eve to
bias the shot-noise estimation even if it is performed in real
time. This attack can be prevented by adding a wavelength
filter before the beam splitter. Recently, in [18], a similar
wavelength attack was proposed to compromise the practical
security of the CVQKD system using homodyne detection. An
improved real-time shot-noise measurement technique is also
proposed to detect this attack, closing all known wavelength
attack loopholes.

To summarize, the main idea of existing attacks on CVQKD
consists in manipulating the local oscillator in different ways
so that the eavesdropper can bias the shot-noise estimation
and thus the excess noise. The threat of such attacks can be
removed if Alice and Bob locally generate a LO pulse [29–31]
or measure the shot noise in real time instead of relying on an
offline calibration [32]. The LO is an important issue for prac-
tical security in CVQKD, but as we will demonstrate with the
introduction of the saturation, it is not the only implementation
loophole that should be considered in practical CVQKD.

IV. PRINCIPLE OF THE SATURATION ATTACK

Unlike the attacks aiming at the local oscillator, we
introduce an attack on CVQKD that exploits the finite linearity
domain of the homodyne detection response. Indeed, an
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implicit but nevertheless fundamental assumption in the se-
curity proofs of CVQKD is that the response of the homodyne
detection is linear with respect to the input quadrature.
This assumption is necessary because parameter estimation
[Eqs. (2)–(4)] assumes that the quadrature measurements
performed by Bob are linearly related to the optical field
quadratures, in order to relate them to the parameters T and
ξ of the quantum channel. However, for a practical coherent
detector, such as the homodyne detection used to implement
the GMCS CVQKD protocol, the linearity domain is limited.
If the value of the input quadrature is too large, linearity may
not be verified, leading to a saturated behavior.

From Sec. II B we can observe that, based on the Gaussian
linear model (1), the parameter estimation consists in the
evaluation of the covariance matrix. It is interesting to note that
the different coefficients of the covariance matrix are invariant
under any linear shifts of the quadratures. Indeed, the security
evaluation in CVQKD relies solely on the evaluation of
second-order moments of the quadrature, while the first-order
moments (mean value) are not monitored. This leaves Eve the
freedom to manipulate the mean value of the quadratures.
Combining this observation with the existence of a finite
domain of linearity for the detection, a natural attack strategy
for Eve is to actively introduce a large displacement on the
quadrature received by Bob in order to force the homodyne
detection to operate in its saturated region. This strategy, which
is the core idea of the saturation attack, enables Eve to influence
Bob’s measurement results and to bias parameter estimation.
Importantly, unlike the attacks targeting the local oscillator,
in which the shot-noise measurement is influenced, saturation
attacks do not bias the shot-noise calibration but still influence
the excess noise estimation.

V. SATURATION OF A HOMODYNE DETECTOR

Saturation of the homodyne detection typically occurs when
the input field quadrature overpasses a threshold. This thresh-
old depends on characteristics of the homodyne detector’s
electronics, such as the amplifier’s linearity domain or the
data acquisition (DA) card range (Fig. 1). If Bob performs
quadrature measurements on input signals falling outside the

FIG. 1. Model for a practical homodyne detection: Its output XBsat

can be seen as the ideal output XBlin on which a saturation function is
applied [Eq. (8)].

detector’s linearity range, the measurement statistics will be
influenced by the saturation. Saturation will in particular lead
to a decrease in the variance of the measurement results.

A. Saturation model

The quadrature measurement performed with homodyne
detection consists in the subtraction in the electronic domain of
the photocurrents produced by the two photodiodes followed
by an electronic front end and acquisition. The standard
analysis considers that the homodyne response is linear with
respect to the input quadratures. We then denote the measured
quadrature by XBlin (XB in Sec. II). However, the linear
detection range of a practical homodyne detector cannot be
infinite. We propose a saturation model (8) with predefined
upper and lower bounds for the homodyne detection response:
For quadrature input values between these two bounds, the
response of homodyne detection is unaffected; otherwise it
saturates to a constant value. To simplify the analysis, we have
assumed in this model that the linear detection range can be
described by one single parameter α intrinsic to the detector.
Under this saturation model, the linear range is [−α,α] and
the measured quadrature is called XBsat . The relation between
XBsat and XBlin is as follows:

XBlin � α, XBsat = α;

if |XBlin | < α, then XBsat = XBlin ; (8)

XBlin � −α, XBsat = −α.

As expected, if α → ∞, the saturation model is equivalent to
the standard linear model. In a typical (nonsaturated) CVQKD
implementation, the value of α is large enough to ensure
that field quadratures almost never overpass the saturation
threshold limit. Alice and Bob can in practice guarantee the
linearity by limiting the number of photons impinging on
the homodyne detector to be much smaller than α2. Since
the limit α is intrinsic to the electronics of the detector, a
practical way to guarantee with high probability that α � XBlin

is to lower the LO intensity so that the shot-noise value
N0 	 α2. In general, input quadrature modulation variance
is calibrated in shot-noise units that depend on LO intensity
and Alice can choose a Gaussian modulation with 〈XBlin〉 = 0
and Var(XBlin ) 	 α2 so that the detector does not saturate.
However, as mentioned earlier, this procedure cannot cope
with situations where the mean value of XBlin is strongly
displaced, as will be the case in a saturation attack.

B. Experimental observation of saturation

In a practical balanced homodyne detector, the common
mode rejection ratio is not infinite and the mean value of
the homodyne detection in the absence of an input signal is
affected by the imbalance, leading to 〈XB0,lin〉 = εILO, where
ILO is the LO intensity and ε is the imbalance factor that is
dependent on experimental imperfections such as photodiode
quantum efficiency mismatch or beam-splitter imbalance.

Because of this imperfection (but in the absence of
saturation), the relation between measured noise variance (in
V2) and LO intensity (in μW) usually can be written as
Var(XB0,lin ) = AILO + B [33] (we neglect the quadratic part
since in our case the LO power is relatively low). Here ILO
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FIG. 2. Experimental characterization of the saturation behavior
of a practical homodyne detection. (a) Mean of the homodyne output
〈XB0,sat〉 vs LO intensity. (b) Variance of the homodyne output
Var(XB0,sat) vs LO intensity.

is the LO intensity and A is linear with ILO and is related
to shot noise while B is independent of ILO and is related to
electronic noise. The values of A and B can be determined
experimentally.

We have performed experimental shot-noise measurement,
measuring the variance of the homodyne detection output, as a
function of ILO. This has revealed that the measured shot-noise
variance is linear with ILO in a given range and then drops when
the LO intensity is above a certain value. We have analyzed
this behavior with the saturation model presented in Sec. V A
and compared its prediction to experimental measurements in
Fig. 2. We display the measured homodyne detection output
and its variance for the vacuum input signal as a function of
ILO. The experimental results are displayed in Fig. 2. The
linear behavior can be observed when the LO intensity is
below 35 μW. Due to the imbalance of homodyne detection
ε, the mean value of the homodyne output can become large
as the LO intensity increases. If these values overpass the
linearity threshold (in the present case 0.5 V, due to the DA
card) the homodyne detection response saturates to a constant
value [Fig. 2(a)]. As a consequence, the measured shot-noise
variance strongly decreases [Fig. 2(b)] when such saturation
happens.

In order to check the validity of the saturation model intro-
duced in Eq. (8), we have simulated the expected homodyne
detection response with our saturation model and compared
it with experimental measurements. We first determine the
parameters A and B from linear fit on 〈XB0,lin〉 and Var(XB0,lin )
versus the LO intensity over the domain of linearity ILO <

35 μW. The saturation parameter α is here fixed by our
DA range: α = 0.5 V. We then apply the saturation model
(8) to the variable XB0,lin to obtain XB0,sat . We compute the
mean 〈XB0,sat〉 and the variance Var(X2

B0,sat
), which result in the

behavior shown in Fig. 2. For the measured shot noise under
saturation, the simulation results match very well with our
experimental data. This indicates that our proposed saturation
model is realistic and can be further used to interpret our
saturation attack.

VI. ATTACK STRATEGY

A. Intercept-resend attack

The intercept-resend attack plays an important role as one
part of our saturation attack. The intercept-resend attack [21]
in CVQKD is achievable with today’s technologies and its
security analysis has been studied in previous work [21]. In
such an attack, Eve intercepts all the pulses sent by Alice on
the quantum channel and measures simultaneously the quadra-
tures X and P with the help of heterodyne detection. Eve then
prepares a coherent state according to her measurement results
and sends it to Bob. Under such attack the correlation between
Eve’s and Bob’s data will be stronger than that between Alice
and Bob, so Eve always has an information advantage. Due
to measurement disturbance and coherent-state shot noise,
the intercept-resend attack, that is, entanglement breaking,
introduces two shot-noise units of excess noise. In practice,
Eve’s device and her action can introduce additional excess
noise. A full intercept-resend attack will therefore introduce at
least two shot-noise units of excess noise, which should forbid
the generation of a secret key under collective attacks. This
however assumes that the estimation procedure is not biased.
We will see, on the contrary, that a saturation attack can bias
the excess noise estimation and lead to a security break.

B. Saturation attack

The saturation attack on the GMCS CVQKD protocol is
an active attack, where Eve combines a full intercept-resend
attack with an induced saturation of Bob’s detector. Saturation
of Bob’s homodyne detection is obtained by displacing the
quadrature of the re-sent coherent state. The displacement
value 
 is chosen by Eve but is constant for each re-sent
coherent state pulse. When performing the intercept-resend
attack, Eve can also choose to rescale the re-sent quadratures
by a gain g.

Eve chooses the attack parameter bias of the estimated
excess noise below the null key threshold (calculated under
collective attack [27]) so that, according to their estimation,
Alice and Bob will assume they can obtain a positive key
rate and will accept to distill such a key based on parameter
estimation, while no secure key can be obtained from the
actual correlations since a full intercept-resend attack has
been performed. We propose a visual description of our
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FIG. 3. General description of the GMCS CVQKD under the saturation attack: Alice, prepare the coherent state with quadratures X and
P ; Eve, measurement and repreparation stage; G, gain; D, displacement; Bob, perform the homodyne detection: AM, amplitude modulator; η1

and η2, signal transmission coefficients; PM, phase modulator; and [−α,α], linear working range.

saturation attack in Fig. 3, in which we distinguish mainly two
functional blocks: quadrature measurement and quadrature
repreparation. By using heterodyne detection, Eve measures
Alice’s quadratures XA and PA simultaneously. In order
to simplify our analysis, we assume that Eve’s station is
located at Alice’s output and that the channel transmissions
between the Alice-Bob and Eve-Bob channels are equal.
Moreover, we assume that Alice and Bob measure their shot
noise and monitor the LO intensity in real time [32], with
two transmission coefficients randomly decided on Bob side
(η1 = 1 and η2 = 0).

Eve’s measurement results XM and PM after the heterodyne
measurement are expressed as

XM = 1√
2

(XA + X0 + X′
0 + XNA,E

), (9)

PM = 1√
2

(PA + P0 + P ′
0 + PNA,E

), (10)

where X0 is a noise-term due to the coherent-state encoding
of Alice while X′

0 is a noise term due to a 3-dB loss in the
heterodyne detection; XNA,E

is a random noise that accounts
for the technical noise of Alice’s preparation and Eve’s mea-
surement process with its variance ξA,E . In the repreparation
stage, Eve prepares a coherent state with quadratures XE and
PE according to her measurements XM and PM . Eve can also
induce displacements 
X and 
P and an amplification g of
the data XM before optical encoding. In our further analysis,
we only look at the quadrature X, but the treatment for the
quadrature P is totally symmetric. The resend quadrature of
Eve can be written as

XE = gXM + 
X + X′′
0 (11)

= g√
2

(XA + X0 + X′
0 + XNA,E

) + 
X + X′′
0 , (12)

where X′′
0 is a noise term due to the coherent-state encoding

of Eve. Here X0, X′
0, and X′′

0 all follow N (0,N0) with their
variance equal to one unit of shot noise N0.

Introducing displacement on coherent states is experimen-
tally achievable [34] and since Eve prepares the states, the
displacement parameters 
X and 
P can be freely chosen by
her. We will first consider that Eve chooses an amplification

coefficient g = √
2 in order to compensate for the loss from

the heterodyne detection.

1. Linear detection

On Bob’s side, Bob measures the quadrature sent by Eve
by performing homodyne detection. We first consider that
Bob uses homodyne detection whose linear detection range is
infinite (Fig. 1). The measured quadrature XBlin can be written
as

XBlin = t(XE + XNE,B
) +

√
1 − t2X′′′

0 + Xele. (13)

After propagation through the lossy channel, the technical
noise of Eve and Bob XNE,B

[Var(XNE,B
) = ξE,B], vacuum

noise
√

1 − t2X′′′
0 [Var(X′′′

0 ) = N0], and electronic noise of
Bob Xele [Var(Xele) = vele] are added to the quadrature
prepared by Eve (XE). Here t = √

ηT , where T is the channel
transmission between Eve and Bob and η is Bob’s efficiency.
The correlation between Alice and Bob and the variance of
Bob can be written, respectively, as

Cov(XA,XBlin ) = 〈XAXBlin〉

= tg√
2
〈XAXA〉 + t
X〈XA〉

= tg√
2

Var(XA), (14)

Var
(
XBlin

) = 〈
X2

Blin

〉 − 〈XBlin〉2

= t2g2

2
[Var(XA) + 2N0 + ξsys] + (1 − t2)N0

+ t2N0 + vele + t2
2
X − t2
2

X

= ηT
G

2
Var(XA) + ηT

G

2
(2N0 + ξsys)

+ N0 + vele. (15)

In Eqs. (14) and (15), we can see that with an ideal linear
detection range, the induced displacement 
X has no influence
on the measurement results. As a matter of fact, the value of

X has no impact on both correlation and variance.
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Under linear detection and an intercept-resend attack with
the gain G = g2 = 2, the correlation (14) is not modified by
Eve’s action, so the estimated channel transmission is not
biased (Tlin = T ). Based on Eq. (7), the excess noise estimation
on Alice’s side is ξlin = 2N0 + ξsys, where ξsys = ξA,E +
2
G

ξB,E . Similarly to Sec. II, we introduce the noise variable
XN , which contains all the noise added to Bob’s measurement,
and the variance of XN is σ 2

N = ηT G
2 (2N0 + ξsys) + N0 + vele.

2. Saturated detection

As we have seen, the linearity of homodyne detection
cannot be guaranteed over an arbitrarily large detection range.
A more realistic model consists in taking saturation into
account, according to the saturation model described in Eq. (8):
We denote by XBsat the quadrature measured by Bob in a model
taking saturation into account. Under this modified model, the
quadrature measured by Bob XBsat = XBlin only if |XBlin | < α.
Otherwise the quadrature measurement saturates to a constant
value, equal to the detection limit α or −α.

Eve can freely set the displacement values 
X and 
P

so that XBlin can partially overpass the linear range [−α,α].
In further analysis, we consider 
 = t
X as the displacement
value. In order to induce a given value of 
 on the quadrature of
the coherent state impinging on Bob, Eve can choose a proper

X once she knows t , which typically depends on the distance.
As we will see, parameter estimation affected by saturation
can lead to excess noise below the null key threshold. In the
next section we will show that under certain conditions of our
attack strategy, Eve can manipulate the channel transmission
and the excess noise estimated by Alice and Bob so that her
intercept resend action can remain under cover while fully
compromising the practical security of the CVQKD protocol.

C. Experimental feasibility of the saturation attack

The saturation attack is based on the ability of Eve to
displace the quadrature measurement results obtained by Bob.
One possible strategy to implement the attack consists, for Eve,
in coherently displacing the optical quadratures of the quantum
signals sent by Alice. This requires Eve to phase lock her laser
with Alice’s laser. This is essentially a classical phase reference
sharing problem (since Alice’s phase reference signal and
Eve’s laser are both intense) and can thus be performed in
principle with arbitrary high precision, even though it could in
practice be limited by the available phase-locking bandwidth.
If Eve’s laser is phase locked with Alice then she can control
it as a coherent pump laser whose phase and intensity are also
controlled by Eve, to induce an arbitrary coherent displacement
on Alice quantum signals, by mixing the quantum signals
with the pump on an unbalance beam splitter, with the intense
pump [34].

We do not consider in this article the question of the
influence of experimental limitations of Eve on the possibility
to conduct the attack. We adopt instead a standard view-
point in quantum cryptography, which is to assume that the
eavesdropper has perfect hardware. Nevertheless, an important
related question will be to demonstrate experimentally that a
saturation attack can actually be performed in practice on a
running system. This work is considered in [35].

VII. SECURITY ANALYSIS

A. Parameter estimation under the saturation attack

The channel transmission and excess noise estimation fully
characterize the quantum channel of CVQKD; we thus only
need to analyze the impact of saturation on these two estimated
parameters. It is in particular critical to evaluate whether an
induced saturation can reduce the excess noise estimation and
thus open the door to severe attacks.

1. Channel transmission estimation

Under the saturation attack, Alice encodes XA and Bob
measures XBsat [Eqs. (8) and (13)] and they evaluate the cor-
relation coefficient Cov(XA,XBsat ) (calculation details can be
found in Appendix A). From this correlation coefficient (A3),
the estimation of the channel transmission under saturation
attack T̂sat can be expressed as

T̂sat = T
G

8

[
1 + erf

(
α − 
√

2 Var(XBlin )

)]2

(
 > 0), (16)

in which erf is the error function defined in Eq. (A4) and
Var(XBlin ) is the variance of Bob’s measurement under linear
detection. As we have discussed in Sec. III, a reasonable
assumption for the detector linearity limit α is that α2 �
Var(XBlin ) and α2 � N0, so the measurement results of Bob
would not be affected by saturation in the absence of displace-
ment. This agrees with Eq. (16): If α − 
 is much larger than√

2 Var(XBlin ), then T̂sat � T G
2 , which is the estimated value

under the linear model (G = 2 being the natural rescaling
choice to compensate for the loss introduced by heterodyne
detection). However, when 
 is close to α, the impact of
saturation becomes important and T̂sat becomes smaller than
T . An extreme case is that when 
 is much larger than α, the
error function becomes −1 and T̂sat = 0.

2. Excess noise estimation

From Eq. (7) the estimated excess noise depends on
the variance of Bob’s measurement and on the channel
transmission between Alice and Bob. Under the saturation
attack, these two values will both decrease. We need to evaluate
these two values to see whether the induced saturation will
result in a reduction of the estimated excess noise. We have
already analyzed T̂sat in the previous subsection [Eq. (16)].
With Eq. (8) we can calculate Var(XBsat ) under a saturation
attack (calculation details can be found in Appendix B). Based
on T̂sat and Var(XBsat ), we are able to express the estimated
excess noise in shot-noise units under the saturation attack

ξ̂sat

N0
= 1

ηT G
2 (1 + A)2N0

[
Var(XBlin )

(
1 + A − B2

π

)

− 2

√
2 Var(XBlin )

π
(α − 
)A ∗ B

+ (α − 
)2(1 − A2) − 4N0 − 4vele

]
− VA

N0
, (17)
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in which A and B are given by

A = erf

(
α − 
√

2 Var(XBlin )

)
, B = exp

(
− (α − 
)2

2 Var(XBlin )

)
.

(18)
From Eq. (17) we can verify that when the value of α − 
 is
much larger than

√
2 Var(XBlin ), then A → 1 and B → 0, so

ξ̂sat = Var(XB )
ηT

− Var(XA) − N0
ηT

− vele
ηT

= ξlin [Eq. (7)]. It can be
considered that no saturation is induced and the excess noise
estimation is not affected.

3. Estimated excess noise can be made arbitrary small

We can prove, by the use of the intermediate-value theorem,
that ξ̂sat can be manipulated to be any value below ξ and in
particular any value below an arbitrarily small ξ .

Proposition. Under a saturation attack, for any 0 < ξT < ξ ,
there always exists a particular value of the displacement 
T

for which ξ̂sat = ξT .
Proof. The ξ̂sat is a function of 
. When 
 = 0, ξ̂sat(0) =

ξ > 0, where ξ = 2N0 + ξsys under an intercept-resend attack.
When 
 = 2α, since we can assume that α2 � Var(XBlin ), we
then have

A = −erf

(
α√

2 Var(XBlin )

)
= −1

and ξ̂sat(2α) → −∞. Since ξ̂sat is a continuous function of 


over the interval [0,2α), then for any ξT in (−∞, ξ ] there
always exists a 
 ∈ [0,2α) so that ξ̂sat = ξT .

B. Defining criteria of success for the saturation attack

Alice and Bob estimate the key rate based on their
estimation of excess noise and channel transmission. If the
excess noise is too large, it will not allow Alice and Bob to
distill any secret key. A full security break consists in an attack
where Eve has full knowledge of the generated key while
Alice and Bob still accept this compromised key material.
An intercept-resend attack is an attack strategy that leads in
general to a denial of service but not to a full security break
on CVQKD. On the other hand, we want to claim that the
saturation attack can be used to obtain a full security break.

To clarify what we mean, we define a first criterion (level
I) for a successful saturation attack, corresponding to a set of
conditions to meet.

(a) The attacker Eve performs the saturation attack: an
intercept-resend attack combined with displacement.

(b) Alice and Bob obtain a positive key rate from their
estimated parameters T̂sat and ξ̂sat.
This set of conditions corresponds to a full security break
because Alice and Bob will obtain a positive key rate under the
attack and thus accept key material, while this key is insecure
as it can be fully obtained by Eve. Because of the proposition
put forth in Sec. VII A 3, we can prove that the saturation attack
can always meet the level I criterion: For any quantum channel,
characterized by T and ξ , the saturation attack can cause the
parameter estimation to always turn the estimated parameter
to ξ̂sat � 0 while 0 < T̂sat < T . In particular, under saturation,
as the estimated excess noise can be made arbitrarily close to

zero, Alice and Bob will always generate some positive key
rate and the level I criterion can always be met.

While the level I criterion defines conditions for a successful
attack, the induced saturation can in practice strongly decrease
the estimated channel transmission T̂sat [Eq. (16)]. This can be
a problem in practice since Alice and Bob usually have a good
a priori estimate of the channel transmission based on their
knowledge of the channel length and of the fiber attenuation
coefficient. In addition, channel loss are usually calibrated
before any new optical device (such as a QKD system) is
installed. If the measured channel transmission is much lower
than the expected value for a given link distance, Alice and Bob
can reasonably be suspicious and they may decide to reject the
key. This motivates us to introduce additional conditions to the
list and to define a level II criterion for a successful saturation
attack.

(a) The attacker Eve performs the saturation attack (an
intercept-resend attack on each pulse combined with displace-
ment of each re-sent pulse).

(b) Maintain the channel transmission estimation unaf-
fected (T̂sat = T ).

(c) Alice and Bob obtain a positive key rate from their
estimated parameters T̂sat and ξ̂sat.
The strategy for Eve, in order to meet this level II criterion,
will be to adjust not only the displacement 
, but also the gain
g, in the saturation attack.

C. Analysis and simulation results

We will formalize two strategies for Eve and study
numerically whether they can be used to meet the two criteria
for the success of the saturation attack, respectively. We use
Eqs. (16) and (17) to perform numerical evaluation of T̂sat and
ξ̂sat in order to study the impact of the saturation attack.

1. Assumptions used in the numerical simulations

We have performed numerical simulations of the estimated
excess noise ξ̂sat, the estimated channel transmission T̂sat,
and the secret key rate under a collective attack. We have
chosen our simulation parameters in order to match typical
parameters that can be achieved and chosen for the operation
of an experimental CVQKD system.

(i) First is deployment over a dark fiber, with the quantum
channel wavelength in the C band and the fiber attenuation
coefficient a = 0.2 dB/km.

(ii) Next is the total optical transmission (including homo-
dyne detection finite efficiency) of Bob: η = 0.55.

(iii) Then we choose the linear detection limit of Bob’s
homodyne detection: α = 20

√
N0.

(iv) The variance of the electronic noise is chosen as vele =
0.015N0, i.e., a result that can typically be achieved with a
10-MHz bandwidth homodyne detection and system clock rate
of 1 MHz [28].

(v) We have chosen a conservative value ξsys = 0.1 for
the system’s excess noise (equivalent to the excess noise
at the input) in our simulations. This value is relatively
high compared to some experimental results demonstrated in
CVQKD [11,28] but it has been encountered in [21], when
performing the experimental demonstration of the intercept-
resend attack. Adopting a pessimistic value for system excess
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noise is conservative and will not weaken our predictions
concerning the power of the saturation attack on practical
systems.

(vi) In a practical CVQKD deployment, the value of
Alice variance modulation VA depends on the link distance.
This is in particular due to finite reconciliation efficiency in
practice. To achieve a high reconciliation efficiency in practical
CVQKD (β = 0.95), optimized error correction codes work at
a fixed signal-to-noise ratio (SNR). Therefore, Alice needs to
optimize her modulation variance with respect to the distance
in order to work at a given SNR. We have followed the
procedure described in Ref. [22] to choose Alice’s variance
with respect to distance in our numerical simulations.

2. Attack strategy I: Meeting level I criteria by varying �

Let us define strategy I more precisely.
(a) Eve implements the saturation attack as described in

Sec. VI B.
(b) Eve chooses a fixed gain value G = g2 = 2 in order to

compensate for the loss due to heterodyne detection.
(c) By choosing the value of 
, Eve biases the excess noise

estimation of Alice and Bob below the null key threshold, so
Alice and Bob can obtain a positive key rate.
The key idea of this strategy is that, for a given distance with the
knowledge of Var(XBlin ), Eve can manipulate ξ̂sat by changing

. More importantly, Eve needs to manipulate the excess noise
evaluation so that ξ̂sat falls below the null key threshold but
remains positive, to meet the level I success criterion. Here ξ̂sat

is a function of 
 [Eq. (16)]; the behavior of ξ̂sat versus 
 is
shown in Fig. 4(a). Under the linear model, the total estimated
excess noise under a full intercept-resend attack is ξ̂lin = ξ =
2.1, including 0.1 technical noise [black curves in Fig. 4(a)].
With such an excessive noise, no key rate can be established by
Alice and Bob. However, ξ̂sat can be manipulated by changing
the value of 
. In Fig. 4(a), for long distance (i.e., above 20 km)
ξ̂sat always decreases when 
 increases. In particular, when 


is close to α, ξ̂sat is significantly reduced, which agrees with the
analysis in Sec. VII A. For short distance (i.e., below 15 km),
when 
 increases, ξ̂sat first increases and then decreases, but
ξ̂sat can still become arbitrarily small when 
 is large enough.
Importantly, from Fig. 4(a) we can see that Eve can obtain
an arbitrarily small value of ξ̂sat by manipulating 
 at any
distance, which agrees with the analysis in Sec. VII A 2.

A drawback of this strategy I of saturation attack is that
the estimated channel transmission can be strongly reduced,
i.e., we can have T̂sat 	 T [Eq. (16)]. In Fig. 4(b) we plot the
estimated channel transmission on a logarithmic scale versus
distance, in which the black curve is the estimated channel
transmission T versus distance in the absence of an attack
and the other curves are the estimated channel transmission
T̂sat under the saturation attack. We can see that the estimated
channel transmission can be strongly reduced in comparison
to the actual transmission in the absence of an attack. This
is especially so if 
 is large, which will be the case, as we
can see in Fig. 4(a) for short links, where it is necessary to
use a large value of 
 to effectively reduce the excess noise
estimation and meet criterion I. Hence, even though the attack
strategy I can always be mounted, it may lead to using a large
displacement value 
 (typically or even beyond the saturation
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FIG. 4. Simulations of estimated excess noise and channel
transmission under attack strategy I. See Sec. VII C 1 for the
simulation parameters. (a) Estimated excess noise ξ̂sat versus 
 for
different distances. (b) Estimated transmission T̂sat versus distance for
different 
.

limit α set to 20 in our simulations). This will strongly reduce
the effective transmission of the channel T̂sat and therefore the
achievable secret key rate.

3. Attack strategy II : Meeting level II criteria by varying � and g

As we have just discussed, inducing the saturation of the
homodyne detection (through the displacement 
) can lower
the correlation between Alice’s and Bob’s data, which will
result in a decrease of the estimated channel transmission T̂sat

[Fig. 4(b)] and thus also of the achievable secret key rate by
performing the GMCS CVQKD protocol over the channel.
However, as already stated in Sec. VII B, there are many
practical cases where Alice and Bob may monitor, or at least
perform, some kind of consistency check on the estimated
transmission and could therefore identify a problem if the
estimated transmission, which becomes T̂sat under the attack,
is significantly smaller than the value of T they expect.

This motivates us to define a second attack strategy, capable
of meeting the level II criterion: Perform the saturation attack
and obtain a positive key rate while leaving the estimation
of the channel transmission unchanged. A level II criterion
clearly could not have been achieved by solely varying the
displacement 
 applied on the coherent states. However, the
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intercept-resend attack that is part of the saturation attack
leaves an additional degree of freedom: Eve can rescale the
value of the re-sent quadratures (classical result obtained after
heterodyne detection) by a gain g that she can also freely
choose.

To meet the success criterion II, we will study a second
strategy is similar to strategy I except for the second step, where
the gain g will be set according to Eq. (19), in which Var(XBlin )
is given by Eq. (15). As a matter of fact, if Eq. (19) is verified,
then 〈XAXBsat〉 = 1

2 〈X2
A〉t and we will thus have T̂sat = T ,

which guarantees that the channel transmission estimation for
Alice and Bob is not biased,

2
√

2

g
− 1 = erf

(
α − 
√
Var(XBlin )

)
. (19)

Now g can be considered as a function of 
, as displayed
in Fig. 5(a). Furthermore, in order to see whether we can meet
criterion II and have a full security break with this choice of g

we still need to analyze the estimated of excess noise and secret
key rate. By taking the g solutions of Eq. (19) into account,
the behavior of ξ̂sat versus 
 is shown in Fig. 5(b).

We can see that if the distance is longer than 30 km it
is always possible to reduce ξ̂sat close to zero by choosing
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FIG. 5. Simulations under attack strategy II, step (a). See
Sec. VII C 1 for simulation parameters. (a) Gain g verifying Eq. (19)
as a function of 
. (b) Estimate excess noise as a function of 
 for
different link lengths.

a value of 
 close to α and thus to have an attack meeting
criterion II. On the other hand, if the distance is smaller than
approximately 30 km, it will not be possible to meet the attack
success criterion II and to jointly maintain the estimate of the
channel transmission unchanged and have a positive key rate
while launching the saturation attack. Thus the capacity to
launch a successful saturation attack under success criterion II
is dependent on the distance, as can be seen in Fig. 5(b).

We also need to study the condition for ξ̂sat < ξnull as
we previously did in Sec. VII C 2. However, the analysis is
now simpler, since the estimated channel transmission is not
biased and the null key threshold does not depend on the
attack parameter 
 and only varies with distance. In Fig. 6(a)
we enlarge the scale of Fig. 5(b) and compare the estimated
excess noise to the null key threshold for different distances.
As we can see, when the distance reaches 31 km, the condition
ξ̂sat < ξnull can only be satisfied with a choice of 
 � 19.5
and level II criterion conditions cannot be met for smaller
distances.

We also estimate the secret key rate of Alice and Bob
versus distance [Fig. 6(b)]. A set of parameters 
 and g can
always be found to meet success criterion II as long as the
distance is large enough (larger than 31 km with our simulation
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FIG. 6. Simulations under saturation attack strategy II, step (b).
See Sec. VII C 1 for the simulation parameters. (a) Excess noise versus

 and distance. Solid lines with symbols show the estimate excess
noise ξ̂sat and dashed lines the null key threshold ξnull. (b) Key rate
versus distance for different values of 
. No attack is possible for
links shorter than 31 km under criteria II (see the text).
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parameters, as detailed in Sec. VII C 1). Since the estimated
channel transmission T is unchanged, the estimated key rate
will be identical to the key rate in the absence of an attack.
Hence, reaching strategy II, although it cannot be launched
on short channels (high transmission), is a more powerful and
more convincing strategy.

VIII. COUNTERMEASURES AGAINST THE SATURATION
ATTACK

The vulnerability to the saturation attack, studied in
previous sections, is related to the fact that the first moment
(mean value) of the measured quadratures are by default not
monitored in a CVQKD protocol and can therefore be freely
manipulated by an attacker, opening a practical security loop-
hole. The essence of a countermeasure against the saturation
attack will therefore consist in adding some test procedure to
the CVQKD protocol in order to rule out the possibility that
the detector saturates, i.e., that some input optical state has a
quadrature Xin larger than α, characterizing the linear range
of the detection. We present what could be this test procedure,
also called countermeasures against saturation. They range
from postselection tests, which can be implemented without
any modification of CVQKD hardware, to more structural
modifications of the protocols, requiring extra hardware.
Importantly, we first recall that most countermeasures rely
on some preexisting calibration of the detector.

A. Prerequisite: Calibration and characterization of the
homodyne detection linear range

The scope of this article is restricted to prepare and measure
CVQKD, where the detector can be considered trusted, i.e., not
influenced by the eavesdropper. In this context, Alice and Bob,
the legitimate users, can rely on a (trusted) calibration of the
detector and in particular on a characterization of the detector
linear range. The homodyne detection is a phase-sensitive
device that transforms an input optical state of quadrature Xin,
measured with respect to the phase reference (local oscillator),
into a measured voltage Vout. For an unsaturated homodyne
detection, the relation between Xin and Vout is linear, with a
linear gain that depends on several parameters such as the local
oscillator amplitude, the optical loss, the mode matching, and
the electronic gain of the electronics (a transimpedance circuit
is commonly used to perform low-noise measurement of the
small differential photocurrent associated with Xin). All these
parameters are not easy to measure independently, but we can
calibrate them globally by measuring (offline, for example
before launching the CVQKD protocol) the variance of the
homodyne output voltage Vout when the input is in a vacuum,
possibly for different values of the local oscillator power.
This corresponds to measuring the shot-noise variance (in
voltage) N0,V . Quadrature measurements Xout are then usually
expressed as the square root of shot-noise units, which means
that they are renormalized, based on shot-noise calibration,
Xout ≡ Vout/

√
N0,V , where Xout, expressed as the square root

of shot-noise units, corresponds to the quadrature measure-
ment we want to perform with our homodyne detection. If
the input optical state is also expressed as the square root of

shot-noise units then we have, after calibration, Xin = Xout,
provided the detection is linear.

However, as illustrated in Fig. 2, a realistic detector
saturates and in practice the linearity between Xin and Xout

can only be guaranteed over a finite range. We have called α

the linearity bound such that ∀|Xin| < α, Xout = Xin. Here α

is a characteristic of the homodyne detector for a given local
oscillator power. In practice, the local oscillator power should
be chosen not too large such that the saturation limit is much
larger than the shot noise, i.e., if α is expressed in shot-noise
units, we want to have α2 � 1. Inversely, the local oscillator
power should be chosen not too small so that the variance of
the electronic noise, in shot-noise units, is much smaller that
the shot-noise variance velec 	 1.

B. From an intuitive but faulty countermeasure to an efficient
countermeasure based on radical postselection

A simple (but faulty) countermeasure would consist in
postselecting quadrature measurement results provided they
fall in a confidence interval where the homodyne detection
is known to be linear, i.e., typically if they fall within an
interval of the form [−(α − β),α − β]. Here β can be seen as
a confidence margin, with 0 < β < α. We can however see that
such a countermeasure would trigger new problems: It would
give Eve the possibility to influence which data are postse-
lected and which are not, just by controlling the displacement
value. The postselected data would not be Gaussian and no
security could be guaranteed. This observation has motivated
the development of the countermeasure based on Gaussian
postselection that we will detail at the end of this section.

A more radical countermeasure is however possible,
which consists in discarding measurement data blocks if
any of the measured data fall out of the confidence interval
[−(α − β),α − β]. Quadrature measurements and parameter
estimation are in practice realized over blocks of large size in
order to limit finite-size effects (for example, 108 in [28]). If the
detector has been properly calibrated and if its characteristics
are stable over time, then a countermeasure based on what we
will call radical postselection will guarantee by construction
that, provided it passes the test, a data block has been acquired
by a detector operating in a linear regime. The drawback
of this radical postselection procedure is that it might lead
to the removal of some or possibly almost all data blocks
if the confidence interval is not large enough (and/or not
centered) with respect to the impinging optical quadrature
variance. This countermeasure will efficiently protect against
saturation attacks and is easily implementable. Provided the
distribution of the input quadrature Xin is centered, the
confidence interval should typically be larger than six standard
deviations, i.e., α − β > 6

√
Var(Xin), so the probability (per

measurement event) to have a saturation is below 2 × 10−9 and
hence the probability to discard “good” data blocks remains
relatively small. On the other hand, if the linearity domain
of the homodyne detection is not large enough, then this
countermeasure might strongly affect the effective key rate,
even in the absence of any attack, which has motivated us to
propose a more refined countermeasure.
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HAO QIN, RUPESH KUMAR, AND ROMAIN ALLÉAUME PHYSICAL REVIEW A 94, 012325 (2016)

C. Gaussian postselection

We now propose a refined version of the radical post-
selection. This method retains the important advantage of
being implementable at the software level by modifying the
postprocessing stage. It can moreover cope with detector
saturation in a more gentle way than throwing away the entire
data block as soon as a saturated measurement is detected, as
is the case with radical postselection.

The method is based on performing a Gaussian postselec-
tion of the measurement data. The key idea of such a method
is to extract a set of (almost) Gaussian-distributed data among
the raw measurement data and to adjust the parameters of the
postselection so that postselected data fall almost certainly
within the (calibrated) linearity domain of the homodyne
detector. Calling g(x) the probability distribution of data points
after postselection, the goal of the postselection procedure is to
choose the parameters of the non-normalized Gaussian filter
g(x) (mean value μg and variance σ 2

g ) under the following
constraints:

(i) Here g is a postselection function, which implies that
there are fewer points after than before postselection: 0 �
g(x) � f (x) ∀x ∈ [−α,α].

(ii) Postselected data should be almost Gaussian, i.e., the
support of g(x) should be almost contained in the linearity
domain:

∫ α

−α
g(x)dx � ∫ ∞

−∞ g(x)dx.
(iii) The number of postselected points N ′ ≡ ∫ α

−α
g(x)dx

should be maximized under the two previous constraints.
Performing the Gaussian postselection first consists in bin-

ning the measured data (size N ). Calling f (x) the normalized
distribution distribution of the raw data (quadrature measure-
ment data) and considering bins centered on measurement
result x and of width δx, there are approximately Nf (x)δx
raw data points falling within a bin. The Gaussian postselection
consists in randomly selecting a fraction g(x)/f (x) of those
points falling within the bin and throwing away the others.
After this procedure, applied to each bin, the postselected data
will have a probability distribution close to g(x) (provided we
have large enough data blocks and use small enough bins so
that finite-size effects remain small).

In order to illustrate how this Gaussian postselection
method could be realized in practice, we have simulated a
CVQKD experiment affected by saturation. The results are
displayed in Fig. 7. The total number of points is N = 106.
We have assumed a lossy channel between A and B, a
displacement 
 at B, and a homodyne detection affected
by saturation, as described in Sec. V A. We have used the
following numerical values: channel distance 25 km, Alice
variance VA = 11.58N0, and displacement 
 = 19.2

√
N0.

The blue dots correspond to measurement results with a
perfect homodyne detection (no saturation) while the red dots
correspond to the results for the realistic detection, affected by
saturation, with a linearity limit characterized by α = 20

√
N0.

The green dots correspond to the Gaussian postselected data,
applying the procedure detailed above. In order to find the
parameter of the Gaussian filter g(x) we first removed the
data points falling outside the linearity domain [−α,α] and
then built the histogram of XBi

with bin size δx = 0.1
√

N0.
We could then estimate the probability distribution f (x).
The essential remaining step was to choose the parameters

FIG. 7. Simulation of Gaussian postselection. Blue dots show the
simulated experimental data with an infinite linear detection limit,

 = 19.2

√
N0, L = 20 km, VA = 11.58N0, and data number N =

106. Red dots show the simulated experimental data with a linear
detection limit α = 20

√
N0; other parameters are the same as the blue

ones. Green dots show the Gaussian postselected data among the red
dots, with the Gaussian postselection parameter, σ 2

g = 2.5N0, μg =
16.55N0, and the number of postselected points N ′ = 15.37%N . For
other simulation parameters see Sec. VII C 1.

(variance, mean value, and amplitude A) of the Gaussian
filter

g(x) ≡ A√
2πσg

exp

(
− (x − μg)2

2σ 2
g

)
. (20)

We have optimized numerically these parameters to maximize
the number of postselected points N ′ under constraints (i) and
(ii). We have obtained a total number of postselected points
N ′ = 15.37%N (green dots in Fig. 7), while guaranteeing
that the L2 distance between the normalized postselected data
distribution and a perfect Gaussian distribution is below 10−3.

The Gaussian postselection is more complex to implement
than the radical postselection, but has the advantage of allow-
ing one to generate some key, even in the presence of moderate
saturation. The postselection also guarantees that postselected
points fall within the linearity domain of the detector (therefore
guaranteeing linearity of the detector on these postselected data
points). Moreover, the Gaussian postselection also guarantees
that the distribution of the input data, after postselection, is
Gaussian and thus that the postselected data still implement
the GG02 protocol, although with different channel parameters
T ′ and ξ ′. As a consequence, provided T ′ and ξ ′ are compatible
with secure key generation, some key can be distilled from the
postselected data, free from any security threat and attacks
exploiting detector saturation.

D. Countermeasures relying on existing techniques,
necessitating some additional hardware

The two (radical and Gaussian) postselection measures
discussed above can be implemented without any additional
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hardware, which constitutes an important practical advantage.
For completeness we also discuss here other ways to counter-
attack related to saturation, which, however, all involve some
changes not only of the protocol, but also of the hardware.

As proposed and implemented in [36], varying randomly
the attenuation, on the signal port, at the input of Bob, allows
one to test the linearity of the homodyne output with respect
to the signal input. The saturation attack exploits in particular
the fact that the shot-noise variance is calibrated in the absence
of a signal (attenuation η = 0) while the total noise variance
is measured with no attenuation (η = 1) and with saturation
(when the attack is launched). As a consequence, the excess
noise is underestimated. Such an attack cannot however be
performed if the total noise variance is estimated with more
than two attenuation values and in particular is the linearity of
the total noise with the attenuation checked. This is precisely
the countermeasure proposed in [36], which constitutes an
effective parade against the saturation attack. The drawback
of this countermeasure is, however, that it requires another
hardware element, causing additional complexity, and also
that it leads to attenuation of the signal and thus a reduction of
the key rate.

Measurement-device-independent (MDI) CVQKD can be
used to perform QKD with untrusted detectors [37]. It could
therefore be used in particular to perform CVQKD securely
with practical homodyne detectors, subject of saturation. This
would, however, be at the expense of a significant increase
of the experimental complexity (in particular phase locking
of two distant lasers) and also at the expense of performance
since only low to moderate losses can be tolerated in MDI
CVQKD [38].

Finally, one could notice that the saturation attack requires
one to strongly displace the mean value of the quadrature
signal. The signals impinging on the homodyne detection must
therefore have a high energy. The method proposed in [39],
in another context, could then be used as a countermeasure:
It consists in upper bounding, with an auxiliary homodyne
detector (sometimes called watchdog in other contexts [4]),
the energy of the impinging signals. One limitation of this
method is, however, that it is in general not possible to predict
in which mode an attacker will try to send energy in order
to saturate the detector. It can thus be very difficult to design
in practice a watchdog capable of detecting any attempts to
saturate the detector.

IX. CONCLUSION

We have studied quantitatively how the saturation attack
can be used to compromise the security of practical CVQKD
systems. The main finding of our study is that the excess
noise can be actively reduced by displacing the quadrature’s
mean value of the coherent states received by Bob and that this
effect can compromise the security of the Gaussian-modulated
coherent state CVQKD protocol, operated with practical
detectors whose linearity response can only be guaranteed
over a restricted domain of quadrature values.

We have proposed an explicit attack, called a saturation
attack, that combines displacement with a full intercept-resend

attack. We have performed numerical simulations that show
the feasibility of our attack under realistic experimental condi-
tions. The saturation attack consists in strongly displacing the
quadrature mean values to induce saturation of Bob’s detector.
Our attack is achievable with current technology and may
impact the security of all CVQKD implementations since any
practical detectors is subject to saturation. An experimental
demonstration of this attack is the topic left for future work.

While all previous attacks on CVQKD had focused on local
oscillator manipulation and biasing excess noise evaluation,
our attack has no influence on the local oscillator and thus
cannot be ruled out by generating the local oscillator locally
[29–31]. It is therefore important to propose practical solutions
against this attack and we have presented in detail two
effective countermeasures based on postselection that can
be implemented without requiring any modification at the
hardware level. This work illustrates the importance of putting
under great scrutiny the hypothesis under which the security
proof can be derived, but also illustrates that secure and yet
still practical QKD implementations are within reach.
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APPENDIX A: CALCULATION OF THE CORRELATION
UNDER THE SATURATION ATTACK

In order to clearly show the calculation, we consider
ysat, y, x, and z as the notation XBsat , XBlin , XA, and XN

respectively. We use XBsat [Eq. (8)] to calculate the correlation
Cov(XA,XBsat ) under the saturation attack. We assume here
α � 1 and consider 
 � 0, while the analysis of 
 � 0 is
similar. The saturation model can be considered as

ysat = α, t
g√
2
x + z + 
 � α,

ysat = t
g√
2
x + z + 
,

∣∣∣∣t g√
2
x + z + 


∣∣∣∣
(A1)

< α (α � 1, 
 � 0),

ysat = −α, t
g√
2
x + z + 
 � −α,

where x ∼ N (0,σ 2
x ) and z ∼ N (0,σ 2

z ) are both centered
Gaussian variables with probability density functions pX(x)
and pZ(z), respectively,

pX(x) = e−x2/2σ 2
x

√
2πσx

, pZ(z) = e−z2/2σ 2
z

√
2πσz

, (A2)
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in which σ 2
x = Var(XA) and σ 2

z = N0 + ηT ξ + vele. By knowing pX(x) and pZ(z), we can calculate Cov(x,ysat) with a double
integral of x and z in the domain Dxz. The domain Dxz is defined in Eq. (A1): −α <

tg√
2
x + z + 
 < α, tg√

2
x + z + 
 � −α,

and tg√
2
x + z + 
 � α. A long but straightforward calculation of Cov(x,ysat) is presented as follows:

Cov(XA,XBsat ) = 〈xysat〉 − 〈x〉〈ysat〉 = 〈xysat〉 =
∫∫

Dxz

xypX(x)pZ(z)dx dz

=
∫∫

−α<(tg/
√

2)x+z+
<α

(
tg√

2
x2 + x
 + xz

)
pX(x)pZ(z)dx dz

+
∫∫

(tg/
√

2)x+z+
�−α

−αxpX(x)pZ(z)dx dz +
∫∫

(tg/
√

2)x+z+
�α

αxpX(x)pZ(z)dx dz, (A3)

Cov(XA,XBsat ) = 1

2πσxσz

∫ ∞

−∞

(
tg√

2
x2 + x


)
e−x2/σ 2

x dx

∫ α−
−(tg/
√

2)x

−α−
−(tg/
√

2)x
e−z2/2σ 2

z dz

= 1

2πσxσz

∫ ∞

−∞

(
tg√

2
x2 + x


)
e−x2/σ 2

x

√
π

2
σz

[
erf

(α + 
 + tg√
2
x

√
2σz

)
+ erf

(α − 
 − tg√
2
x

√
2σz

)]
dx

= 1

2πσx

√
π

2

[
tg√

2

∫ ∞

−∞
x2e−x2/2σ 2

x dx + 


∫ ∞

−∞
erf

(α − 
 − tg√
2
x

√
2σz

)
xe−x2/2σx dx

]

= tg

2
√

2πσx

√
π

2

√
2πσ 3

x + tg

2
√

2πσx

√
π

2

√
2πσ 3

x erf

⎛
⎝ α − 
√

2(σ 2
z + t2g2

2 σ 2
x )

⎞
⎠

= tg

2
√

2
σ 2

x

⎡
⎣1 + erf

( α − 
√
2(σ 2

z + t2g2

2 σ 2
x )

)⎤⎦. (A4)

Thus we can conclude that

Cov(XA,XBsat ) = tg

2
√

2

〈
X2

A

〉[
1 + erf

(
α − 
√

2 Var(XBlin )

)]
, (A5)

in which the error function erf(x) is defined as

erf(x) = 2√
π

∫ x

0
e−t2

dt (A6)

and we have used the integral formulas of erf(x) provided in [40]. In Eq. (A4), Var(XBlin ) = σ 2
z + t2g2

2 σ 2
x is the variance of Bob

with no saturation. In this calculation, the integrals of the odd functions with symmetric bounds (−∞,∞) are equal to zero.

APPENDIX B: CALCULATION OF THE VARIANCE OF BOB UNDER THE SATURATION ATTACK

In order to calculate the variance of Bob under the saturation attack, we use the step function θ (x), which is defined as

θ (x) =
{

1, x ∈ [0,∞)
0, x ∈ (−∞,0]. (B1)

With Eq. (B1) we can transform Eq. (A1) into

ysat = yθ (y + 
 + α)θ (−y − 
 + α) + α[1 − θ (y + 
 + α)θ (−y − 
 + α)]

≈ α + (y + 
 − α)θ (−y − 
 + α) = α + (y − ε)θ (−y + ε), (B2)

in which

ε = α − 
 (α > 0, 
 � 0), (B3)

y = t
g√
2
x + z. (B4)

Since x and z are both Gaussian variables, y is also a Gaussian variable [y ∼ N (0,σ 2
y )], with its probability function pY (y) =

e
−y2/2σ2

y√
2πσy

and σ 2
y = Var(XBlin ) is the variance of Bob under linear detection. In order to estimate Var(XBsat ) = Var(ysat) = 〈y2

sat〉 −
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〈ysat〉2, we need to calculate 〈ysat〉 and 〈y2
sat〉, respectively,

〈ysat〉 = α + 〈(y − ε)θ (−y + ε)〉 = α + C, (B5)

〈y2
sat〉 = 〈α2 + 2α(y − ε)θ (−y + ε) + (y − ε)2θ (−y + ε)〉 (B6)

= α2 − 2αC + D, (B7)

in which C and D are equal to 〈(y − ε)θ (−y + ε)〉 and 〈(y − ε)2θ (−y + ε)〉 and can be calculated as follows:

C =
∫ ∞

−∞
pY (y)(y − ε)θ (−y + ε)dy (B8)

=
∫ ∞

−∞
pY (y ′ + ε)y ′θ (−y ′)dy ′ =

∫ 0

−∞
pY (y ′ + ε)y ′dy ′ (B9)

= −
[

σy√
2π

e−ε2/2σ 2
y + ε

2
+ ε

2
erf

(
ε√
2σy

)]
, (B10)

D = 〈(y − ε)2θ (−y + ε)〉 =
∫ ∞

−∞
pY (y)(y − ε)2θ (−y + ε)dy (B11)

=
∫ ∞

−∞
pY (y ′ + ε)y ′2θ (−y ′)dy ′ =

∫ 0

−∞
pY (y ′ + ε)y ′2dy ′ (B12)

= εσy√
2π

e−ε2/2σ 2
y + ε2 + σ 2

y

2

[
1 + erf

(
ε√
2σy

)]
. (B13)

We have used y ′ = y − ε in the calculations of C and D. Provided with C and D, we can calculate Var(ysat):

Var(ysat) = 〈
y2

sat

〉 − 〈ysat〉2

= α2 − 2αC + D − (α + C)2 = D − C2

= σ 2
y

[
1 + erf( ε√

2σy

)

2
− e−ε2/σ 2

y

2π

]
− εσy√

2π
erf

(
ε√
2σy

)
e−ε2/2σ 2

y + ε2

4

[
1 − erf2

(
ε√
2σy

)]

= Var(XBlin )

(
1 + A

2
− B2

2π

)
− (α − 
)

√
Var(XBlin )

2π
A ∗ B + (α − 
)2

4
(1 − A2), (B14)

in which

A = erf

(
α − 
√

2 Var(XBlin )

)
, B = e−(α−
)2/2 Var(XBlin ). (B15)
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Weinfurter, New J. Phys. 13, 073024 (2011).

[9] V. Makarov, New J. Phys. 11, 065003 (2009)

[10] S. Kleis and C. G. Schaeffer, Proceedings of the ITG Symposium
on Photonic Networks, Leipzig, 2014 (VDE, Berlin, 2014),
pp. 1–5.

[11] R. Kumar, H. Qin, and R. Alléaume, New J. Phys. 17, 043027
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