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The channel loss incurred in long-distance transmission places a significant burden on quantum key distribution
(QKD) systems: they must defeat a passive eavesdropper who detects all the light lost in the quantum channel and
does so without disturbing the light that reaches the intended destination. The current QKD implementation with
the highest long-distance secret-key rate meets this challenge by transmitting no more than one photon per bit
[M. Lucamarini et al., Opt. Express 21, 24550 (2013)]. As a result, it cannot achieve the Gbps secret-key rate
needed for one-time pad encryption of large data files unless an impractically large amount of multiplexing is
employed. We introduce floodlight QKD (FL-QKD), which floods the quantum channel with a high number
of photons per bit distributed over a much greater number of optical modes. FL-QKD offers security against
the optimum frequency-domain collective attack by transmitting less than one photon per mode and using
photon-coincidence channel monitoring, and it is completely immune to passive eavesdropping. More importantly,
FL-QKD is capable of a 2-Gbps secret-key rate over a 50-km fiber link, without any multiplexing, using available
equipment, i.e., no new technology need be developed. FL-QKD achieves this extraordinary secret-key rate by
virtue of its unprecedented secret-key efficiency, in bits per channel use, which exceeds those of state-of-the-art
systems by two orders of magnitude.
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I. INTRODUCTION

One-time pad (OTP) encryption provides information-
theoretically secure message transmission [1], but key distri-
bution is its Achilles’ heel. Quantum key distribution (QKD)
permits remote parties (Alice and Bob) to share a random
bit string—the key needed for OTP encryption—with security
vouchsafed by quantum mechanics [2–5]. Unfortunately, the
demonstrated secret-key rates of long-distance QKD systems
fall far short of the Gbps rates needed for OTP encryption
of large data files, as seen from the following state-of-the-art
achievements. In discrete-variable QKD (DV-QKD), the best
result to date is Lucamarini et al.’s decoy state Bennett-
Brassard 1984 (BB84) system, which used a 1-Gbps source
rate but only realized a 1-Mbps secret-key rate over a 50-km-
long fiber [6]. In continuous-variable QKD (CV-QKD), the
best result to date is from Huang et al., who reported a 1-Mbps
secret-key rate at 25-km path length using a 50-Mbaud source
rate [7], with 90-kbps expected at 50 km in the asymptotic
(infinite block-length) regime.

Focusing, for the moment, on DV-QKD systems—owing to
their greater demonstrated capability over long distances—it
is easy to identify why Gbps rates are beyond their state-
of-the-art grasp: they transmit no more than ∼1 photon/bit.
One justification for this self-imposed limit is that these
systems must defeat the undetectable passive eavesdropper.
QKD security analyses afford the eavesdropper (Eve) all
things consistent with the laws of physics. In particular, a
passive Eve could replace the transmissivity κ � 1 optical
fiber connecting Alice and Bob with a lossless long-distance
coupler that allows her to capture and measure a fraction
1 − κ of Alice’s transmitted light while routing the remaining
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fraction κ to Bob without disturbance. With no disturbance of
the light that Bob receives, Eve does not create the telltale
errors that reveal her eavesdropping. In principle, such a
coupler could be constructed to mimic—insofar as Alice
and Bob are concerned—the propagation characteristics of
the fiber that it replaced. Thus Alice and Bob could not
detect Eve’s presence via channel monitoring, e.g., with an
optical time-domain reflectometer. So, were Alice to ignore
the potential presence of the undetectable passive eavesdropper
and make a many-photons-per-bit BB84 transmission to Bob
through this lossy quantum channel, then Eve could easily
obtain a near-perfect measurement of all of Alice’s bits.

We regard secret-key rate, in bits per second, as QKD
systems’ preeminent figure of merit: unless Gbps rates
over metropolitan-area spans can be realized, OTP-encrypted
transmission of large data files will not reach widespread
usage. Existing QKD systems operating over long-distance
connections might be pushed to Gbps secret-key rates, but
doing so would require impractically large amounts of
wavelength-division multiplexing (WDM). Consider scaling
Lucamarini et al.’s BB84 system [6] to a 10-Gbps source
rate achieving a 10-Mbps secret-key rate over a 50-km fiber
link. That system would require 100 WDM channels to yield
a 1-Gbps secret-key rate—while 1000 such channels would
be needed at the original source rate—each with its own
single-photon detection setup. A similar scaling of Huang
et al.’s CV-QKD system [7]—to a 10-Gbaud source rate that
achieves 18-Mbps secret-key rate over a 50-km fiber link in the
asymptotic regime—implies that more than 50 WDM channels
would be needed to obtain a 1-Gbps secret-key rate.

In this paper we introduce floodlight quantum key distribu-
tion (FL-QKD), and show that it offers a practical route to Gbps
secret-key rates over metropolitan-area distances with security
against the optimum frequency-domain collective attack and
without the need for multiplexing. How does FL-QKD realize
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this extraordinary secret-key rate? It derives from FL-QKD’s
secret-key efficiency, in bits per channel use, being two orders
of magnitude higher than those of state-of-the-art systems.
In particular, FL-QKD floods the Alice-to-Bob channel with
broadband light—whose bandwidth is much greater than
the modulation rate—containing many photons per bit. Its
immunity to the undetectable passive-eavesdropping attack
then comes from that high number of transmitted photons
per bit being distributed over a much greater number of
optical modes to make that transmission have low brightness,
i.e., less than one photon per mode. FL-QKD also employs
photon-coincidence channel monitoring on the Alice-to-Bob
channel, to ensure security against the active component of a
frequency-domain collective attack, in which Eve can inject
her own light into Bob’s terminal and tries to obtain his
bit string from the modulated version of that light which is
contained in what she taps from the Bob-to-Alice channel.
More importantly, we show that FL-QKD can support a
2 Gbps secret-key rate over a 50-km-long fiber link against
the optimum frequency-domain collective attack, and that it
can be implemented with available equipment, i.e., no new
technology need be developed. In short, FL-QKD opens the
possibility for OTP encryption of large data files for secure
transmission over metropolitan-area distances at Gbps rates.

The remainder of the paper is organized as follows.
Sections II–V present, in succession, a description of the
FL-QKD protocol, its security analysis, its secret-key rate
behavior, and some concluding discussion. For the sake of
readability, we have relegated all detailed analysis to a series
of appendixes.

II. PROTOCOL DESCRIPTION

Figure 1 shows FL-QKD’s quantum channel setup in
the presence of a frequency-domain collective attack. Alice
and Bob use this setup to generate their raw key and to
bound Eve’s Holevo information. Not shown in this figure
is the tamper-proof classical channel that Alice and Bob
use for reconciliation. Neither that procedure nor FL-QKD’s
subsequent privacy amplification step will be described herein,
because they are merely higher rate versions of standard
practice in QKD.

FIG. 1. Quantum channel setup for FL-QKD under frequency-
domain collective attack. ASE: amplified spontaneous emission
source. SPDC: spontaneous parametric downconverter. BPSK: binary
phase-shift keying. LO: local oscillator.

Raw key generation in FL-QKD occurs as follows. Alice
sends unmodulated, continuous-wave (cw) light over optical
fiber to Bob, who imposes a random bit string on that light by
means of binary phase-shift keying (BPSK) at R bps, amplifies
the modulated light (to overcome return-path loss), and returns
it to Alice over optical fiber. FL-QKD’s security against a
frequency-domain collective attack, and its high secret-key
rate, come from the composite nature of Alice’s source plus
the data that Alice and Bob obtain from their channel monitors,
which are used to ensure the integrity of the Alice-to-Bob
channel, i.e., the near-perfect correlation between the light
reaching Bob and the reference retained by Alice. So, to
complete our protocol description, we will characterize Alice’s
source and Alice and Bob’s channel monitors.

Alice uses an optical amplifier to produce a high-brightness
(�1 photon s−1 Hz−1) single spatial-mode beam of amplified
spontaneous emission (ASE) noise with a W -Hz-bandwidth
flat spectrum. She uses a cw spontaneous parametric down-
converter (SPDC) to produce quadrature-entangled, single
spatial-mode signal and idler beams that have bandwidth W flat
spectra, with the former having the same center frequency as
her ASE source. Alice directs the idler beam to a single-photon
detector that is part of her channel monitor. She uses a beam
combiner to merge a low-brightness (�1 photon s−1 Hz−1)
portion of her ASE light with her SPDC’s signal light resulting
in an n:1 ASE-to-SPDC-ratio output with n � 1. She sends
a small fraction of her combined ASE-SPDC light to another
single-photon detector (also part of her channel monitor), and
transmits the remaining portion of her ASE-SPDC light to
Bob. Alice stores the high-brightness portion of her initial
ASE light in an optical delay-line fiber (whose delay matches
that of the Alice-to-Bob-to-Alice roundtrip) for use as the
local oscillator (LO) in a broadband homodyne receiver.
She employs optical amplification, as needed, so that her
LO retains its high-brightness character without appreciable
degradation; see Sec. 3 of Appendix A for details. Prior to
BPSK modulation, Bob routes a small fraction of the light
he receives to the single-photon detector that is his channel
monitor.

Alice and Bob use their channel monitors to measure the
singles rates, SI for Alice’s idler beam, SA for Alice’s tap on her
transmitted beam, and SB for Bob’s tap on his received beam.
They also use their monitors to obtain CIA and C̃IA, the time-
aligned and time-shifted coincidence rates between Alice’s
idler and the tap on her transmitted beam, and CIB and C̃IB ,
the time-aligned and time-shifted coincidence rates between
Alice’s idler and Bob’s tap on his received beam, in both cases
employing a Tg-duration coincidence gate and accounting for
the relevant propagation delays in the appropriate manners.
From these rates they compute

fE = 1 − [CIB − C̃IB]/SB

[CIA − C̃IA]/SA

, (1)

which will be shown below to quantify the integrity of the
Alice-to-Bob channel.

III. SECURITY ANALYSIS

As detailed in Appendix B, Eve’s general frequency-
domain collective attack is as follows. Eve first establishes
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lossless connections between her equipment and the com-
municating parties in both the forward (Alice-to-Bob) and
backward (Bob-to-Alice) channels. In the forward path, she
performs a general unitary transformation that, during each
of Bob’s bit intervals, acts in an independent, identically
distributed manner on the M = W/R frequency modes of
Alice’s transmitted light. In particular, the inputs to that
unitary transformation are Alice’s transmitted field and Eve’s
K vacuum-state ancilla fields. Eve retains the K ancilla
fields that emerge from this unitary operation and sends
the remaining field to Bob. She completes her attack with
a collective measurement on her stored ancilla fields and
the light she taps from the Bob-to-Alice channel. Here we
note, see Appendix E, that fE is an intrusion parameter
that quantifies Eve’s degradation of the phase-sensitive cross
covariance between Alice’s idler and Bob’s received light from
what it would be were Eve only mounting a passive attack.
Furthermore, we show in Appendix C.2 that Eve’s optimum
frequency-domain collective attack—one that maximizes her
Holevo information for a given photon flux and fE value—is
in fact Gaussian and can be realized by her using an SPDC
source, injecting its signal light into Bob through a beam
splitter in the Alice-to-Bob fiber, while retaining her idler
for a collective measurement with the light she taps from
the Alice-to-Bob and Bob-to-Alice fibers; see Fig. 2. For
this optimum attack, fE equals Eve’s injection fraction, viz.,
the fraction of light entering Bob’s terminal that is due to
her [8]. Hence that configuration will be employed throughout
the security analysis below. (Interestingly, this SPDC beam-
splitter attack has the same structure as the entangling-cloner
attack on CV-QKD [9].)

We will be concerned with optimized performance for
Alice and Bob against Eve’s optimum frequency-domain
collective attack without regard for finite-key effects. (For
FL-QKD’s ∼Gbps secret-key rates, finite-key effects become
inconsequential for key-generation sessions as short as a
few seconds.) Thus, following standard practice for assessing
security against collective attacks (see, e.g., [10,11]), we will
find �ILB

AB , a lower bound on Alice and Bob’s secret-key rate,

Alice Eve’s
receiver

ac�ve Eve

passive Eve 

Bob

SPDC

FIG. 2. Realization of Eve’s optimum frequency-domain collec-
tive attack. SPDC: spontaneous parametric downconverter. Eve’s
SPDC signal beam (shown) is coupled to Bob through a beam splitter,
while her SPDC idler beam (not shown) is retained for use in her
receiver.

from

�ILB
AB = βIAB − χUB

EB, (2)

where IAB is Alice and Bob’s Shannon-information rate, β is
Alice and Bob’s reconciliation efficiency, and χUB

EB is an upper
bound on Eve’s Holevo-information rate for her optimum
frequency-domain collective attack. Before doing so, let us
provide some simple intuition about how FL-QKD can be
secure against individual passive or active attacks.

We will limit our consideration of these individual attacks
to low-brightness operation (the ASE-SPDC light Alice
sends to Bob has NS � 1 photon s−1 Hz−1) in a lossy
scenario (channel transmissivity κS � 1) with Alice’s source
bandwidth W greatly exceeding Bob’s BPSK modulation
rate R. For Eve’s passive attack, we neglect the small
amount of SPDC light in Alice’s transmission and the
small amounts tapped by Alice and Bob for their channel
monitors. Alice’s homodyne receiver and Eve’s optimum
quantum receiver then have error probabilities satisfying
Pr(e)hom

Alice ∼ exp(−WκSNSGB/RNB)/2 [12] and Pr(e)pass
Eve ∼

exp(−4WκSN
2
SGB/RNB)/2 [13], where GB � 1 and NB �

GB − 1 are the gain and ASE output-noise brightness of
Bob’s optical amplifier. Because ln[Pr(e)hom

Alice]/ ln[Pr(e)pass
Eve ] ∼

1/4NS , we see that low-brightness (NS � 1) operation affords
Alice and Bob a considerable advantage over Eve. Physically,
this advantage is due to the NS � 1 low-brightness condition’s
making Eve unable to obtain a high-brightness reference—
from the light she taps from the Alice-to-Bob fiber—with
which to detect Bob’s BPSK modulation. Later, we will see
that this low-brightness condition ensures that Eve’s Holevo
information rate for her undetectable passive-eavesdropping
attack falls far below Alice and Bob’s Shannon information
rate. In other words, as claimed earlier, FL-QKD’s transmitting
less than one photon per mode makes it immune to the attack
that has driven the highest-rate, long-distance QKD system to
limit its transmissions to ∼1 photon/bit.

For Eve’s active attack, we employ the conditions applied
above and, in addition, presume that Alice and Bob’s channel
monitors constrain their adversary’s light injection to a small
fraction, fE � 1, of the light entering Bob’s terminal. The
error probability of Alice’s homodyne receiver will then obey
Pr(e)hom

Alice ∼ exp[−W (1 − fE)κSNSGB/RNB ]/2. Eve’s opti-
mum quantum receiver—for an individual attack in the Fig. 2
setup using her optimum SPDC-injection strategy in conjunc-
tion with a tap on just the Bob-to-Alice channel—then has
error probability Pr(e)act

Eve ∼ exp(−4WfEκSNSGB/RNB)/2.
Now we find that ln[Pr(e)hom

Alice]/ ln[Pr(e)act
Eve] ∼ (1 − fE)/4fE ,

which is highly favorable to Alice and Bob when their channel
monitors limit Eve to fE � 1.

Having provided some individual-attack insights into FL-
QKD’s security, we return to the task of assessing our
protocol’s security analysis when Eve mounts her optimum
frequency-domain collective attack. To evaluate Alice’s error
probability under that attack, we note the number of inde-
pendent modes that contribute to the light Alice receives
from Bob being much greater than 1—for W = 2 THz with
R � 10 Gbps, as we will assume below, we get M = W/R �
200—justifies a central limit theorem argument that makes
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Alice’s error probability satisfy [14]

Pr(e)hom
Alice = Q

(
μ0 − μ1

σ0 + σ1

)
, (3)

where μb and σb for b = 0,1 are the means and standard
deviations of Alice’s homodyne measurement when Bob’s
bit values (phase modulations) are equally likely to be 0
(0 rad phase shift) or 1 (π rad phase shift), and Q(x) =∫ ∞
x

dt e−t2/2/
√

2π . See Appendix D for the {μb} and {σb}
with all losses included. With Alice’s error probability in hand,
Alice and Bob’s Shannon-information rate is found from

IAB = R
{
1 + Pr(e)hom

Alice log2

[
Pr(e)hom

Alice

]
+ [

1 − Pr(e)hom
Alice

]
log2

[
1 − Pr(e)hom

Alice

]}
. (4)

Eve’s Holevo-information rate about Bob’s bit string for
her optimum collective attack is

χEB = R

[
S(ρE) −

1∑
b=0

S
(
ρ

(b)
E

)
/2

]
, (5)

where S(·) denotes von Neumann entropy. Here, ρ
(b)
E is Eve’s

conditional joint density operator—when Bob transmits a
single bit with value b = 0 or 1—for the 3M modes available
to her that are associated with that bit, viz., M modes each from
her retained idler, the light she collects from the Alice-to-Bob
fiber, and the light she collects from the Bob-to-Alice fiber.
Her unconditional joint density operator for those 3M modes
is then ρE = ∑1

b=0 ρ
(b)
E /2. The ρ

(b)
E are zero-mean Gaussian

states whose von Neumann entropies are easily found by
symplectic diagonalization [15], as explained in Appendix C.
The unconditional state, ρE is zero mean but not Gaussian,
making its von Neumann entropy quite difficult to evaluate.
However, that state’s covariance matrix is easily found [16],
and we know that S(ρE) � S(ρGauss

E ), where ρGauss
E is a zero-

mean Gaussian state with the same covariance matrix as ρE .
We can find S(ρGauss

E ) by another symplectic diagonalization

and so obtain

χEB � χUB
EB = R min

[
S
(
ρGauss

E

) −
1∑

b=0

S
(
ρ

(b)
E

)
/2,1

]
, (6)

where we have used S(ρE) − ∑1
b=0 S(ρ(b)

E )/2 � 1, which
follows from that term’s being Eve’s Holevo information about
a single-bit transmission from Bob.

IV. SECRET-KEY RATES

We are now ready to demonstrate the power of FL-QKD.
Figure 3(a) plots the lower bound from Eq. (2) on Alice and
Bob’s secret-key rate versus one-way path length when Eve
mounts her optimum collective attack, but Alice and Bob’s
channel monitoring ensures that Eve’s injection fraction into
Bob’s terminal is fE = 0.01. Also shown in that figure is a
brightness versus path length plot for the light Alice sends to
Bob. These curves were obtained assuming that (1) Alice’s
ASE source and her SPDC signal light have flat spectra
with the same center frequency and W = 2 THz bandwidth,
and are combined in an n : 1 ratio with n = 99; (2) the
brightness of the light Alice sends to Bob and Bob’s bit rate
R � 10 Gbps are chosen to maximize their secret-key rate
subject to the constraint that Pr(e)Alice � 0.1 to ensure the
availability of a high-efficiency code for reconciliation [17];
(3) Bob’s amplifier has GB = NB = 104; (4) Eve has replaced
the L-km-long, 0.2-dB/km fibers in the Alice-to-Bob and Bob-
to-Alice channels with lossless fibers and (1 − fE)κS and κS

transmissivity beam splitters, respectively, with κS = 10−0.02L;
(5) Alice taps 1% of her combined ASE-SPDC light, and
Bob taps 1% of his received light, for channel monitoring; (6)
Alice’s homodyne receiver has an undegraded local oscillator
with brightness NLO = 104 and efficiency 0.9; (7) β = 0.94;
and (8) the system is otherwise ideal.

We see from Fig. 3(a) that 2-Gbps QKD is possible at 50-km
one-way path length when fE = 0.01, and that this secret-key
rate is obtained with NS = 0.043. [Figure 3(b) shows how this
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FIG. 3. (a) Lower bound on Alice and Bob’s secret-key rate and Alice’s optimum signal brightness when Eve mounts her optimum
frequency-domain collective attack with injection fraction fE = 0.01. (b) Lower bound on Alice and Bob’s secret-key rate vs fE for a 50-km
fiber link with all other parameters as in (a).
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rate degrades as Eve’s injection fraction increases.] Thus, as
suggested at the outset, security against a collective attack has
been ensured by a combination of low-brightness transmission
and coincidence-based channel monitoring. That FL-QKD has
such a high rate after the 10 dB of one-way propagation loss
incurred at 50 km is then due to its use of an optical bandwidth
far in excess of its modulation rate, which enables Alice to
transmit many photons per bit (ppb) without affording Eve very
much information. This follows from Fig. 4(a), which plots the
ppb that Alice transmits to Bob and the ppb that Bob receives
from Alice. We see that FL-QKD maintains a near-unity ppb
received by Bob for all path lengths less than 200 km [18].
The highest rate, long-distance, DV-QKD demonstration—
Lucamarini et al.’s BB84 system [6]—employs ∼1 transmitted
ppb. Hence it cannot match FL-QKD’s loss-independent ∼1
received ppb performance. Thus its long-distance secret-key
rate is vastly inferior to FL-QKD’s. Moreover, as noted
earlier, an impractically large amount of WDM would be
needed for that BB84 system to match FL-QKD’s single-
channel Gbps secret-key rate capability over 50 km of
fiber.

The story for Huang et al.’s CV-QKD demonstration [7] is
a little different. CV-QKD transmissions are better quantified
in terms of photons per channel use rather than photons per
bit, quantities that are identical for BB84 systems and for FL-
QKD but typically different for CV-QKD systems. Moreover,
CV-QKD systems do not limit themselves to ∼1 photon/use.
Nevertheless, even scaling it up to a 10-Gbaud source rate,
Huang et al.’s system would still require more than 50 WDM
channels to realize a 1-Gbps secret-key rate on a 50-km-long
link.

We will close our secret-key rate assessment with some
additional comments on its underlying security analysis.
Consider first the optimality of Eve’s using SPDC light
injection in the Fig. 2 setup. For a given value of her
injection fraction, fE , Eve’s use of an SPDC source in an
active attack yields a Holevo information that saturates the
entanglement-assisted capacity for the channel created by her
injection, Bob’s BPSK modulation and optical amplification,
and her tap of the Bob-to-Alice channel. Hence this confirms
that no non-Gaussian active attack with the same fE can do
any better. This behavior is illustrated in Fig. 4(b), for a 50-km
one-way path length and fE = 0.01, where we have plotted
our upper bound on Eve’s active-attack Holevo information
per mode versus Alice’s signal brightness, NS , along with
Eve’s entanglement-assisted capacity [19]. Further insights
from Fig. 4(b) come from its display of Eve’s passive-attack
and optimum frequency-domain collective attack Holevo
informations per mode [20]. When NS � 10−3, the active
attack is almost as powerful as the optimum frequency-domain
collective attack, but at NS � 0.1 the passive attack makes
the dominant contribution to the optimum frequency-domain
collective attack [21]. These characteristics are easily under-
stood from the simple, individual-attack error probabilities
we presented earlier. For both passive and fixed-fE active
attacks, Eve’s error probability decreases with increasing
NS , but her passive-attack error exponent is proportional to
N2

S at low brightness, whereas her fixed-fE active-attack
error exponent is proportional to NS . In future work we
will pursue security analysis for coherent attacks. Because

FL-QKD can be regarded as a two-way CV-QKD protocol that
uses discrete modulation, coherent-attack security analyses
for one-way CV-QKD [22–24] may provide a useful starting
point.

V. DISCUSSION

We have argued that a QKD system’s secret-key rate, in
bits per second, is its preeminent figure of merit, and we
have shown that single-channel FL-QKD vastly outperforms
its state-of-the-art competition for long-distance OTP distribu-
tion. To elaborate on why that is so, let us compare FL-QKD’s
secret-key efficiency, in bits per channel use, with those
of the highest-rate, long-distance DV-QKD and CV-QKD
systems. The secret-key efficiency of Lucamarini et al.’s
DV-QKD system at 50 km is 1 Mbps/1 Gbps = 10−3 bits/use,
while the extrapolated secret-key efficiency for Huang et al.’s
CV-QKD system is 90 kbps/50 Mbaud = 1.8 × 10−3 bits/use
at that distance. FL-QKD, however, is predicted to have a
secret-key efficiency of 0.2 bits/use at 50 km, two orders of
magnitude better than state-of-the-art performance. Pirandola
et al. [25,26] have shown that the ultimate limit for any
QKD protocol’s secret-key efficiency, in bits per mode, is
− log2(1 − κS) = 0.152 bits per mode for a 50-km-long fiber
with 0.2 dB/km loss. Because CV-QKD must mode-match its
LO to its signal, CV-QKD’s secret-key efficiencies in bits per
channel use and bits per mode will coincide. Ideal DV-QKD
systems also use single-mode transmission, in which case their
secret-key efficiencies in bits per channel use and bits per mode
will coincide. FL-QKD, on the other hand, employs many
modes per channel use: at 50 km, our 10 Gbps modulation
rate and 2 THz ASE bandwidth imply there are 200 modes per
channel use, making FL-QKD’s secret-key efficiency in bits
per mode (0.2 bits/use)/(200 modes/use) = 10−3 bits/mode,
i.e., on par with Huang et al.’s and Lucamarini et al.’s.

Before closing, two additional points need some attention.
Both are related to our use of coincidence-based channel
monitoring—the first concerns what information that mon-
itoring might reveal to Eve and the second has to do with
preventing Eve from eluding that monitoring with an intercept-
resend attack—and both will be part of our continuing security
analysis for FL-QKD.

In their channel monitoring, Alice and Bob will record the
times at which their monitors have detected photons. Bob will
transmit his detection times to Alice—over their tamper-proof
classical connection—and Alice, in turn, will merge those
data with her own to find the singles and coincidence rates
she needs to determine the value of Eve’s intrusion parameter
fE . As part of her frequency-domain collective attack, Eve
can listen to Alice and Bob’s classical channel, and use
Bob’s photon-detection information to help her decode Bob’s
transmission. The security analysis we have presented thus far
does not account for that possibility. We show, however, in
Appendix G, that Eve’s Holevo information rate increases by
an inconsequential amount when she pays attention to Bob’s
detection-time data. Indeed, the resolution of the secret-key
rate plot in Fig. 3(a) is insufficient to show the effect.

Although Eve’s frequency-domain collective attack derives
no appreciable benefit from learning the photon-detection
times of Bob’s channel monitor, she could take an altogether
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FIG. 4. (a) Alice’s transmitted photons per bit (ppb) and Bob’s received ppb when Eve mounts her optimum frequency-domain collective
attack with injection fraction fE = 0.01. (b) Upper bounds on Eve’s optimum frequency-domain collective attack, passive attack, and active
attack Holevo informations per mode—along with her entanglement-assisted capacity—as a function of Alice’s signal brightness, NS , for a
50-km one-way path length assuming fE = 0.01.

different approach to breaking FL-QKD: an intercept-resend
attack. By detecting the photons that Alice sends to Bob, Eve
could transmit her own light—with photons concentrated at
those detection times—in the hope that Bob’s channel-monitor
data will be indistinguishable from what he would get were
she not present. Whether Eve could do so without changing
Alice and Bob’s fE measurement is unclear, as is whether
Eve could do so while simultaneously being able to retain a
suitable reference beam for decoding Bob’s message, but it
is important to note that intercept-resend is not a frequency-
domain collective attack, although security against it would
be included were we able to prove FL-QKD’s security against
a general coherent attack. Even without that coherent-attack
analysis, Alice and Bob can augment their channel monitors to
at least detect an intercept-resend attack—and hence turn it into
a denial-of-service attack—by exploiting the entanglement
between the signal and idler outputs of Alice’s SPDC source.
Alice and Bob’s coincidence-based channel monitoring only
relies on the photon-paired nature of those signal and idler
beams, which is why Eve could potentially duplicate that
pairing. Entanglement, on the other hand, cannot be spoofed.
So, if Alice and Bob add either dispersive-optics (frequency-
domain coincidence) measurements (as in [27]), or a Franson
interferometer (as in [10]), to their channel monitors, it will be
impossible for Eve to mount an intercept-resend attack without
being detected.

In conclusion, existing single-channel QKD systems’
secret-key rates at 50 km are so low that their Gbps WDM
versions have overwhelming implementation and cost issues.
With Gbps FL-QKD, however, OTP encryption of large files
becomes practical over metropolitan-area networks using only
a single channel. In this regard we emphasize that FL-QKD
needs no new technology: erbium-doped fiber amplifiers suf-
fice for Alice’s ASE source and Bob’s amplifier; high-quality
SPDC’s are capable of the brightness that Alice requires;
BPSK modulators capable of 10-Gbps rates are readily
available; Alice’s receiver can use commercially available

balanced mixers and need not be shot-noise limited [28];
and Alice and Bob’s channel monitors can employ available
superconducting nanowire detectors.
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APPENDIX A: ALICE AND BOB’S TERMINALS

In this section we will detail the equipment that Alice and
Bob use in the FL-QKD setup shown in Fig. 1.

1. Alice’s transmitter

Alice uses both a spontaneous parametric downconverter
(SPDC) and an amplified spontaneous emission (ASE) source.
For each bit interval, the SPDC source produces M = T W �
1 signal-idler mode pairs—where T = 1/R gives the bit
duration in terms of Bob’s modulation rate R, and W is
the SPDC’s phase-matching bandwidth—with annihilation
operators { (âSPDC

Sm
,âSPDC

Im
) : 1 � m � M }. These SPDC mode

pairs are in independent, identically distributed, zero-mean
Gaussian pure states that are characterized by the Wigner
covariance matrix

�SPDC
SI = 1

4

[
ASPDC CSPDC

CSPDC ASPDC

]
, (A1)

where ASPDC = (2NSPDC + 1)I2, with I2 being the 2 × 2
identity matrix, and

CSPDC =
[
CSPDC 0

0 −CSPDC

]
, (A2)
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with NSPDC � 1 and CSPDC = 2
√

NSPDC(NSPDC + 1). For
each bit interval, the ASE source—whose W Hz bandwidth
and center frequency match those of the SPDC’s signal beam—
produces M signal-reference mode pairs, with annihilation
operators { (âASE

Sm
,âASE

Rm
) : 1 � m � M }. These ASE mode

pairs are in independent, identically distributed, completely
correlated thermal states that are characterized by the Wigner
covariance matrix,

�ASE
SR = 1

4

[
AASE CASE

CASE ALO

]
, (A3)

where AASE = (2NASE + 1)I2, CASE = 2
√

NASENLO I2, and
ALO = (2NLO + 1)I2, with NASE = 1 � NLO,

Alice sends her SPDC’s idler beam to a channel monitor,
and combines her SPDC and ASE source’s signal beams on
an asymmetric beam splitter obtaining output modes,

âAm
= √

κC âSPDC
Sm

+
√

1 − κC âASE
Sm

. (A4)

Because she wants each of these modes to have average photon
number NA � 1, and she wants their ASE-to-SPDC ratio to
be n : 1 with n � 1, Alice uses κC = 1 − nNA/(n + 1), and
adjusts her downconverter’s pump power to obtain NSPDC =
NA/[n(1 − NA) + 1]. Note that for NA � 0.1 and n = 99,
these choices imply κC � 0.9.

Alice now directs a fraction κA of her ASE-SPDC signal
light to a channel monitor and sends the remaining portion
to Bob; the latter’s M modes are governed by annihilation
operators

âSm
=

√
1 − κA âAm

+ √
κA v̂Am

, (A5)

where the noise modes {v̂Am
} are in their vacuum states.

It follows that the signal modes Alice sends to Bob, her
SPDC idler modes, and her ASE reference modes—i.e., the
{ (âSm

,âSPDC
Im

,âASE
Rm

) : 1 � m � M }—are independent, identi-
cally distributed mode triples. Each such mode triple is in a
zero-mean Gaussian state that is completely characterized by
the Wigner covariance matrix

�SIR = 1

4

⎡⎣ AS C′
SPDC C′

ASE
C′

SPDC ASPDC 0
C′

ASE 0 ALO

⎤⎦, (A6)

where AS = (2NS + 1)I2, NS = (1 − κA)NA, C′
SPDC =√

(1 − κA)κC CSPDC, and C′
ASE = √

(1 − κA)(1 − κC) CASE.

2. Bob’s terminal

For each bit interval, Bob receives a collection of indepen-
dent, identically distributed modes with annihilation operators
{ â′

Sm
: 1 � m � M}. He first diverts a fraction κB of each

mode to his channel monitor before sending the remaining
light—with annihilation operators

â′′
Sm

=
√

1 − κB â′
Sm

+ √
κB v̂Bm

, (A7)

where the noise modes {v̂Bm
} are in their vacuum states—to

his binary phase-shift keying (BPSK) modulator. Bob then
amplifies the modulated modes with an erbium-doped fiber
amplifier (EDFA) with gain GB and output ASE NB � GB −
1. The modes that Bob transmits to Alice therefore have photon

annihilation operators

âBm
= (−1)b

√
GB â′′

Sm
+
√

GB − 1 n̂
†
Bm

, (A8)

where b = 0 or 1 is Bob’s bit value and the noise modes {n̂Bm
}

are in independent, identically distributed thermal states with
〈n̂Bm

n̂
†
Bm

〉 = NB/(GB − 1) � 1.

3. Alice’s receiver

For a bit interval in which Bob has transmitted the value
b, Alice receives a collection of independent, identically
distributed modes with annihilation operators { â′

Bm
: 1 � m �

M }. Alice detects them using a balanced-homodyne arrange-
ment and decides on the value of Bob’s bit by comparing the
outcome of that

N̂hom =
M∑

m=1

(â
′†
+mâ′

+m − â
′†
−mâ′

−m) (A9)

measurement with zero. She decides that Bob sent b = 0 if the
measurement outcome exceeds zero, and she decides b = 1
otherwise [29]. In this expression,

â′
±m = √

η

(
â′

Bm
± â′

Rm√
2

)
+
√

1 − η v̂±m
, (A10)

where η is the homodyne detector’s efficiency, i.e., the product
of its mode-mixing and quantum efficiencies, and the noise
modes {v̂±m

} are in their vacuum states.
The reference modes, {âRm

}, undergo optical amplification,
with gain GR and output ASE NR = GR , prior to being stored
in a transmissivity-κI fiber spool—whose length is chosen so
that its output will be delay matched to the light Alice receives
from Bob—resulting in

â′
Rm

= √
κI (

√
GRâRm

+
√

GR − 1 n̂
†
Rm

) +
√

1 − κI v̂Rm
,

(A11)
with the amplifier-noise modes {n̂Rm

} being in indepen-
dent, identically distributed thermal states with 〈n̂Rm

n̂
†
Rm

〉 =
NR/(GR − 1) and the loss-noise modes {v̂Rm

} being in their
vacuum states. For NLO � 1 and GR = 1/κI , this amplify-
then-store procedure leaves the average photon number of the
reference almost unchanged and it preserves nearly complete
correlation between the stored reference and the signal beam
that Alice sent to Bob. In particular, before storage we have
that

〈â†
Rm

âRm
〉 = NLO, (A12)

and

|〈â†
Sm

âRm
〉|2

〈â†
Sm

âSm
〉〈â†

Rm
âRm

〉
= (1 − κC)NASE

κCNSPDC + (1 − κC)NASE

= n/(n + 1), (A13)

while after storage we find that

〈â ′†
Rm

â′
Rm

〉 = κIGRNLO + κINR

= NLO + 1 ≈ NLO, (A14)
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and ∣∣〈â†
Sm

â′
Rm

〉∣∣2〈
â
†
Sm

âSm

〉〈
â

′†
Rm

â′
Rm

〉
= (1 − κC)NASENLO

(κCNSPDC + (1 − κC)NASE)(NLO + 1)

≈ n/(n + 1), (A15)

when NLO � 1 [30]. For n = 99, as assumed in the paper’s
secret-key-rate calculations, we see that Alice’s reference
suffers almost no degradation.

APPENDIX B: EVE’S FREQUENCY-DOMAIN
COLLECTIVE ATTACK

Figure 5 shows the structure of Eve’s general frequency-
domain collective attack that we will use to place an upper
bound on her Holevo information rate. Eve has replaced the
low-loss (0.2 dB/km) fibers that Alice and Bob presume are
connecting their terminals with lossless fibers. For each of Al-
ice’s M transmitted modes, { âSm

: 1 � m � M }, in a bit inter-
val, Eve then performs the same general unitary operation on K

ancilla modes, { ê
(k)
Vm

: 1 � k � K }, and Alice’s âSm
, resulting

in Bob’s receiving the â′
Sm

mode. Here, without loss of gener-

ality, we will assume that the {ê(k)
Vm

} are in their vacuum states.
For each bit interval, Eve retains the KM ancilla output

modes, { ê
(k)
Im

: 1 � k � K,1 � m � M }, from her unitary
operation and the light she taps from the Bob-to-Alice channel
in a quantum memory. At the end of the key distribution
session she then makes a collective measurement in her attempt
to capture all of Bob’s bit values. Because we will derive
only an upper bound on Eve’s Holevo information rate from
this procedure, Fig. 5 shows Eve as taking all the light Bob
sends to Alice. Other concessions to Eve that will be used in
obtaining our upper bound are (1) Bob will not divert any light
to his channel monitor, i.e., κB = 0; and (2) Bob’s amplifier
will have quantum-limited ASE, viz., NB = GB − 1. All of
these conditions increase Eve’s Holevo information rate. That
said, in practice Eve will not collect all the light that Bob

âSm

âIm

ê
(1)
Im

ê
(2)
Im

ê
(K)
Im

âSm

ê
(1)
Vm

ê
(2)
Vm

ê
(K)
Vm

âBm

n̂Bm

n̂Bm

aSm

âI
GB

FIG. 5. Schematic of Eve’s K-mode collective attack used to
upper bound her Holevo information rate. BPSK: binary phase-shift
keying. GB amplifier gain. The dashed wavy line represents an
entanglement that purifies the state of the âSm

mode.

sends to Alice, Bob will do channel monitoring (κB > 0),
and Bob’s amplifier may not be quantum limited (NB >

GB − 1). Furthermore, in order to minimize Alice’s ability
to detect Eve’s presence by simple photon-flux and spectrum
monitoring, Eve will not inject any of her own light into Alice’s
receiver and she will arrange that the Bob-to-Alice channel still
has transmissivity κS = 10−0.02L that Alice and Bob expect.

APPENDIX C: UPPER BOUND ON EVE’S
HOLEVO INFORMATION RATE

Let êI denote { ê
(k)
Im

: 1 � k � K,1 � m � M } and âB

denote { âBm
: 1 � m � M }. Eve’s Holevo information rate

for her general frequency-domain collective attack is bounded
above by

χEB = R

[
S(ρ̂êI ,âB

) −
1∑

b=0

S
(
ρ̂

(b)
êI ,âB

)
/2

]
, (C1)

where S(·) denotes von Neumann entropy, ρ̂
(b)
êI ,âB

is the con-
ditional joint density operator for the êI and âB modes given
Bob’s bit value, ρ̂êI ,âB

= ∑1
b=0 ρ̂

(b)
êI ,âB

/2 is their unconditional
joint density operator, and the bound is due to our assuming
that Eve captures all the light Bob sends to Alice.

Before going into details, we place two constraints on Eve’s
attack. First, we assume that Eve precludes her presence being
detected from simple photon-flux and spectrum monitoring at
Bob’s terminal by requiring her attack to satisfy〈

â
′†
Sm

â′
Sm

〉 = κSNS, (C2)

where κS = 10−0.02L is the transmissivity of the L-km-long
connection Alice and Bob believe they have and NS is the
brightness of the light Alice sends to Bob. Second, Alice and
Bob’s channel monitors allow them to measure Eve’s intrusion
parameter, fE , that, as shown in Appendix E, measures Eve’s
degradation of the phase-sensitive cross covariance between
Alice’s âSPDC

Im
mode and Bob’s â′

Sm
mode. Because âIm

is a
purification of âSm

, it follows that there is a 0 < κ ′ < 1 such
that

√
κ ′âSm

has the same phase-sensitive cross covariance with
âSm

as does âSPDC
Im

, so we have that∣∣ 〈â′
Sm

âIm

〉 ∣∣2 = (1 − fE)κS

∣∣ 〈âSm
âIm

〉 ∣∣2. (C3)

Equations (C2) and (C3) both constrain what Eve’s general
frequency-domain collective attack does to the Wigner covari-
ance matrix of the (â′

Sm
,âIm

) mode pair.
To proceed further, we first introduce âI = { âIm

: 1 � m �
M} that purifies âS = { âSm

: 1 � m � M}, i.e., the mode pairs
{ (âSm

,âIm
) : 1 � m � M } are in independent, identically dis-

tributed, zero-mean Gaussian pure states that are characterized
by the Wigner covariance matrix

�SI = 1

4

[
AS CS

CS AS

]
, (C4)

where

CS =
[

2
√

NS(NS + 1) 0
0 −2

√
NS(NS + 1)

]
. (C5)

After Eve’s unitary operation, however, the {â′
Sm

} modes will,
in general, be in non-Gaussian states. Next, we introduce the
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complement to the Eq. (A8) input-output relation for Bob’s
amplifier, i.e.,

n̂′
Bm

=
√

GB n̂Bm
+ (−1)b

√
GB − 1 â′′

Sm
, (C6)

with â′′
Sm

= â′
Sm

because our upper bound will be found using
κB = 0, and n̂Bm

in its vacuum state because that bound
will presume Bob’s amplifier is quantum limited. With these
assumptions, we have that the { âI ,âS,êV ,n̂B } modes—where
êV = { ê

(k)
Vm

: 1 � k � K,1 � m � M}, and n̂B = { n̂Bm
: 1 �

m � M}—are in a zero-mean Gaussian pure state. It then
follows that the { âI ,âB,êI ,n̂′

B } modes—where n̂′
B = { n̂′

Bm
:

1 � m � M}—are in a (not necessarily zero-mean Gaussian)
pure state given Bob’s bit value, because Eve and Bob’s
operations are unitary. An immediate consequence of this
purity is

S
(
ρ̂

(b)
êI ,âB

) = S
(
ρ̂

(b)
âI ,n̂′

B

)
. (C7)

Moreover, the unitarity of the phase modulation that Bob
performs, given his bit value, implies that these conditional
entropies are independent of b. So, because the mode pairs
{ âIm

,n̂′
Bm

: 1 � m � M } are in independent, identically dis-
tributed states given Bob’s bit value, we have that

1∑
b=0

S
(
ρ̂

(b)
âI ,n̂′

B

)
/2 = MS

(
ρ̂

(0)
âIm ,n̂′

Bm

)
. (C8)

Having obtained a simplified expression for the second
entropy term on the right in (C1), we use the subadditivity
of von Neumann entropy to get

χEB � R
[
S(ρ̂êI

) + S(ρ̂âB
) − MS

(
ρ̂

(0)
âIm ,n̂′

Bm

)]
, (C9)

with equality when ρ̂êI âB
= ρ̂êI

⊗ ρ̂âB
. The {êI } modes are in-

dependent of Bob’s bit value. Grouping them by mode index m,
i.e., writing {êI } = { êIm

: 1 � m � M } where êIm
= { ê

(k)
Im

:
1 � k � K }, we have that the {êIm

} modes are independent
and identically distributed, so

S(ρ̂êI
) = MS(ρ̂êIm

). (C10)

Moreover, because Eve’s operation is unitary, the {êIm
,âIm

,â′
Sm

}
modes are in a pure state, so we have

S(ρ̂êIm
) = S(ρ̂âIm ,â′

Sm
). (C11)

Finally, since we are considering Eve’s frequency-domain col-
lective attack, the {âBm

} modes are independent and identically
distributed, thus subadditivity gives us

S(ρ̂âB
) � MS(ρ̂âBm

). (C12)

Putting the preceding results together gives us an upper
bound on Eve’s Holevo information rate:

χEB � R min
{
M
[
S(ρ̂âBm

) − [
S
(
ρ̂

(0)
âIm ,n̂′

Bm

) − S
(
ρ̂âIm ,â′

Sm

)]]
,1
}
,

(C13)
where we have used the fact that Eve’s maximum Holevo
information per bit interval is 1. Our next step is to place a lower
bound on S(ρ̂(0)

âIm ,n̂′
Bm

) − S(ρ̂âIm ,â′
Sm

) by recognizing that term as

the entropy output of a tensor-product quantum channel.
Definition: Entropy output. Let φ(·) be a quantum channel

that maps states in H1 to states in H2. The entropy-output
function Eφ(·) of that channel quantifies the difference between

the von Neumann entropies of its output and input states, i.e.,
for input-state ρ̂ we have that

Eφ(ρ̂) = S[φ(ρ̂)] − S(ρ̂). (C14)

Using this definition (C13) can be rewritten as

χEB � R min{M[S(ρ̂âBm
) − Eφ(ρ̂âIm ,â′

Sm
)],1}. (C15)

Next, we prove that entropy output is superadditive for the
quantum channel φ(·) = φS(·) ⊗ II (·) that maps the {â′

Sm
,âIm

}
modes into the {n̂′

Bm
,âIm

} modes, where II (·) is the identity
channel.

Theorem: Superadditivity of entropy output. Let A12 and
B12 be bipartite quantum systems on H⊗2

A and H⊗2
B with

components {A1,A2} and {B1,B2}, respectively. For an ar-
bitrary input state ρ̂A12,B12 in H⊗2

A ⊗ H⊗2
B , and an arbitrary

quantum channel φ(·) that maps states in HA ⊗ HB into states
in H′

A ⊗ H′
B we have that

Eφ⊗φ(ρ̂A12,B12 ) � Eφ(ρ̂A1,B1 ) + Eφ(ρ̂A2,B2 ), (C16)

with equality when ρ̂A12,B12 = ρ̂A1B1 ⊗ ρ̂A2B2 , i.e., entropy
output is superadditive.

From entropy output’s definition, inequality (C16) is
equivalent to

S[φ ⊗ φ (ρ̂A12,B12 ) − S(ρ̂A12,B12 ) � S[φ(ρ̂A1,B1 )]

− S(ρ̂A1,B1 ) + S[φ(ρ̂A2,B2 )] − S(ρ̂A2,B2 ). (C17)

This inequality can be rewritten as

I (A1B1 :A2B2) � I [φ(A1B1) :φ(A2B2)], (C18)

where I (A :B) = S(ρ̂A) + S(ρ̂B ) − S(ρ̂A,B) is the quantum
mutual information. The validity of inequality (C18) follows
from the quantum data-processing inequality [31], because
φ(·) acts independently on (A1,B1) and (A2,B2).

The subadditivity of von Neumann entropy and the super-
additivity of entropy output imply that S(ρ̂âBm

) − Eφ(ρ̂âIm ,â′
Sm

)
is subadditive. Moreover, von Neumann entropy is continuous.
So, if we can show that entropy output for Gaussian channels
is invariant under passive symplectic operations then we could
apply Gaussian extremality [32] and obtain

S(ρ̂âBm
) − Eφ(ρ̂âIm ,â′

Sm
)

� SG(�B) − [
SG

(
�

(0)
IB ′

) − SG(�IS ′ )
]
, (C19)

where SG(�) denotes the von Neumann entropy of a Gaussian
state with Wigner covariance matrix �, and �B , �

(0)
IB ′ , and

�IS ′ are the Wigner covariance matrices of ρ̂âBm
, ρ̂

(0)
âIm ,n̂′

Bm

, and

ρ̂âIm ,â′
Sm

, respectively. It would then follow that, Eve’s Holevo
information rate for her general frequency-domain collective
attack satisfies

χEB � R min
{
M
[
SG(�B) + SG(�IS ′ ) − SG

(
�

(0)
IB ′

)]
,1
}
,

(C20)

which means that we only need to maximize this rate when Eve
makes a collective frequency-domain Gaussian attack. Note
that �B and �

(0)
IB ′ are obtained from �IS ′ by applying Bob’s

modulator and amplifier transformations, and that Eqs. (C2)
and (C3) place constraints on �IS ′ when Eve mounts her
frequency-domain collective attack. The rest of this section
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is devoted to (1) proving that entropy output for Gaussian
channels is invariant under passive symplectic transforma-
tions; and (2) placing an explicit upper bound on Eve’s Holevo
information rate for her optimum frequency-domain collective
Gaussian attack under the preceding covariance constraints.

To show that entropy output for Gaussian channels is
invariant under passive symplectic transformations, we rely on
the fact that Gaussian channels and symplectic transformations
are both linear Bogoliubov mode transformations. Also,
because the {âIm

} modes are in Gaussian states, we only need
to consider symplectic transformations of the {â′

Sm
} modes.

Consider a Gaussian channel φG(·) whose input modes are â1

and â2 and whose output modes satisfy

b̂1 = c1â1 + c2â
†
1 + c3n̂1 + c4n̂

†
1, (C21)

b̂2 = c1â2 + c2â
†
2 + c3n̂2 + c4n̂

†
2, (C22)

where the {ck} are complex-valued coefficients associated
with φG(·) and the {n̂k} are vacuum-state ancilla modes. Now
suppose that the input modes are applied to the input ports of
a 50-50 beam splitter whose outputs,

â± = (â1 ± â2)/
√

2, (C23)

become the inputs to φG(·). Now the output modes will be

b̂+ = c1â+ + c2â
†
+ + c3n̂1 + c4n̂

†
1, (C24)

b̂− = c1â− + c2â
†
− + c3n̂2 + c4n̂

†
2. (C25)

Because unitary operations do not change von Neumann
entropy, we can apply another 50-50 beam splitter to these
output modes and obtain

b̂′
1 = (b̂+ + b̂−)/

√
2, (C26)

b̂′
2 = (b̂+ − b̂−)/

√
2, (C27)

whose von Neumann entropy will be the same as that of the
{b̂+,b̂−} modes. With some algebra, we can verify that

b̂′
1 = c1â1 + c2â

†
1 + c3n̂+ + c4n̂

†
+, (C28)

b̂′
2 = c1â2 + c2â

†
2 + c3n̂− + c4n̂

†
−, (C29)

where the n̂± = (n̂1 ± n̂2)/
√

2 are in their vacuum states.
Hence the {b̂′

1,b̂
′
2} modes have the same von Neumann entropy

as {b̂1,b̂2} modes. A similar analysis will demonstrate entropy
invariance for waveplate transformations, completing the proof
that the entropy output for Gaussian channels is invariant under
passive symplectic transformations.

Having shown the last condition we needed for Gaussian
extremality to hold, we turn our attention to Eve’s collective
frequency-domain Gaussian attack. In such an attack, Eve’s
unitary operation in Fig. 5 is a K + 1-mode Bogoliubov
transformation [33], resulting in

â′
Sm

= u0âSm
+ v∗

0 â
†
Sm

+
K∑

k=1

(
ukê

(k)
Vm

+ v∗
k ê

(k)†
Vm

) + α. (C30)

A direct consequence of Gaussian extremality is that the
optimum displacement is α = 0, because only when α = 0 will
the unconditional state ρ̂âBm

be Gaussian. So, setting α = 0, we
need to maximize the right-hand side of inequality (C20) over

the parameters { uk,vk : 0 � k � K} subject to the following
constraints.

First, so that Eq. (C30) yields a proper free-field com-
mutator bracket for â′

Sm
, we require that the coefficients

{ uk,vk : 0 � k � K } satisfy

K∑
k=0

(|uk|2 − |vk|2) = 1. (C31)

Second, the security-monitoring constraint in Eq. (C2) implies
that Eve’s attack parameters { uk,vk : 0 � k � K } must obey

(|u0|2 + |v0|2)NS +
K∑

k=0

|vk|2 = κSNS. (C32)

Because the first term on the left is Alice’s light injection into
Bob while the second term is due to Eve, the constraint in
Eq. (C3) can be rewritten as

fE =
∑K

k=0 |vk|2
κSNS

, (C33)

which shows that under Eve’s collective frequency-domain
Gaussian attack the intrusion parameter fE equals the fraction
of light entering Bob’s terminal that is due to Eve. In
Appendix E we will show that Alice and Bob’s photon-
coincidence channel monitoring can measure fE . Hence Eve
will constrain her attack parameters to yield an fE value that
Alice and Bob will tolerate in the FL-QKD protocol. (Eve’s
using an fE value that exceeds what Alice and Bob will tolerate
would constitute a denial-of-service attack.)

1. Evaluating Eve’s Holevo information rate upper bound

We can evaluate the bound in (C20) by symplectic diag-
onalization of the Wigner covariance matrices of { âIm

,n̂′
Bm

},
{âIm

,â′
Sm

}, and âBm
conditioned on the value of Bob’s bit. From

Appendix B we can easily show that

�IS ′ = 1

4

[
AS CIS ′

CIS ′ BIS ′

]
, (C34)

where

BIS ′ = 2

[
B + Re(w) Im(w)

Im(w) B − Re(w)

]
, (C35)

and

CIS ′ = 2
√

NS(NS + 1)

[
Re(u0 + v0) Im(u0 − v0)
Im(u0 + v0) −Re(u0 − v0)

]
,

(C36)

with B = 1/2 + κSNS , w = v†u + (2NS + 1)v∗
0u0, v† ≡

[v∗
1 v∗

2 · · · v∗
K ], and u = [u1 u2 · · · uK ]T , and T

denoting transpose. We also find that

�
(b)
IB ′ = 1

4

[
AS C(b)

IB ′

C(b)
IB ′ BIB ′

]
, (C37)
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where

BIB ′ =
[
B ′ + Re(x) −Im(x)

−Im(x) B ′ − Re(x)

]
, (C38)

C(b)
IB ′ = (−1)b2

√
(GB − 1)NS(NS + 1)

×
[

Re(u0 + v0) −Im(u0 − v0)
Im(u0 + v0) Re(u0 − v0)

]
,

(C39)

with B ′ = 1 + 2(GB − 1)(κSNS + 1) and x = 2(GB − 1)w.
The last Wigner covariance that we need is

�
(b)
B = 1

4

[
B ′′ + 2GBRe(w) 2GBIm(w)

2GBIm(w) B ′′ − 2GBRe(w)

]
, (C40)

where B ′′ = −1 + 2GB (κSNS + 1). Because this covariance
matrix is independent of b, we have �B = �

(b)
B and the

unconditional state of âBm
is Gaussian.

After evaluating all the symplectic eigenvalues of the
preceding Wigner covariances, we have that

χEB � R min

{
M

[
g

(
4ξIS ′+ − 1

2

)
+ g

(
4ξIS ′− − 1

2

)
+g

(
4ξB − 1

2

)
− g

(
4ξIB ′+ − 1

2

)
− g

(
4ξIB ′− − 1

2

)]
,1

}
, (C41)

where g(x) = (x + 1) log2(x + 1) − x log2(x) is the von Neu-
mann entropy of a thermal state with average photon number
x. Here ξIS ′+ � ξIS ′− and ξIB ′+ � ξIB ′− are, respectively,
the symplectic eigenvalues of �IS ′ and �

(b)
IB ′ , and ξB is the

symplectic eigenvalue of �B .
Because FL-QKD operates with NB � 1, we shall re-

place (C41) with its leading-order expansion in that regime,
namely

χEB � R min
{
M
[
g(2ξIS ′+ − 1/2) + g(2ξIS ′− − 1/2)

−g(2ξ̃IB ′− − 1/2) + O
(
N

−1/2
B

)]
,1
}
, (C42)

where ξIS ′± is independent of NB and ξ̃IB ′− is the NB � 1
leading-order, O(1), approximation to ξIB ′−. Our next task is to
maximize the right-hand side of (C42) over all possible values
of Eve’s attack parameters, { uk,vk : 0 � k � K }, subject to
the commutator-preservation constraint (C31), the photon-flux
constraint (C32), and the injection-fraction constraint (C33).
The first of these constraints is an absolute requirement on
frequency-domain collective Gaussian attacks, the second
is set by Eve’s desire to elude Bob’s detecting her by
simple photon-flux and spectrum monitoring, and the third
is a consequence of Alice and Bob’s photon-coincidence
monitoring.

The preceding attack-parameter optimization can be ac-
complished more readily by satisfying (C31), (C32), and (C33)
by means of

|v0| =
√

(1 − fE)κS cos(γv),

with γv ∈ [0,π/2] and cos2(γv) � fENS/(1 − fE),
(C43)

|u0| =
√

(1 − fE)κS sin(γv), (C44)

v†v = [fEκSNS − (1 − fE)κS cos2(γv)], (C45)

u†u = fEκSNS + 1 − (1 − fE)κS

+ (1 − fE)κS cos2(γv), (C46)

|v†u| =
√

(v†v)(u†u) cos(δ), with δ ∈ [0,π/2]. (C47)

Next, we further simplify (C42) by restricting it to FL-QKD’s
desired long-distance operating regime, wherein κS � 1. Here
we find that

χEB � R min
(
M
{
κS[fENS − (1 − fE) cos2(γv)] sin2(δ)

×{1/ ln(2) − log2 [ sin2(δ)κS

× [fENS − (1 − fE) cos2(γv)]]}
+(1 − fE)κS log2(1 + 1/NS)

× [
(2NS + 1) cos2(γv) + N2

S

]
+O

(
κ

3/2
S

) + O
(
N

−1/2
B

)}
,1
)
. (C48)

Neglecting the O(·) terms, we find that the derivative of the
right-hand side of (C48) with respect to sin2(δ) will be positive
if ln[2fEκSNS] < 0, a condition that will always be satisfied
when κSNS � 1. Thus we conclude that δ = π/2 is Eve’s
best choice. Next, using δ = π/2 in (C48), neglecting the O(·)
terms, and differentiating (C48)’s right-hand side with respect
to cos2(γv), we find that it will be negative if

ln(2fEκS) < − max
NS�1

[ln(NS) + (1 + 2NS) ln(1 + 1/NS)]

≈ −2, (C49)

where the NS constraint is due to FL-QKD’s operating at
low brightness. Alice and Bob’s constraining Eve to fE � 1
combined with κS � 1 ensures that (C49) is obeyed, making
γv = π/2 optimum.

At this point, using δ = γv = π/2 in Eqs. (C44)–(C47),
we have that Eve’s optimum frequency-domain collective
Gaussian attack is to use the Fig. 5 setup with

v0 = 0, (C50)

|u0| =
√

(1 − fE)κS, (C51)

α = 0, (C52)

v†v = fEκSNS, (C53)

u†u = fEκSNS + 1 − (1 − fE)κS, (C54)

v†u = 0. (C55)

Her Holevo information rate for this optimum frequency-
domain collective Gaussian attack obeys

χEB � χUB
EB = R min[M(κSNS{fE[1/ ln(2) − log2(fEκSNS)]

+ (1 − fE)NS log2(1 + 1/NS)}),1]. (C56)

This result omits the O(κ3/2
S ) and O(N−1/2

B ) terms in (C48),
so it is important to note that (1) in computing the paper’s
secret-key rate results we used the exact form from (C41)
with the attack parameters from Eqs. (C50)–(C55); and (2)
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numerically maximizing the right-hand side of (C42) over
Eve’s attack parameters for the path lengths considered in the
paper yielded δ = γv = π/2 [34].

2. Physical realization of Eve’s optimum
frequency-domain collective attack

At this juncture it is instructive to exhibit a physical
implementation for Eve’s optimum frequency-domain collec-
tive attack, namely her Fig. 5 Gaussian attack with attack
parameters given by Eqs. (C50)–(C55). That attack can be
realized with Eve’s using only two ancilla and choosing
u1 = √

fEκSNS + 1 − (1 − fE)κS , v1 = 0, u2 = 0, and v2 =√
fEκSNS . Then, because Alice and Bob must do phase

tracking—FL-QKD is an interferometric protocol—no loss
of generality ensues from setting u0 = √

(1 − fE)κS . With
these parameter values, Eve’s optimum frequency-domain
collective Gaussian attack becomes the SPDC beam-splitter
attack, shown in Fig. 2. Here, Eve uses an SPDC source
identical to Alice’s with the exception of its brightness being
NE = fEκSNS/[1 − (1 − fE)κS]. She retains her idler and
injects her signal into the Alice-to-Bob channel through a
beam splitter with Alice-to-Bob transmissivity

√
(1 − fE)κS .

Eve then performs a collective measurement on the light she
collects from that beam splitter’s other output port, her retained
idler, and the light she taps from the Bob-to-Alice channel
in which she has inserted a beam splitter with Bob-to-Alice
transmissivity κS . To see that this identification is correct, we
exhibit its three-mode Bogoliubov transformation,

â′
Sm

=
√

(1 − fE)κS âSm

+
√

fEκSNS + 1 − (1 − fE)κS ê
(1)
Vm

+
√

fEκSNS ê
(2)†
Vm

, (C57)

ê
(1)
Im

=
√

fEκSNS

1 − (1 − fE)κS

ê
(1)†
Vm

+
√

fEκSNS + 1 − (1 − fE)κS

1 − (1 − fE)κS

ê
(2)
Vm

, (C58)

ê
(2)
Im

=
√

1 − (1 − fE)κS âSm

+
√

(1 − fE)κS(fEκSNS + 1 − (1 − fE)κS)

1 − (1 − fE)κS

ê
(1)
Vm

+
√

(1 − fE)κS(fEκSNS)

1 − (1 − fE)κS

ê
(2)†
Vm

, (C59)

and recognize â′
Sm

and ê
(2)
Im

as the beam-splitter outputs in Fig. 2

and ê
(1)
Im

as Eve’s retained idler.
In the paper, we not only report our upper bound on the

Holevo information rate for Eve’s optimum frequency-domain
collective Gaussian attack, as realized by the SPDC beam-
splitter arrangement, but also upper bounds on her Holevo
information rates for her collective passive and collective
active attacks with that arrangement. The upper bound on
the Holevo information rate of Eve’s collective passive attack
is trivially obtained from the development presented earlier

in this section: her optimum collective frequency-domain
Gaussian attack becomes her collective passive attack when
fE = 0. Eve’s optimum collective active attack is realized, in
the Fig. 2 setup, by her only making a collective measurement
on her retained idler and the light she taps from the Bob-
to-Alice channel. That rate bound, which can be derived by a
procedure similar to what we have just presented, is as follows:

χUBact
EB = R min

{
M

[
SG(�IB) −

1∑
b=0

SG

(
�

(b)
IB

)/
2

]
,1

}
,

(C60)
where

�
(b)
IB = 1

4

[
AE Cact(b)

IB

Cact(b)
IB AB

]
, (C61)

with AE = (2NE + 1)I2, AB = [2(GBNS + NB) + 1]I2, and

Cact(b)
IB =

[
(−1)bCact

IB 0
0 (−1)b+1Cact

IB

]
, (C62)

with Cact
IB = 2

√
GB(1 − fEκS)NE(NE + 1), is the conditional

Wigner covariance matrix of the {ê(1)
Im

,âBm
} mode pair given

Bob’s bit value. That mode pair’s unconditional Wigner
covariance matrix is then

�IB =
1∑

b=0

�
(b)
IB/2. (C63)

As before, the von Neumann entropies in this bound can be
found in terms of thermal-state von Neumann entropies via
symplectic diagonalization of the Wigner covariances.

APPENDIX D: ALICE’S ERROR PROBABILITIES AND
ALICE AND BOB’S SHANNON INFORMATION RATES

Because M � 200 for all the performance evaluations
presented in the paper, we can use the central limit theorem
to justify the following Gaussian-approximation formula for
Alice’s error probability [14] when Bob’s bit value is equally
likely to be 0 or 1 and Eve mounts her optimum frequency-
domain collective Gaussian attack using the Fig. 2 setup:

Pr(e)hom
Alice = Q

(
μ0 − μ1

σ0 + σ1

)
, (D1)

where

Q(x) =
∫ ∞

x

dt
e−t2/2

√
2π

. (D2)

Here, μb and σb are the conditional mean and conditional
standard deviation of the N̂hom measurement given the value
of Bob’s message bit, b. Once Alice’s error probability is
found, Alice and Bob’s Shannon-information rate follows
immediately from

IAB = R
{
1 + Pr(e)hom

Alice log2

[
Pr(e)hom

Alice

]
+ [

1 − Pr(e)hom
Alice

]
log2

[
1 − Pr(e)hom

Alice

]}
, (D3)

hence all that remains is to determine the conditional means
and standard deviations needed to instantiate our error-
probability formula.
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The conditional moments we require are easily calculated
from the Fig. 2 setup and its associated state characterizations,
so we will merely present the results. We have that

μb = 2(−1)bMηκS

√
GBN ′

ASENLO, (D4)

and

σb =
√

M
{
ηN1 + 2η2

[
NAlice

R NLO + κ2
SGBN ′

ASENLO
]}

,

(D5)
where N ′

ASE = (1 − κB)(1 − fE)(1 − κA)(1 − κC)NASE,
N1 = NAlice

R + NLO, NAlice
R = κSGB(1 − κB)κSNS + κSNB ,

and perfect reference storage has been assumed [35]. At this
point we can obtain the asymptotic (NB � 1,NLO � 1) form
of Pr(e)hom

Alice that was used for illustrative purposes in the
paper, albeit not in the performance-evaluation figures. In this
asymptotic regime we have that

σb →
√

2Mη2κSNBNLO, (D6)

whence

Pr(e)hom
Alice → Q

(√
2MκSGBN ′

ASE/NB

)
. (D7)

Neglecting the small amount of SPDC light that Alice sent to
Bob, we can replace (1 − κA)(1 − κC)NASE with NS . Using
M = T W = W/R, and replacing (1 − κB) with 1 because
Bob’s channel monitor will withdraw only a small amount
of the light he receives from Alice, we then get

Pr(e)hom
Alice → Q

(√
2MκSGB(1 − fE)NS/NB

)
� exp[−WGB(1 − fE)NS/RNB]/2, (D8)

in the NB � 1, NLO � 1 regime, where we have used the
well-known bound Q(x) � exp(−x2/2)/2. In the paper, this
expression was quoted for ideal equipment, which presumes
unity homodyne efficiency (η = 1). The derivation we have
just given verifies that in this asymptotic regime Pr(e)hom

Alice is
not sensitive to the homodyne efficiency. Thus the η = 0.9
homodyne efficiency assumed in the paper is not a critical
value.

We have now obtained upper bounds on the Holevo infor-
mation rates of Eve’s optimum frequency-domain collective
attack, her collective passive attack, and her collective active
attack, all of which are realizable with the beam-splitter
arrangement shown in Fig. 2. In the paper we plot upper
bounds for these attacks’ Holevo informations in bits per mode,
rather than bits per second. The bits per mode bounds are
trivially obtained by dividing the bits per second bounds by
the illumination bandwidth W , which specifies the number of
modes per second that are being employed on the Alice-to-Bob
and Bob-to-Alice channels.

APPENDIX E: CHANNEL MONITORING
FOR GENERAL STATES

Alice and Bob measure the singles rates at their channel
monitors, i.e., SI for Alice’s idler beam, SA for Alice’s tap on
her transmitted beam, and SB for Bob’s tap on his received
beam. They also measure CIA and C̃IA, the time-aligned and
time-shifted coincidence rates between Alice’s idler and the tap
on her transmitted beam, and CIB and C̃IB , the time-aligned

and time-shifted coincidence rates between Alice’s idler and
Bob’s tap on his received beam, in both cases after accounting
for the relevant propagation delays as described below. Their
monitors will be assumed to have detectors with quantum
efficiencies ηI , ηA, and ηB , respectively, and identical jitter-
limited coincidence-gate durations, Tg ∼ 100 ps. When the
average number of photons illuminating each monitor in a
gate time is much smaller than 1—as will be the case for our
performance evaluation—the average values of the preceding
rates can be taken to be [36]

SK = ηK

TR

∫ TR/2

−TR/2
dt

〈
Ê

mon†
K (t)Êmon

K (t)
〉
, (E1)

for K = I,A,B, and

CIK = ηIηK

TR

∫ TR/2

−TR/2
dt

∫ t+Tg/2

t−Tg/2
du

× 〈
Ê

mon†
I (t)Êmon

I (t)Êmon†
K (u)Êmon

K (u)
〉
, (E2)

C̃IK = ηIηK

TR

∫ TR/2

−TR/2
dt

∫ t+Ts+Tg/2

t+Ts−Tg/2
du

× 〈
Ê

mon†
I (t)Êmon

I (t)Êmon†
K (u)Êmon

K (u)
〉
, (E3)

for K = A,B, where Êmon
K (t), for K = I,A,B, are the

positive-frequency,
√

photons/s-unit field operators entering
Alice’s idler and transmitter tap monitors and Bob’s monitor,
respectively. Here, the time origins for the {Êmon

K (t)} have
been chosen to ensure that true coincidences and accidental
coincidences will be counted in the time-aligned coincidences
CIK , but only accidental coincidences will be counted in the
time-shifted coincidences C̃IK . The latter condition is ensured
by taking the time shift Ts to satisfy WTs � 1, Ts � Tg ,
and Ts � TR , where W is Alice’s source bandwidth and
t ∈ [−TR/2,TR/2] is the duration of the FL-QKD protocol’s
quantum communication. In practice, Ts ∼ 10 ns will suffice
for W = 2 THz and Tg = 100 ps.

If we assume that Eve mounts a collective frequency-
domain Gaussian attack, then all of the fields appearing in
our singles and coincidence rates are in a zero-mean, jointly
Gaussian state and we can evaluate these rates by means
of Gaussian moment factoring [37]. However, because we
seek security against the general frequency-domain collective
attack, we will show that Alice and Bob’s channel monitors
can determine Eve’s intrusion parameter, fE , even when her
attack in not Gaussian. Toward that end it is convenient to
introduce Fourier-series decompositions for the field operators
{ Êmon

K (t) : K = I,A,B } over the entire duration of FL-QKD’s
quantum communication, viz.,

Êmon
I (t) = e−iωI t

√
TR

WTR/2∑
m=−WTR/2

âmon
Im

e−i2πmt/TR , (E4)

Êmon
K (t) = e−iωS t

√
TR

WTR/2∑
m=−WTR/2

âmon
Km

ei2πmt/TR , (E5)

for K = A,B, where ωS and ωI are the center frequencies of
Alice’s signal and idler beams and we have limited the series to
Alice’s source bandwidth, i.e., to the frequency modes that are
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in nonvacuum states. The behaviors of the modes appearing
in these Fourier series can be gotten from Appendix A by
presuming that the Fourier expansions in that appendix were
made on the [−TR/2,TR/2] interval and making the following
identifications:

âmon
Im

= âSPDC
Im

, (E6)

âmon
Am

= √
κA âAm

−
√

1 − κA v̂Am
, (E7)

âmon
Bm

= √
κB â′

Sm
−
√

1 − κB v̂Bm
. (E8)

Note that Eve’s mounting a frequency-domain collective attack
makes the mode triples { (âmon

Im
,âmon

Am
,âmon

Bm
) : −WTR/2 � m �

WTR/2 } independent and identically distributed with the {âIm
}

modes being in zero-mean states.
For the singles rates we find that

SK = ηK

TR

WTR/2∑
n=−WTR/2

WTR/2∑
m=−WTR/2

〈
â

mon†
Kn

âmon
Km

〉
× sin[π (n − m)]

π (n − m)
(E9)

= ηK

TR

WTR/2∑
n=−WTR/2

〈
â

mon†
Kn

âmon
Kn

〉
(E10)

= ηKW
〈
â

mon†
Kn

âmon
Kn

〉
, (E11)

for K = I,A,B. Using this result in conjunction with
Eqs. (E6)–(E8) then gives us

SI = ηINSPDCW, (E12)

SA = ηAκANAW, (E13)

SB = ηBκBκSNSW. (E14)

Finding the time-aligned and time-shifted coincidence rates
is more complicated than what we have just done for the singles
rates. We start from the photon-flux cross-correlation function,

RIK (t,u) = 〈
Ê

mon†
I (t)Êmon

I (t)Êmon†
K (u)Êmon

K (u)
〉
, (E15)

for K = A,B, which, employing the Fourier series given
earlier and grouping terms, can be reduced to

RIK (t,u) =
3∑

k=1

R
(k)
IK (t,u), (E16)

where

R
(1)
IK (t,u) = 1

T 2
R

[∑
n,m

〈
â

mon†
In

â
mon†
Kn

〉〈
âmon

Im
âmon

Km

〉
ei2π(n−m)(t−u)/TR

]
, (E17)

R
(2)
IK = 1

T 2
R

[∑
n,m

〈
â

mon†
In

âmon
In

〉〈
â

mon†
Km

âmon
Km

〉]
, (E18)

and

R
(3)
IK (t,u) = 1

T 2
R

{∑
n

[〈
â

mon†
In

â
mon†
Kn

âmon
In

âmon
Kn

〉 − ∣∣〈âmon
In

âmon
Kn

〉∣∣2 − 〈
â

mon†
In

âmon
In

〉〈
â

mon†
Kn

âmon
Kn

〉]}
, (E19)

because of the independence of the mode triples and the zero-mean nature of the {âmon
Im

} modes, with all indices are summed
from −WTR/2 to WTR/2.

The time independence of R
(2)
IK (t,u) and R

(3)
IK (t,u) implies that these terms will not contribute to CIK − C̃IK . Moreover the

independence and identical distribution of the mode pairs {âmon
Im

,âmon
Am

âmon
Bm

} makes R
(1)
IK (t,u) vanish when |t − u| � 1/W . Hence

we find that

CIK − C̃IK = ηIηK

TR

∣∣〈âmon
Im

âmon
Km

〉∣∣2 ∑
n,m

Tg

TR

sin[π (n − m)Tg/TR]

π (n − m)Tg/TR

. (E20)

In the main text we claimed that Alice and Bob’s channel monitors will enable them to measure Eve’s intrusion parameter,

fE ≡ 1 −
∣∣〈â′

Sm
âIm

〉∣∣2
κS |〈âSm

âIm
〉|2 , (E21)

via

fE = 1 − [CIB − C̃IB]/SB

[CIA − C̃IA]/SA

. (E22)

Using Eqs. (E13), (E14), and (E20) we get

[CIB − C̃IB]/SB

[CIA − C̃IA]/SA

=
∣∣〈âmon

Im
âmon

Bm

〉∣∣2∣∣〈âmon
Im

âmon
Am

〉∣∣2
〈
â

mon†
Am

âmon
Am

〉〈
â

mon†
Bm

âmon
Bm

〉 . (E23)
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From Eqs. (E6)–(E8) we can reduce this result to

[CIB − C̃IB]/SB

[CIA − C̃IA]/SA

=
∣∣〈âSPDC

Im
â′

Sm

〉∣∣2∣∣〈âSPDC
Im

âAm

〉∣∣2
〈
â
†
Am

âAm

〉〈
â

′†
Sm

â′
Sm

〉 . (E24)

Use of Eqs. (A5) and (C2) plus 〈âSm
âSPDC

Im
〉 = √

κ ′〈âSm
âIm

〉 then yields

[CIB − C̃IB]/SB

[CIA − C̃IA]/SA

=
∣∣〈â′

Sm
âIm

〉∣∣2
κS

∣∣〈âSm
âIm

〉∣∣2 . (E25)

Although this result appears to verify the agreement of
Eqs. (E21) and (E22), there is an issue with that identification.
The modes appearing in Eq. (E21) were obtained from
Fourier-series decompositions of the relevant continuous-time
field operators on a duration-1/R s interval, whereas those
in Eq. (E25) come from Fourier-series decompositions of
those field operators on a duration-TR s interval. Because of
the independent, identical distribution of the mode operators,
however, their second moments—which are all that appears in
Eqs. (E21) and (E22)—will be the same regardless of whether
the Fourier series’ time interval has duration 1/R or TR .

APPENDIX F: EVE’S ENTANGLEMENT-ASSISTED
CAPACITY

When Eve mounts a collective active attack, we can
regard her use of the SPDC’s idler beam she has retained
and the modulated, amplified, noisy version of her SPDC’s
signal beam she collects from her tap on the Bob-to-Alice
fiber as an entanglement-assisted communication channel
from Bob to her. Consequently, her collective active attack’s
Holevo information per mode cannot exceed the single-mode
entanglement-assisted capacity for that channel, CE [38,39],
because entanglement-assisted capacity is known to be addi-
tive. From [38,39] we have that

CE = g{(1 − κB)[1 − (1 − fE)κS]NE}
+ g{GB(1 − κB)[1 − (1 − fE)κS]NE + NB}
− g{(1 + (1 − κB)[1 − (1 − fE)κS]NE)NB}. (F1)

We have been somewhat conservative in Eq. (F1) in that this
result assumes that Alice does not inject any light into Bob
and that Eve collects all the light that Bob sends on the
Bob-to-Alice fiber. Neither of these assumptions is of great
consequence, but they make it easier to obtain the result in
Eq. (F1). In particular, Alice’s injection into Bob acts as noise
for Eve’s active attack. Moreover, because Alice’s injection
into Bob has low brightness, it is dwarfed by the ASE from
Bob’s amplifier. Finally, because Fig. 4(b) plots CE for a
50-km-long path, Eve is already getting 90% of the light
Bob sends to Alice. Hence increasing that value to 100% is
not a major change, especially since Bob’s amplifier gain is
sufficient to overcome return-path loss.

APPENDIX G: BOUNDING EVE’S INFORMATION GAIN
FROM KNOWING THE OUTPUT OF BOB’S

CHANNEL MONITOR

Bob sends Alice the times at which his channel monitor has
detected photons so that she can use that data to estimate Eve’s

intrusion parameter. To do so he uses a tamper-proof classical
channel that Eve can monitor. So far, we have not included
the information that Eve could glean from that classical
transmission in bounding her Holevo information rate. Here
we will show that the extra information that Eve might gain
from knowing those detection times is inconsequential.

The mean photon-number per bit at Bob’s monitor detector
is MκBκSNS � κB � 1, owing to FL-QKD’s operating with
MκSNS ∼ 1 (∼1 ppb at Bob’s terminal), so we will only
consider two leading-order possibilities: no photon is detected
(probability of occurrence = p0) or one photon is detected
(probability of occurrence = p1 = 1 − p0).

Let us use χUB
EB|n, for n = 0,1, to denote an upper bound

on Eve’s Holevo information rate given that Bob’s monitor
has detected n photons and, if there has been a detection,
that Eve knows from which frequency mode it came. (This
frequency-mode knowledge is not available to Eve from
her eavesdropping on Bob’s classical-channel transmission,
so assuming she has this knowledge increases her Holevo
information rate.) Then, averaged over Bob’s monitor result,
the upper bound on Eve’s Holevo information rate for her
optimum frequency-domain collective attack is

χ̄UB
EB = p0χ

UB
EB|0 + p1χ

UB
EB|1. (G1)

Because all M modes are independent, we have that χUB
EB|0 =

Mχ0, where χ0 is the per-mode upper bound on Eve’s
Holevo information rate when Bob’s monitor failed to detect
a photon [40]. When Bob’s monitor does detect a photon,
and Eve knows which frequency mode has lost a photon to
that detection, the upper bound on her conditional Holevo
information rate will be

χUB
EB|1 = (M − 1)χ0 + χ1, (G2)

where χ1 is the per-mode upper bound when Bob’s monitor
detected a photon in that mode. We now have that

χ̄UB
EB = Mχ0 + p1(χ1 − χ0), (G3)

which we need to compare to our upper bound from Ap-
pendix C, which neglected any information Eve might gain
from learning the times at which Bob’s channel monitor made
photon detections.

For χUB
EB being the Appendix C upper bound we will use

χ ≡ χUB
EB /M , to denote its per-mode contribution. We now

have that

χ̄UB
EB

χUB
EB

= χ0

χ
+ p1

(χ1 − χ0)

Mχ
. (G4)

012322-15



ZHUANG, ZHANG, DOVE, WONG, AND SHAPIRO PHYSICAL REVIEW A 94, 012322 (2016)

Figure 4(a) shows that Bob will receive ∼1 ppb for one-
way path lengths less than 200 km, and our secret-key rate
calculations assume that Bob’s monitor taps 1% of that light.
Together these conditions imply that p1 ≈ 0.01. Figure 4(a)
also implies that Mχ ≈ 0.8 for a 50-km one-way path length.
So, taking the very conservative upper limit of unity for
χ1 − χ0, we have that the second term on the right in Eq. (G4)
is at most 0.013. Thus it only remains for us to address the
first term on the right in that equation. We will do so within
the Appendix C.2 framework, i.e., for Eve’ frequency-domain
collective Gaussian attack.

Eve gains her information from measuring the mode triples
{ê(1)

Im
, ê

(2)
Im

,âBm
}. To assess the impact of Eve’s having Bob’s

channel-monitor data, we focus our attention on what that data
implies about conditional state of the {â′′

Sm
} modes, viz., the

modes that enter Bob’s BPSK modulator and, after modulation
and subsequent amplification, become the {âBm

} modes.
Moreover, to do so we will presume that the {â′

Sm
} modes

that arrive at Bob’s terminal are in independent, identically
distributed thermal states with average photon number κSNS ,
as is the case in Eve’s optimum frequency-domain Gaussian
collective attack. Using the beam-splitter relation that converts
these modes and the vacuum-state {v̂Bm

} modes into the

{âmon
Bm

,â′′
Sm

} mode pairs, we find that those mode pairs are
in independent, identically distributed Gaussian states whose
coherent-state decomposition is

ρ̂âmon
Bm

,â′′
Sm

=
∫

d2α

πκSNS

e−|α|2/κSNS |√κB α〉BB〈√κB α|

⊗ |
√

1 − κB α〉SS〈
√

1 − κB α| . (G5)

Given that Bob’s monitor did not detect a photon, the {â′′
Sm

}
modes are still independent and identically distributed, with
conditional density operator

ρ̂â′′
Sm

|0 = B〈0| ρ̂âmon
Bm

,â′′
Sm

|0〉B
Tr(B〈0| ρ̂âmon

Bm
,â′′

Sm
|0〉B)

. (G6)

After some algebra, we have the ρ̂â′′
Sm

|0 is a thermal state whose
mean photon number, (1 − κB)κSNS/(1 + κBκSNS), is less
than that mode’s unconditional photon number, (1 − κB)κSNS .
Thus we conclude conditioning on Bob getting no count, the
mean photon number in the return mode decreases, but the
quantum state is still Gaussian. Similar results hold for Eve’s
{ê(1)

Im
, ê

(2)
Im

} modes, and we conclude that χ0/χ < 1, hence
χ̄UB

EB/χUB
EB < 1.013 at 50-km one-way path length.
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