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Extraordinary behaviors in a two-dimensional decoherent alternative quantum walk
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We reveal the quantum and classical behaviors of the two-dimensional (2D) alternative quantum walk (AQW)
in the presence of decoherence. For different kinds of decoherence, the analytic expressions for the moments of
position distribution of the AQW are obtained. Taking the broken line noise and coin decoherence as examples of
decoherence, we find that when decoherence emerges in only one direction, the anisotropic position distribution
pattern appears, and not all the motions of the walker exhibit the transition from quantum to classical behaviors.
Considering the effect of decoherence, we reveal the anisotropic correlations between the x (y) position of the
2D walker and the state of the coin in 2D AQWs.
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I. INTRODUCTION

The quantum walk (QW) has been widely employed as
a useful tool to design quantum algorithms, quantum gates,
and quantum computation [1–18]. Due to the necessity of
searching in a large database, multidimensional quantum
fast search algorithms based on QWs have drawn lots of
attention[10–15]. In the two-dimensional (2D) discrete-time
quantum walk (DTQW), by introducing a four-level Grover
coin into the evolution, the quantum Grover search algorithm
has been realized in 2D position space [12,13]. The quantum
search in a higher-dimensional hypercube has also been
discussed [10,12,14,15]. When considering real experimental
implementation, the physical system will have an inevitable
interaction with the surrounding environment. Many studies
of the DTQW report that due to the decoherence induced
by the environment, the position distribution pattern of the
QW changes to a binomial distribution that is similar to the
distribution of a classical walk [19–35]. For the coherent
QW, the variance of the position distribution in the QW
increases quadratically with time, while with the introduction
of decoherence into the walk, the variance of the position will
increase linearly with time, which is a characteristic of the
classical walk. In some sense, the emergence of decoherence
in the QW converts the original QW into a classical walk.

Recently, a 2D QW with one two-level coin was presented
[36–40]. In this alternative quantum walk (AQW), the two-
level coin affects first the walker moving in the x direction,
followed by the motion of the walker along the y direction.
The position distribution pattern induced by the 2D DTQW
with a four-level Grover coin can be recovered with the AQW
with only one two-level coin [36,37]. Due to the function of
the coin as the register of the coherence and randomness in the
aforementioned DTQW, when the searching space increases
to n dimensions, we need a 2n-level coin to implement the
search process. So in experiments, it is very difficult to realize
a quantum Grover search in high dimensions with such a
2n-level coin. Thanks to the reduction in resources of the
AQW, this n-dimensional AQW is more feasible than the
original DTQW with the 2n-level coin [38]. The 2D AQW with
one two-level coin has already been realized in experiments
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[41,42]. Because of the unavoidable interaction between the
AQW and its surrounding environment, the decoherent effect
of the environment on the dynamics of the AQW needs to be
counted in a real-life QW experiment. Decoherence, including
random phases, bit-flip noise, and phase-flip noise in the coin
space, has been discussed for the 2D AQW [43–45]. The
numerical results have revealed that classical behaviors emerge
in the 2D AQW with increasing strength of the decoherence.

In this paper, we study the quantum and classical behaviors
of the 2D AQW when the coin and the 2D walker undergo
different kinds of decoherence. By employing the method
presented in Refs. [20] and [30], we provide the analytic
expressions for the first and second moments of position in
the presence of any kind of decoherence. First, we take the
broken-line-noise model as an example of the coin-position
decoherence of the AQW, then we consider a 2D AQW
involving coin decoherence where the coin is measured with
a certain probability before each step of the walk. In our
discussion, we assume that the decoherence emerges in the
motion along the x direction of the 2D AQW. We study the
position distribution of the 2D AQW and the variance of
the position distribution with a change in the strength of the
decoherence. In our work, we find that, for different kinds
of decoherence, different quantum and classical behaviors
emerge in the 2D AQW, and not motions along the x and the y

direction of the AQW both exhibit a transition from quantum to
classical behaviors. Different position distributions have been
found between the 2D decoherent AQW and the four-level
coin Grover walk [26]. What is more, we study the classical
and quantum correlations between the x and the y positions of
the 2D walker involving the coin-position decoherence or coin
decoherence. Anisotropic patterns for the correlations between
the x (y) position of the walker and the state of the coin have
been found.

The organization of our work is as follows: the scheme
of the 2D AQW incorporating the decoherence is introduced
in Sec. II. The first and second moments of the position
are addressed in analytic forms. Then in Sec. III, we take
the broken-line-noise model and coin decoherence model
as examples. The anisotropic behaviors for the variances
in position and the anisotropic position distributions of the
2D AQW are presented. The correlations between the x (y)
position of the walker and the coin in a 2D decoherent AQW
are discussed in Sec. IV. The conclusion is given in Sec. V.
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II. MODEL

In the 2D AQW, there exists one 2D walker (the walker
moves along the x and y directions) and one two-level coin
(|R〉 and |L〉). The total Hilbert space for the 2D walker and
coin is Ht = Hx ⊗ Hy ⊗ Hc. Here, Hx (Hy) is an infinite-
dimensional Hilbert space, andHc is a two-level Hilbert space.
The basis states of the space Ht are represented as {|x,y,c〉},
where x and y denote the position of the 2D walker along the x

direction and y direction, respectively. The one-step evolution
of the 2D AQW consists of two conditional shift operators
and two coin operators, Uw = Sy(I ⊗ C)Sx(I ⊗ C). The coin
operator C is the Hadamard matrix, that is,

C = H = 1√
2

(
1 1
1 −1

)
, (1)

followed by the conditional shift operator along the x direction,

Sx =
∑
i,j∈Z

|i + 1,j,R〉〈i,j,R| +
∑
i,j∈Z

|i − 1,j,L〉〈i,j,L|.

(2)
After applying the operator C on the coin space, the conditional
shift operator along the y direction is described as

Sy =
∑
i,j∈Z

|i,j + 1,R〉〈i,j,R| +
∑
i,j∈Z

|i,j − 1,L〉〈i,j,L|,

(3)
where Z denotes the x-y position space, which is spanned by
the Hilbert space Hx and Hy . It has been verified that when the
walker starts from the position |0〉x |0〉y , with an appropriate
choice of the initial coin state, the position distribution of the
2D AQW at time t is the same as that from the 2D DTQW
with a four-level Grover coin [36,37].

Due to the inevitable interaction with the surrounding
environment, the evolution of the coherent AQW is affected by
noise. The one-step evolution of a system comprising a walker
and a coin can be written in the form of the Kraus operators
[46],

ρ(t + 1) =
m∑

n=1

Enρ(t)E†
n. (4)

Here, the term En is the Kraus operators containing the
influence on the system from the environment. The general
form of En is En =∑x,y

∑
l1,l2

∑
q,s a

(n)
x,l1,y,l2,q,s |x + l1〉〈x| ⊗

|y + l2〉〈y| ⊗ |q〉〈s|, where x,l1,y,l2 = −∞, . . . , + ∞ and
q,s = {L,R}. The function of the Kraus operators is associated
with the coefficient a

(n)
x,l1,y,l2,q,s . In the discussion below, we

assume that the coefficient a
(n)
x,l1,y,l2,q,s does not depend on

the coordinates x and y. This means that the probability of
translation in the position space depends only on the distances
l1 and l2 of the translation. So the coefficient a

(n)
x,l1,y,l2,q,s

changes to a simple form, a
(n)
l1,l2,q,s . The complete relation for

the Kraus operators is
∑m

n=1 E
†
nEn = I. The Kraus operators

En can be expressed in a general form,

En = 〈en|U |env〉. (5)

Here, the evolution operator U acts on the total system
including the system and the environment. The one-step

evolution for the system is expressed as

ρ(t + 1) =
s∑

n=1

Enρ(t)E†
n =

s∑
n=1

fnWnρ(t)W †
n, (6)

where the coefficient fn denotes the probability that the nth
resource from the environment affects the system dynamics. In
the discussion below, the role of the system is represented by
the 2D walker and the coin of the 2D AQW, and the evolution
of the system is affected by noise from the surrounding
environment. The effect on the system is described by the
operator Wn, and the relation between the Kraus operator En

and the operator Wn is

En =
√

fnWn. (7)

Considering that the evolution for the total system (system +
environment) is unitary, the total evolution operator U for the
total system can be addressed as [20,30]

U = |e1〉〈e1| ⊗ W1 + · · · + |es〉〈es | ⊗ Ws, (8)

where, for the environment state |en〉, the effect on the system is
described by the corresponding operator Wn. Understanding
the exact form of the environment is not required, and the
effects of the environment on the system are contained in
different operators Wn. With the introduction of the initial
state for the environment as

|env〉 =
√

f1|e1〉 +
√

f2|e2〉 + · · · +
√

fs |es〉, (9)

the form of the Kraus operator En is obtained [Eq. (5)] and the
system evolution can be described with Eq. (6).

To illustrate the system dynamics, we apply the Fourier
transform to analyze the dynamics of the 2D AQW [20,30].
The transformations along the x and y directions can be
addressed as

|x〉 =
∫ π

−π

dk

2π
e−ikx |k〉,

|y〉 =
∫ π

−π

dp

2π
e−ipy |p〉.

(10)

Based on the equations above, we can formulate the expression
for the element of position distribution as∑

x,y

|x + l1,y + l2〉〈x,y|

= 1

(2π )2

∫ π

−π

∫ π

−π

dkdpe−il1k−il2p|k,p〉〈k,p|.
(11)

The Kraus operator En can be obtained in the form

En = 1

(2π )2

∫ π

−π

∫ π

−π

dkdp|k〉〈k| ⊗ |p〉〈p| ⊗ Fn(k,p). (12)

The operator Fn(k,p) takes the form Fn(k,p) =∑
l1,l2

∑
q,s a

(n)
l1,l2,q,se

−il1ke−il2p|q〉〈s|, which acts on the
coin space. With the assumption that the 2D walker starts
from the position (0,0) in the x-y plane, the initial density
matrix for the system is

ρ0 =
∫∫∫∫

dkdk′

4π2

dpdp′

4π2
|k〉〈k′| ⊗ |p〉〈p′| ⊗ |ψ0〉〈ψ0|,

(13)
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where the initial state of the coin is represented by |ψ0〉. After one step of evolution, the system can be formulated as

ρ ′ =
m∑

n=1

Enρ0E
†
n =

∫∫∫∫
dkdk′

4π2

dpdp′

4π2
|k〉〈k′| ⊗ |p〉〈p′| ⊗ Lk,k′,p,p′ |ψ0〉〈ψ0|, (14)

with Lk,k′,p,p′Õ =∑n Fn(k,p)ÕF
†
n (k′,p′). Thus, the system density matrix after t step evolution can be obtained as

ρ(t) =
∫∫∫∫

dkdk′

4π2

dpdp′

4π2
|k〉〈k′| ⊗ |p〉〈p′| ⊗ Lt

k,k′,p,p′ |ψ0〉〈ψ0|. (15)

So at time t , the probability of the 2D walker’s occupying position (x,y) is

P (x,y,t) = Trx,y,c[ρ(t)] = 1

(2π )4

∫∫∫∫
dkdk′dpdp′e−ix(k′−k)e−iy(p′−p)Tr

(
Lt

k,k′,p,p′ |ψ0〉〈ψ0|
)
. (16)

The mth moments of the probability distribution 〈xm〉 and 〈ym〉 for the 2D AQW are defined as

〈xm〉 =
∑
x,y

xmP (x,y,t) = 1

(2π )3

∑
x

xm

∫∫∫
dkdk′dpe−ix(k′−k)Tr

(
Lt

k,k′,p,p′ |ψ0〉〈ψ0|
)
,

〈ym〉 =
∑
x,y

ymP (x,y,t) = 1

(2π )3

∑
y

ym

∫∫∫
dkdk′dpe−iy(p′−p)Tr

(
Lt

k,k′,p,p′ |ψ0〉〈ψ0|
)
. (17)

Based on the expressions for the mth moments of the position distribution, we can obtain the analytic forms for the first and
second moments 〈x〉, 〈y〉, 〈x2〉, and 〈y2〉 in the presence of decoherence as

〈x〉 = i

(2π )2

∫∫
dkdp

t∑
m=1

Tr
(
Kk,pLm−1

k,p |ψ0〉〈ψ0|
)
, 〈y〉 = i

(2π )2

∫∫
dkdp

t∑
n=1

Tr
(
Pk,pLn−1

k,p |ψ0〉〈ψ0|
)
,

〈x2〉 = 1

(2π )2

∫∫
dkdp

t∑
m=1

m−1∑
m′=1

{
Tr
[
Kk,pLm−m′−1

k,p

(
K†

k,pLm′−1
k,p |ψ0〉〈ψ0|

)]

+ Tr
[
K†

k,pLm−m′−1
k,p

(
Kk,pLm′−1

k,p |ψ0〉〈ψ0|
)]}+ 1

(2π )2

∫∫
dkdp

t∑
m=1

Tr[Tk(Lm−1
k,p |ψ0〉〈ψ0|)],

〈y2〉 = 1

(2π )2

∫∫
dkdp

t∑
n=1

n−1∑
n′=1

{
Tr
[
Pk,pLn−n′−1

k,p

(
P†

k,pLn′−1
k,p |ψ0〉〈ψ0|

)]

+ Tr
[
P†

k,pLn−n′−1
k,p

(
Pk,pLn′−1

k,p |ψ0〉〈ψ0|
)]}+ 1

(2π )2

∫∫
dkdp

t∑
n=1

Tr
[
Tp

(
Ln−1

k,p |ψ0〉〈ψ0|
)]

. (18)

Here, the superoperators Kk,p, K†
k,p, Tk , Pk,p, P†

k,p, and Tp

above are represented by the explicit expressions as Kk,pÕ =∑
n

∂Fn

∂k
ÕF

†
n , K†

k,pÕ =∑n FnÕ
∂F

†
n

∂k
, TkÕ =∑n

∂Fn

∂k
Õ ∂F

†
n

∂k
,

Pk,pÕ =∑n
∂Fn

∂p
ÕF

†
n , P†

k,pÕ =∑n FnÕ
∂F

†
n

∂p
, and TpÕ =∑

n
∂Fn

∂p
Õ ∂F

†
n

∂p
.

Based on the equations above, we have obtained the
expressions for the moments of the position distribution
[Eqs. (17) and (18)] for a 2D AQW in the presence of different
kinds of decoherence. In the following, we take the broken line
noise and coin decoherence as explicit forms of decoherence
and study the behaviors of a 2D AQW under these two kinds
of decoherence.

III. TWO KINDS OF DECOHERENCE FOR THE
TWO-DIMENSIONAL AQW

In this section, first, we take the broken-line-noise model
as an example of coin-position decoherence, then the coin
decoherence is introduced into a walk in which the coin is

measured with a certain probability before each step of the
walk. We study the variances of the position distribution
and diffusion coefficients of these 2D decoherent AQWs.
The anisotropic position distribution patterns of these two
decoherent AQWs are presented later.

A. The broken-line-noise model

In the QW, the walker moves from one position to adjacent
positions controlled by the current state of the coin. Com-
pared with the classical walk, the interference between wave
functions at different positions leads to different behaviors in
the QW. For the QW, the broken-line-noise model denotes
one kind of decoherence where the connection between the
position and the adjacent positions is broken with a certain
probability [22,26,30]. Here, we assume that the broken line
noise appears only in the x direction, and four possible
evolutions of the 2D AQW involving decoherence are depicted
in Fig. 1.

In Fig. 1, first, the walker moves in the x direction,
labeled by the green arrows along the horizontal direction;

012316-3



TIAN CHEN AND XIANGDONG ZHANG PHYSICAL REVIEW A 94, 012316 (2016)

x

y

(I) (II) (III) (IV)

FIG. 1. Schematic of a 2D AQW with broken line noise; the noise
is applied only along the x direction. Four possible cases of an AQW
are shown: (I) there is no decoherence, with probability (1 − f )2; (II)
the connection between the position and its left adjacent position is
broken, with probability f (1 − f ); (III) the connection between the
position and its right adjacent position is broken, with probability
f (1 − f ); and (IV) the connections between the position and its
adjacent positions (left and right) are broken, with probability f 2.

then the walker travels along the y direction, labeled by
the red arrows along the vertical direction. The 2D AQW
without decoherence is addressed in Fig. 1, (I), with probability
(1 − f )2. The connection between the current position and the
left adjacent position is broken with probability f (1 − f ),
which is addressed in Fig. 1, (II). In Fig. 1, (III), the
connection between the current position and the right adjacent
position is cut off with probability f (1 − f ). In Fig. 1, (IV),
neither the right neighbor nor the left neighbor has any
connection with the current position, and the motion along
the x direction is trapped with probability f 2. To obtain these
four possible evolutions with certain probabilities presented in
Fig. 1, we can introduce the initial state of the environment
as

|env〉 = (1 − f )|e1〉 +
√

f (1 − f )|e2〉 +
√

f (1 − f )|e3〉 + f |e4〉. (19)

When the state of the environment is |en〉 (n = 1,2,3,4), the corresponding Kraus operator En (n = 1,2,3,4) is applied to the
system [see Eq. (5)]. The explicit expressions of En (n = 1,2,3,4) are

E1 = (1 − f )
∑
x,y

1

2
{|x + 1,y + 1〉〈x,y| ⊗ (|R〉〈R| + |R〉〈L|) + |x + 1,y − 1〉〈x,y| ⊗ (|L〉〈R| + |L〉〈L|)

+ |x − 1,y + 1〉〈x,y|(−|R〉〈L| + |R〉〈R|) + |x − 1,y − 1〉〈x,y|(−|L〉〈R| + |L〉〈L|)}, (20a)

E2 =
√

f (1 − f )
∑
x,y

1

2
{|x + 1,y + 1〉〈x,y| ⊗ (|R〉〈R| + |R〉〈L|) + |x + 1,y − 1〉〈x,y| ⊗ (|L〉〈R| + |L〉〈L|)

+ |x,y + 1〉〈x,y|(−|R〉〈L| + |R〉〈R|) + |x,y − 1〉〈x,y|(|L〉〈R| − |L〉〈L|)}, (20b)

E3 =
√

f (1 − f )
∑
x,y

1

2
{|x,y + 1〉〈x,y| ⊗ (|R〉〈R| + |R〉〈L|) + |x,y − 1〉〈x,y| ⊗ (−|L〉〈R| − |L〉〈L|)

+ |x − 1,y + 1〉〈x,y|(|R〉〈L| − |R〉〈R|) + |x − 1,y − 1〉〈x,y|(|L〉〈R| − |L〉〈L|)}, (20c)

E4 = f
∑
x,y

{|x,y + 1〉〈x,y| ⊗ |R〉〈R| − |x,y − 1〉〈x,y| ⊗ |L〉〈L|}. (20d)

For each Kraus operator En (n = 1, 2, 3, 4), we obtain the corresponding operator in the coin space Fn (n = 1, 2, 3, 4) as

F1 = (1 − f )

(
1
2e−i(k+p) + 1

2ei(k−p) 1
2e−i(k+p) − 1

2ei(k−p)

1
2e−i(k−p) − 1

2ei(k+p) 1
2e−i(k−p) + 1

2ei(k+p)

)
, (21a)

F2 =
√

f (1 − f )

(
1
2e−i(k+p) + 1

2e−ip) 1
2e−i(k+p) − 1

2e−ip

1
2e−i(k−p) + 1

2eip 1
2e−i(k−p) − 1

2eip

)
, (21b)

F3 =
√

(1 − f )

(
1
2e−ip − 1

2ei(k−p) 1
2e−ip + 1

2ei(k−p)

− 1
2eip + 1

2ei(k+p) − 1
2eip − 1

2ei(k+p)

)
, (21c)

F4 = f

(
e−ip 0

0 −eip

)
. (21d)

The complete relation is satisfied with
∑

n F
†
nFn = I . To calculate the moments of the position (〈x〉, 〈y〉, 〈x2〉, and 〈y2〉), we

employ one representation that transforms one 2 × 2 matrix to one 4 × 1 column vector [20,30]; that is,

Õ = r0I + r1σx + r2σy + r3σz =

⎛
⎜⎝

r0

r1

r2

r3

⎞
⎟⎠. (22)
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Using this representation, the superoperators Lk,p, Kk,p, Tk , Pk,p, and Tp of the 2D AQW involving broken line noise can be
obtained in matrix form as

Lk,pÕ =

⎛
⎜⎜⎜⎝

1 0 0 0

0 (1 − 2f ) cos 2p 2f (1 − f ) sin k cos 2p − (1 − f )2 cos 2k sin 2p + f 2 sin 2p (1 − f )2 sin 2k sin 2p + 2f (1 − f ) cos k cos 2p

0 (1 − 2f ) sin 2p (1 − f )2 cos 2k cos 2p + 2f (1 − f ) sin k sin 2p − f 2 cos 2p 2f (1 − f ) cos k sin 2p − (1 − f )2 cos 2p sin 2k

0 0 (1 − f )2 sin 2k (1 − f )2 cos 2k + f 2

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎝

r0

r1

r2

r3

⎞
⎟⎟⎠,

(23)

Kk,pÕ =

⎛
⎜⎜⎜⎝

0 −i(1 − f ) −if (1 − f ) sin k −if (1 − f ) cos k

−i(1 − f ) cos 2p 0 f (1 − f ) cos k cos 2p + (1 − f )2 sin 2k sin 2p (1 − f )2 cos 2k sin 2p − f (1 − f ) sin k cos 2p

−i(1 − f ) sin 2p 0 f (1 − f ) cos k sin 2p − (1 − f )2 sin 2k cos 2p −f (1 − f ) sin k sin 2p − (1 − f )2 cos 2p cos 2k

0 0 (1 − f )2 cos 2k −(1 − f )2 sin 2k

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎝

r0

r1

r2

r3

⎞
⎟⎟⎠,

(24)

TkÕ =

⎛
⎜⎜⎜⎝

1 − f 0 0 0

0 cos 2p(1 − f ) (1 − f )2 cos 2k sin 2p −(1 − f )2 sin 2k sin 2p

0 sin 2p(1 − f ) −(1 − f )2 cos 2k cos 2p (1 − f )2 cos 2p sin 2k

0 0 −(1 − f )2 sin 2k −(1 − f )2 cos 2k

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

r0

r1

r2

r3

⎞
⎟⎟⎟⎠, (25)

Pk,pÕ =

⎛
⎜⎜⎜⎝

0 0 −i(1 − f )2 sin 2k −i(1 − f )2 cos 2k − if 2

0 (2f − 1) sin 2p −(1 − f )2 cos 2k cos 2p − 2f (1 − f ) sin k sin 2p + f 2 cos 2p (1 − f )2 sin 2k cos 2p − 2f (1 − f ) cos k sin 2p

0 (1 − 2f ) cos 2p −(1 − f )2 cos 2k sin 2p + 2f (1 − f ) sin k cos 2p + f 2 sin 2p (1 − f )2 sin 2k sin 2p + 2f (1 − f ) cos k cos 2p

−i 0 0 0

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎝

r0

r1

r2

r3

⎞
⎟⎟⎠,

(26)

TpÕ =

⎛
⎜⎜⎜⎝

1 0 0 0

0 cos 2p(2f − 1) (1 − f )2 cos 2k sin 2p − 2f (1 − f ) sin k cos 2p − f 2 sin 2p −(1 − f )2 sin 2k sin 2p − 2f (1 − f ) cos k cos 2p

0 sin 2p(2f − 1) −(1 − f )2 cos 2k cos 2p − 2f (1 − f ) sin k sin 2p + f 2 cos 2p (1 − f )2 cos 2p sin 2k − 2f (1 − f ) cos k sin 2p

0 0 (1 − f )2 sin 2k f 2 + (1 − f )2 cos 2k

⎞
⎟⎟⎟⎠
⎛
⎜⎜⎝

r0

r1

r2

r3

⎞
⎟⎟⎠,

(27)

where K†
k,pÕ = K∗Õ, P†

k,pÕ = P∗Õ, and the initial coin state |ψ0〉 is set as

|ψ0〉〈ψ0| =

⎛
⎜⎝

r0

r1

r2

r3

⎞
⎟⎠. (28)

Considering the expression of the superoperator L, we can verify that

Lm−1
k,p |ψ0〉〈ψ0| =

⎛
⎜⎝

r0

r ′
1

r ′
2

r ′
3

⎞
⎟⎠. (29)

The first-row element r0 remains unchanged when any times of L are applied. When taking into account the trace operator, we
obtain the results related to the operators Tk and Tp:

t∑
m=1

Tr
[
Tk

(
Lm−1

k,p |ψ0〉〈ψ0|
)] = 2(1 − f )t · r0,

t∑
n=1

Tr
[
Tp

(
Ln−1

k,p |ψ0〉〈ψ0|
)] = 2r0t. (30)

Considering the expressions of the superoperators, the first-row element r0 of the 4 × 1 column vector makes no contribution to
the moments 〈x2〉 and 〈y2〉 [Eq. (18)], so we can omit the outcomes associated with r0 and obtain the first term of the second
moments 〈x2〉, 〈y2〉 as

t∑
m=1

m−1∑
m′=1

{
Tr
[
Kk,pLm−m′−1

k,p

(
K†

k,pLm′−1
k,p |ψ0〉〈ψ0|

)]+ Tr
[
K†

k,pLm−m′−1
k,p

(
Kk,pLm′−1

k,p |ψ0〉〈ψ0|
)]}

= 4(1 − f,f (1 − f ) sin k,f (1 − f ) cos k)
t∑

m=1

m−1∑
m′=1

Mm−m′−1
k,p

⎛
⎝(1 − f ) cos 2p · r0

(1 − f ) sin 2p · r0

0

⎞
⎠

= 2(1 − f,f (1 − f ) sin k,f (1 − f ) cos k)(I − Mk,p)−1

{
t − Mk,p

I − Mk,p

}⎛⎝(1 − f ) cos 2p

(1 − f ) sin 2p

0

⎞
⎠, (31)
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t∑
n=1

n−1∑
n′=1

{
Tr
[
Pk,pLn−n′−1

k,p

(
P†

k,pLm′−1
k,p |ψ0〉〈ψ0|

)]+ Tr
[
P†

k,pLn−n′−1
k,p

(
Pk,pLn′−1

k,p |ψ0〉〈ψ0|
)]}

= 4(0,(1 − f )2 sin 2k,(1 − f )2 cos 2k + f 2)
t∑

n=1

n−1∑
n′=1

Mn−n′−1
k,p

⎛
⎝0

0
r0

⎞
⎠

= 2(0,(1 − f )2 sin 2k,(1 − f )2 cos 2k + f 2)(I − Mk,p)−1

{
t − Mk,p

I − Mk,p

}⎛⎝0
0
1

⎞
⎠, (32)

where r0 is chosen as r0 = 1/2 for the normalization of the initial state |ψ0〉. The term Mk,p is a 3 × 3 matrix,

Mk,pÕ =
⎛
⎝(1 − 2f ) cos 2p 2f (1 − f ) sin k cos 2p − (1 − f )2 cos 2k sin 2p + f 2 sin 2p (1 − f )2 sin 2k sin 2p + 2f (1 − f ) cos k cos 2p

(1 − 2f ) sin 2p (1 − f )2 cos 2k cos 2p + 2f (1 − f ) sin k sin 2p − f 2 cos 2p 2f (1 − f ) cos k sin 2p − (1 − f )2 cos 2p sin 2k

0 (1 − f )2 sin 2k (1 − f )2 cos 2k + f 2

⎞
⎠(r1

r2
r3

)
.

(33)

Based on the equations addressed above, the first moments of positions 〈x〉 and 〈y〉 for the 2D AQW with broken line noise are
presented as

〈x〉 = i

2π2

∫∫
dkdp(−i)

⎛
⎝ 1 − f

f (1 − f ) sin k

f (1 − f ) cos k

⎞
⎠

T[
t∑

m=1

Mm−1
k,p

]⎛
⎝r1

r2

r3

⎞
⎠

= 1

2π2

∫∫
dkdp

⎛
⎝ 1 − f

f (1 − f ) sin k

f (1 − f ) cos k

⎞
⎠

T

(I − Mk,p)−1

⎛
⎝r1

r2

r3

⎞
⎠,

〈y〉 = i

2π2

∫∫
dkdp(−i)

⎛
⎝ 0

(1 − f )2 sin 2k

(1 − f )2 cos 2k + f 2

⎞
⎠

T[
t∑

n=1

Mn−1
k,p

]⎛⎝r1

r2

r3

⎞
⎠

= 1

2π2

∫∫
dkdp

⎛
⎝ 0

(1 − f )2 sin 2k

(1 − f )2 cos 2k + f 2

⎞
⎠

T

(I − Mk,p)−1

⎛
⎝r1

r2

r3

⎞
⎠,

(34)

where the superscript T stands for the transpose on that matrix, and the second moments of positions 〈x2〉 and 〈y2〉 for the 2D
AQW with broken line noise are addressed as

〈x2〉 = 1

2π2

∫∫
dkdp

⎧⎪⎨
⎪⎩
⎛
⎝ 1 − f

f (1 − f ) sin k

f (1 − f ) cos k

⎞
⎠

T

(I − Mk,p)−1

[
t − Mk,p

I − Mk,p

]
·
⎛
⎝(1 − f ) cos 2p

(1 − f ) sin 2p

0

⎞
⎠
⎫⎪⎬
⎪⎭+ 1

2π2

∫∫
dkdp

1

2
(1 − f )t,

〈y2〉 = 1

2π2

∫∫
dkdp

⎧⎪⎨
⎪⎩
⎛
⎝ 0

(1 − f )2 sin 2k

(1 − f )2 cos 2k + f 2

⎞
⎠

T

(I − Mk,p)−1 ·
[
t − Mk,p

I − Mk,p

]⎛⎝0
0
1

⎞
⎠
⎫⎪⎬
⎪⎭+ 1

2π2

∫∫
dkdp

1

2
t.

(35)
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To illustrate the transition from quantum to classical behaviors in the 2D AQW involving broken line noise, we calculate the
diffusion coefficients Dx and Dy as

Dx =1

2
lim
t→∞

∂σ 2
x

∂t
= 1

2
lim
t→∞

∂(〈x2〉 − 〈x〉2)

∂t

=1

2

⎧⎪⎨
⎪⎩

1

2π2

∫∫
dkdp

⎛
⎝ 1 − f

f (1 − f ) sin k

f (1 − f ) cos k

⎞
⎠

T

(I − Mk,p)−1

⎛
⎝(1 − f ) cos 2p

(1 − f ) sin 2p

0

⎞
⎠+ (1 − f )

⎫⎪⎬
⎪⎭

=1 − f

2f

[
1

2π2

∫∫
dkdp

(1 − f )

2
Rx(f,k,p) + f

]
= 1 − f

2f
Bx(f ),

Dy =1

2
lim
t→∞

∂σ 2
y

∂t
= 1

2
lim
t→∞

∂(〈y2〉 − 〈y〉2)

∂t

=1

2

⎧⎪⎨
⎪⎩

1

2π2

∫∫
dkdp

⎛
⎝ 0

(1 − f )2 sin 2k

(1 − f )2 cos 2k + f 2

⎞
⎠

T

(I − Mk,p)−1

⎛
⎝0

0
1

⎞
⎠+ 1

⎫⎪⎬
⎪⎭

=1 − f

2f

[
1

2π2

∫∫
dkdpRy(f,k,p) + f

1 − f

]
= 1 − f

2f
By(f ).

(36)

The expressions of Rx and Ry can be obtained analytically.
Due to the lengthy expressions, we do not present the explicit
forms for them here; the detailed expressions for Rx and Ry can
be found in Appendix A. The changes in diffusion coefficients
Dx and Dy with the coefficient f (dashed red lines) are shown
in Figs. 2(a) and 2(b). In addition, the terms Bx and By are
represented by solid blue lines. We find that when there is
no decoherence in the AQW, that is, f = 0, both diffusion
coefficients, Dx and Dy , are ∞. The motions along the x and
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(c) (d)

FIG. 2. Diffusion coefficients and variances for a 2D AQW with
broken line noise; the noise is applied only along the x direction.
(a, b) Diffusion coefficients Dx and Dy with the coefficient f . (c, d)
Variances of the position distribution of an AQW with time (step):
four f values are presented. Solid line, f = 0; dashed red line and
open red circle, f = 0.1; dotted green line and green cross, f = 0.5;
dotted-dashed brown line, f = 1. Numerical results are represented
by solid, dashed, dotted, and dotted-dashed lines. Analytic results
from Eqs. (34) and (35) are shown in the forms of red circles and
green crosses. In the numerical simulation, the initial state for the 2D
walker and coin is |0〉x |0〉y ⊗ (1/

√
2|R〉 + i/

√
2|L〉).

y directions exhibit quantum behaviors. With the increase in
the coefficient f , the variances along the x direction and y

direction both change to increase linearly with time, which
means that when the connection has a certain probability of
being broken between the adjacent positions of AQW, motions
along both the x direction and the y direction exhibit classical
behaviors. When the coefficient f approaches 1, the diffusion
coefficient along the x direction Dx approaches 0, but the
diffusion coefficient along the y direction Dy approaches ∞.
That is, when the coefficient f becomes large enough, the only
remaining evolution [(IV) in Fig. 1] traps the walker along the x

direction with a higher probability, and the other three possible
evolutions [(I)–(III) in Fig. 1] are suppressed. At this time, the
motion along the x direction has little effect on the motion
along the y direction. So as shown in Figs. 2(a) and 2(b), the
diffusion coefficient of position in the x direction Dx is close
to 0, while in the y direction the diffusion coefficient Dy goes
back to ∞ and the motion of the y direction exhibits quantum
behavior.

In Figs. 2(c) and 2(d), we numerically calculate the
variances of the position distribution along the x and y

directions with time and compare them with the obtained
analytic expressions for the variances in the long-time limit
[Eqs. (34), (35), and (36)]. In these two figures, four f

values are chosen for comparison. The solid blue, dashed red,
dotted green, and dotted-dashed brown lines correspond to
the variances obtained numerically with coefficient f chosen
as 0, 0.1, 0.5, and 1, respectively. The analytic results from
Eqs. (34) and (35) are represented by the red circles and green
crosses in Figs. 2(c) and 2(d). Our analytic results obtained in
Eqs. (34) and (35) coincide with the numerical results when
the time becomes longer. In our numerical simulation, we take
the initial coin state as |ψ0〉 = 1/

√
2|R〉 + i/

√
2|L〉. From

the figures, we find that, when coefficient f is 0 (solid blue
lines), motions along both the x direction and the y direction
display quantum properties. As coefficient f becomes larger
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(I) (II) (III)

x

y|R><R| |L><L|

FIG. 3. Schematic of a 2D AQW with coin decoherence; the noise
is applied before each step of the walk. Three possible cases of AQW
are shown: (I, II) the coin is measured before each step evolution,
with probability f ; and (III) there is no decoherence in the walk, with
probability 1 − f .

(red and green lines), both variances of motion, 〈x2〉 − 〈x〉2

and 〈y2〉 − 〈y〉2, change to increase linearly with time, and
classical behaviors emerge in both the x and the y directions of
the AQW. However, when coefficient f is 1 (brown lines), the
spread of the probability distribution along the x direction is
trapped at current positions. The variance of motion along the
x direction is 0, but the behavior of motion in the y direction
returns to showing quantum properties. In Appendix B, we
present the expressions of the fitting curves for the numerical
values 〈x2〉 − 〈x〉2 and 〈y2〉 − 〈y〉2 in Figs. 2(c) and 2(d). For
different broken probabilities, the time change of variances in

the x direction and y direction in Figs. 2(c) and 2(d) reflect
the transitions of motion from quantum to classical behaviors,
which are presented in Figs. 2(a) and 2(b).

B. The coin decoherence model

In this section, we study a 2D decoherent AQW where
decoherence appears only in the coin space of the walk. Before
each step evolution of the 2D AQW, the coin is measured with
a certain probability, which makes the coin state decoherence.
In our discussion, we assume that coin decoherence emerges
with probability f before each step of the walk, then the walker
moves along the x direction and y direction in sequence [20].
A schematic of possible evolutions of the AQW involving coin
decoherence is depicted in Fig. 3.

In Fig. 3, the walker moving in the x direction (y
direction) is labeled by the green arrows along the horizontal
direction (red arrows along the vertical direction). The coin
decoherence appears before each step of the walk and causes
the evolution of a 2D AQW to start with the coin state |R〉
or |L〉 [see Fig. 3, (I) and (II), respectively]. The probability
of the emergence of such coin decoherence is f . The 2D
AQW without decoherence is addressed in Fig. 3, (III), with
probability 1 − f . Considering this kind of decoherence, three
possible evolutions are associated with three Kraus operators,
En (n = 1,2,3). The explicit expressions of En (n = 1,2,3) are

E1 =
√

f
∑
x,y

1

2
{|x + 1,y + 1〉〈x,y| ⊗ |R〉〈R| + |x + 1,y − 1〉〈x,y| ⊗ |L〉〈R|

+ |x − 1,y + 1〉〈x,y| ⊗ |R〉〈R| − |x − 1,y − 1〉〈x,y| ⊗ |L〉〈R|}, (37a)

E2 =
√

f
∑
x,y

1

2
{|x + 1,y + 1〉〈x,y| ⊗ |R〉〈L| + |x + 1,y − 1〉〈x,y| ⊗ |L〉〈L|

− |x − 1,y + 1〉〈x,y| ⊗ |R〉〈L| + |x − 1,y − 1〉〈x,y| ⊗ |L〉〈L|}, (37b)

E3 =
√

1 − f
∑
x,y

1

2
{|x + 1,y + 1〉〈x,y| ⊗ (|R〉〈R| + |R〉〈L|) + |x + 1,y − 1〉〈x,y| ⊗ (|L〉〈R| + |L〉〈L|)

+ |x − 1,y + 1〉〈x,y| ⊗ (|R〉〈R| − |R〉〈L|) − |x − 1,y − 1〉〈x,y| ⊗ (|L〉〈R| − |L〉〈L|}. (37c)

The operators Fn (n = 1,2,3) related to the Kraus operators En (n = 1,2,3) for the 2D AQW involving coin decoherence can be
represented as

F1 =
√

f

(
1
2e−i(k+p) + 1

2ei(k−p) 0
1
2e−i(k−p) − 1

2ei(k+p) 0

)
, (38a)

F2 =
√

f

(
0 1

2e−i(k+p) − 1
2ei(k−p)

0 1
2e−i(k−p) + 1

2ei(k+p)

)
, (38b)

F3 =
√

1 − f

(
1
2e−i(k+p) + 1

2ei(k−p) 1
2e−i(k+p) − 1

2ei(k−p)

1
2e−i(k−p) − 1

2ei(k+p) 1
2e−i(k−p) + 1

2ei(k+p)

)
. (38c)

The complete relation is satisfied by
∑

n F
†
nFn = I . Using a technique similar to that mentioned in the section on the

broken-line-noise model (Sec. III A), we take a 4 × 1 column vector to represent the 2 × 2 matrix, and the expressions for the
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superoperators Lk,p, Kk,p, Pk,p, Tk , and Tp are

Lk,pÕ =

⎛
⎜⎝

1 0 0 0
0 (1 − f ) cos 2p −(1 − f ) cos 2k sin 2p sin 2k sin 2p

0 (1 − f ) sin 2p (1 − f ) cos 2k cos 2p − sin 2k cos 2p

0 0 (1 − f ) sin 2k cos 2k

⎞
⎟⎠
⎛
⎜⎝

r0

r1

r2

r3

⎞
⎟⎠, (39)

Kk,pÕ =

⎛
⎜⎝

0 i(f − 1) 0 0
−i cos 2p 0 (1 − f ) sin 2k sin 2p cos 2k sin 2p

−i sin 2p 0 −(1 − f ) sin 2k cos 2p − cos 2k cos 2p

0 0 (1 − f ) cos 2k − sin 2k

⎞
⎟⎠
⎛
⎜⎝

r0

r1

r2

r3

⎞
⎟⎠, (40)

Pk,pÕ =

⎛
⎜⎝

0 0 i(f − 1) sin 2k −i cos 2k

0 −(1 − f ) sin 2p −(1 − f ) cos 2k cos 2p sin 2k cos 2p

0 (1 − f ) cos 2p −(1 − f ) cos 2k sin 2p sin 2k sin 2p

−i 0 0 0

⎞
⎟⎠
⎛
⎜⎝

r0

r1

r2

r3

⎞
⎟⎠, (41)

TkÕ =

⎛
⎜⎝

1 0 0 0
0 (1 − f ) cos 2p (1 − f ) cos 2k sin 2p − sin 2k sin 2p

0 (1 − f ) sin 2p −(1 − f ) cos 2k cos 2p sin 2k cos 2p

0 0 −(1 − f ) sin 2k − cos 2k

⎞
⎟⎠
⎛
⎜⎝

r0

r1

r2

r3

⎞
⎟⎠, (42)

TpÕ =

⎛
⎜⎝

1 0 0 0
0 −(1 − f ) cos 2p (1 − f ) cos 2k sin 2p − sin 2k sin 2p

0 −(1 − f ) sin 2p −(1 − f ) cos 2k cos 2p sin 2k cos 2p

0 0 (1 − f ) sin 2k cos 2k

⎞
⎟⎠
⎛
⎜⎝

r0

r1

r2

r3

⎞
⎟⎠, (43)

where K†
k,pÕ = K∗Õ, P†

k,pÕ = P∗Õ. With these superoperators, the first moments of position distributions 〈x〉 and 〈y〉 in a 2D
AQW with coin decoherence are obtained as

〈x〉 = i

2π2

∫∫
dkdp(−i)(1 − f,0,0)

[
t∑

m=1

Mm−1
k,p

]⎛⎝r1

r2

r3

⎞
⎠ = 1

2π2

∫∫
dkdp(1 − f,0,0)(I − Mk,p)−1

⎛
⎝r1

r2

r3

⎞
⎠,

〈y〉 = i

2π2

∫∫
dkdp(−i)(0,(1 − f ) sin 2k, cos 2k)

[
t∑

n=1

Mn−1
k,p

]⎛⎝r1

r2

r3

⎞
⎠

= 1

2π2

∫∫
dkdp(0,(1 − f ) sin 2k, cos 2k)(I − Mk,p)−1

⎛
⎝r1

r2

r3

⎞
⎠. (44)

The second moments of position distribution 〈x2〉 and 〈y2〉 in a 2D AQW with coin decoherence are

〈x2〉 = 1

2π2

∫∫
dkdp

⎛
⎝1 − f

0
0

⎞
⎠

T

(I − Mk,p)−1{t − Mk,p

I − Mk,p

}
⎛
⎝cos 2p

sin 2p

0

⎞
⎠+ 1

2π2

∫∫
dkdp

1

2
· t,

〈y2〉 = 1

2π2

∫∫
dkdp

⎛
⎝ 0

(1 − f ) sin 2k

cos 2k

⎞
⎠

T

(I − Mk,p)−1{t − Mk,p

I − Mk,p

}
⎛
⎝0

0
1

⎞
⎠+ 1

2π2

∫∫
dkdp

1

2
· t. (45)

The diffusion coefficients Dx and Dy are calculated as

Dx = 1

2
lim
t→∞

∂σ 2
x

∂t
= 1

2
lim
t→∞

∂(〈x2〉 − 〈x〉2)

∂t
= 1

2

⎧⎪⎨
⎪⎩

1

2π2

∫∫
dkdp

⎛
⎝1 − f

0
0

⎞
⎠

T

(I − Mk,p)−1

⎛
⎝cos 2p

sin 2p

0

⎞
⎠+ 1

2π2

∫∫
dkdp

1

2

⎫⎪⎬
⎪⎭

= 1 − f

2f

[
1

2π2

∫∫
dkdpRx(f,k,p) + f

1 − f

]
= 1 − f

2f
Bx(f ),

Dy = 1

2
lim
t→∞

∂σ 2
y

∂t
= 1

2
lim
t→∞

∂(〈y2〉 − 〈y〉2)

∂t
= 1

2

⎧⎪⎨
⎪⎩

1

2π2

∫∫
dkdp

⎛
⎝ 0

(1 − f ) sin 2k

cos 2k

⎞
⎠

T

(I − Mk,p)−1

⎛
⎝0

0
1

⎞
⎠+ 1

2π2

∫∫
dkdp

1

2

⎫⎪⎬
⎪⎭

= 1 − f

2f

[
1

2π2

∫∫
dkdpRy(f,k,p) + f

1 − f

]
= 1 − f

2f
By(f ). (46)
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Here, the term Rx = 1−f +cos 2p

2−f
, and Ry =

−2(1−f ) cos 2p cot2 k+[(1−f )2+cos 2k] csc2 k

2(2−3f +f 2) .
We find that the function Ry(f,k,p) approaches ∞ at

some values of k and p for any value of f , which makes
the amplitude of the diffusion coefficients Dy approach ∞.
This means that the motion along the y direction always
exhibits quantum behavior, whatever probability f is taken.
The diffusion coefficient Dx with a change in the probability
f is presented in Fig. 4(a). The diffusion coefficient Dx is
represented by the dashed red line, and the term Bx by the
solid blue line. For a walker traveling along the x direction,
with an increase in the probability f , the effect of decoherence
on the system becomes stronger, and the variance along
the x direction reveals the linear time dependence on time
t . When the probability f approaches 1, the motion along
the x direction exhibits classical behavior with the diffusion
coefficient Dx equal to 1/2. The variances of the position
distribution along the x and y directions reveal different
dependences on the decoherent strength f . In our study,
coin decoherence appears before each step of the walk, the
coherence of the coin is lost, and the motion along the x

direction is affected, but the motion along the y direction
feels little effect and always displays quantum behavior with
a change in the probability f . In Figs. 4(b) and 4(c), we
numerically calculate the variance of the position distribution
along the x and y directions of the 2D AQW involving coin
decoherence with time. The obtained analytic expressions
for the variance in the long-time limit [Eqs. (44)–(46)] are
presented for comparison. Four probabilities f are chosen.
The solid blue, dashed red, dotted green, and dotted-dashed
brown lines correspond to probabilities f = 0, f = 0.1,
f = 0.5, and f = 1, respectively. In these two figures, with
an increase in the probability f , the decoherence becomes
stronger (f = 0.5 and f = 1); we find that the variance along
the x direction changes to increase linearly with time. Motion
in this direction displays classical behaviors. The analytic
results from Eqs. (44) and (45) are represented by green circles
and brown crosses in Fig. 4(b). In comparison, motion along
the y direction always exhibits quantum behaviors for any
value of probability f [see Fig. 4(c)]. Our numerical results in
Figs. 4(b) and 4(c) coincide with the statements in Fig. 4(a). In
Appendix B, we present the expressions of the fitting curves
for the numerical values 〈x2〉 − 〈x〉2 and 〈y2〉 − 〈y〉2 in Figs.
4(b) and 4(c). Comparing the 2D AQW involving broken line
noise and coin decoherence, different behaviors for variances
of position distributions have been uncovered. In the former
case, the decoherence affects both the coin and the position;
when decoherence in the x direction occurs, motion along the
x direction has an influence on the state of the coin, which in
turn affects the motion along the y direction. However, in the
latter case, the decoherence affects only the coin before each
step of the walk; motion along the y direction is influenced
little by the coin decoherence in the 2D AQW. So motion along
the y direction maintains its quantum properties with a change
in decoherence strength f .

To illustrate the effects of different kinds of decoherence
and reveal the anisotropic behaviors in the position space, we
present the probability distributions in the x-y position space
of a 2D AQW with different f values in Fig. 5.
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FIG. 4. Diffusion coefficients and variances for a 2D AQW with
coin decoherence; noise is applied before each step of the walk. (a)
Diffusion coefficient Dx (dashed red line) and Bx (solid blue line)
with probability f . (b, c) Variances of the position distribution of
the AQW with time (step). Four probabilities f are shown: solid
blue line, f = 0; dashed red line, f = 0.1; dotted green line, f =
0.5; and dotted-dashed brown line, f = 1. Analytic results for the
variance in the long-time limit are represented by green circles and
brown crosses in (b). The initial state for the 2D walker and coin is
|0〉x |0〉y ⊗ (1/

√
2|R〉 + i/

√
2|L〉).

Figures 5(a)– 5(c) describe the position distribution of the
2D AQW with broken line noise, and Figs. 5(d)– 5(f) denote the
case of the 2D decoherent AQW with coin decoherence. The
time steps in all panels are 20. As one coin has been tossed
twice in one step evolution of the 2D AQW, these position
distributions are different from those of the four-level coin
decoherent Grover walk [26]. In our study, three probabilities
f are chosen: f = 0, Figs. 5(a) and 5(d); f = 0.5, Figs. 5(b)
and 5(e); and f = 1, Figs. 5(c) and 5(f). Compared with the
2D AQW without decoherence [f = 0; Figs. 5(a) and 5(d)],
when decoherence is introduced [Figs. 5(b), 5(c), 5(e), and
5(f)], the interference pattern of the probability distribution in
the AQW changes, and the anisotropic distribution in the x-y
position space of 2D AQW can be found. With an increase in
the probability f [Figs. 5(b) and 5(e)], the position distribution
does not show the complex, oscillatory form as described for
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FIG. 5. Probability distribution in the position space x-y of a
2D AQW involving two kinds of decoherence at time step t = 20.
(a–c) Broken line noise is introduced in the x direction; (d–f) coin
decoherence is applied to the coin before each step of the walk.
Three probabilities f are shown: (a, d) f = 0; (b, e), f = 0.5; and
(c, f) f = 1. The initial state for the 2D walker and the coin is
|0〉x |0〉y ⊗ (1/

√
2|R〉 + i/

√
2|L〉).
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the coherent QW. When the probability f is 1, because the
walk is affected by broken line noise [Fig. 5(c)], the Kraus
operators {En, n = 1,2,3,4} of one step evolution of the 2D
AQW change to E4 =∑x,y(|y + 1,x〉〈y,x| ⊗ |R〉〈R| − |y −
1,x〉〈y,x| ⊗ |L〉〈L| only; the calculation details are presented
in Appendix C. In this case, the position distribution along the
x direction is trapped, which coincides with 0 for the variance
of position distribution along the x direction (Fig. 2). The
position distribution along the y direction still spreads with
time. For the walk with coin decoherence [Fig. 5(f)], it is
clearly seen that the position distribution along the y direction
spreads more rapidly than that along the x direction. When
f = 1, that means the coin is measured definitely before each
step of the walk, and the Kraus operators {En, n = 1,2,3} for
the 2D AQW with coin decoherence decrease to E1 and E2.
(The detailed expressions of E1 and E2 are given in Appendix
C.) In this case, the pattern along the x direction reveals the
classical binomial distribution [Fig. 4(b)]. Though some of the
probability along the y direction of the walk appears around
the origin point, the motion along the y direction reveals some
quantum behaviors [Fig. 4(c)].

IV. CORRELATIONS OF THE TWO-DIMENSIONAL AQW
IN THE PRESENCE OF DECOHERENCE

When taking decoherence into account, we have discussed
the anisotropic position distribution in the 2D AQW. In this
section, we quantitatively estimate the correlation between
the 2D walker and the coin in the presence of decoherence.
Exploiting the correlations reserved in the AQW is a very
interesting problem; it will uncover how many correlations
survive when decoherence is introduced and might have
applications in the process of quantum information. The
entanglement between two one-dimensional quantum walkers
has been studied in Ref. [5], and the effects of initial entangled
coin states have been analyzed in Refs. [47] and [48]. In
this section, first, we study the time evolution of correlations
between the x direction and the y direction (two orthogonal
directions) of a 2D AQW in which the walker is moving. The
classical mutual information is chosen to measure the classical
correlation, and we use the measurement-induced disturbance
(MID) to qualify the quantum correlation [49–51]. Second, we
qualify the quantum correlations stored between the position
of the 2D walker and the state of the coin. The definition of
the classical mutual information Ic(t) is presented below to
measure the information shared by the x and y directions of
the 2D AQW in which the 2D walker is moving:

Ic(t) =
∑

x

∑
y

P (x,y,t) log2

(
P (x,y,t)

P (x,t)P (y,t)

)
. (47)

Here, P (x,y,t) denotes the probability of the 2D walker’s
occupying position (x,y) in the x-y position space at time
t . The marginal probability distribution P (x,t) stands for the
probability of the 2D walker’s occupying position x at time t ,
and the marginal probability distribution P (y,t) represents the
probability of the 2D walker’s occupying position y at time t .
When the correlation between the x and the y position of 2D
AQW is 0, the shared information Ic is 0.
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FIG. 6. Classical and quantum correlations between the x direc-
tion and the y direction of a 2D AQW in which the 2D walker is
moving. (a, b) Broken line noise is introduced in the x direction;
(c, d) coin decoherence is applied to the coin before each step of
the walk. The classical correlation is represented by classical mutual
information, shown in (a) and (c). In (b) and (d), lines for the quantum
correlation represented by MID are shown. Four probabilities f are
shown: blue circles, f = 0; red rectangles, f = 0.1; green crosses,
f = 0.5; and brown diamonds, f = 1. The initial state for the 2D
walker and the coin is |0〉x |0〉y ⊗ (1/

√
2|R〉 + i/

√
2|L〉).

For the quantum correlation, though it is well estimated by
quantum discord, it might be difficult to evaluate because of
the requirement of minimization over possible measurements
[49,50]. Here, we use the MID Q(ρ) to estimate the quantum
correlation [50]; that is,

Q(ρ) = I (ρ) − I (�ρ), (48)

with

I (ρ) = S(ρ1) + S(ρ2) − S(ρ), (49)

where S(ρ) = −Tr(ρ log2 ρ). The state �ρ satisfies �ρ =∑
j,k �

j

1 ⊗ �k
2ρ�

j

1 ⊗ �k
2. The projectors {�j

1} and {�k
2}

represent the complete projective measurements which are
performed on parties 1 and 2 of bipartite state ρ, respectively.
We have the complete relations as ρ1 =∑j p

j

1�
j

1 and
ρ2 =∑k pk

2�
k
2. The reduced density matrices ρ1 and ρ2 are

expressed as ρ1 = Tr2ρ and ρ2 = Tr1ρ, respectively.
In Fig. 6, we present the time evolutions of classical mutual

information and MID between the x and the y positions of
the 2D walker. Figures 6(a) and 6(b) represent the 2D AQW
affected by broken line noise, and Figs. 6(c) and 6(d) the 2D
AQW with coin decoherence. Four probabilities f are chosen
for comparison. The 2D AQW without decoherence (f = 0)
is depicted by blue circles. Lines with red rectangles, green
crosses, and brown diamonds correspond to the 2D AQW with
probabilities f = 0.1, f = 0.5, and f = 1. When there is no
decoherence in the AQW (blue circles in Fig. 6), correlations
between the x and the y positions of the 2D walker are strong.
Under the influence of noises (red rectangles, green crosses,
and brown diamonds in Fig. 6), correlations between the x

and the y positions of the 2D walker decrease. For the broken-
line-noise model, when the probability f approaches 1 [brown
diamonds in Figs. 6(a) and 6(b)], the classical and quantum
correlations between the x and the y positions of the 2D walker
are close to 0. As shown in Fig. 5(c), the probability distribution
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FIG. 7. Quantum correlations between the x (y) position of the
2D walker and the state of the coin in the presence of decoherence.
(a) Broken line noise is introduced in the x direction; (b) coin
decoherence is applied to the coin before each step of the walk.
The quantum correlation is represented by MID. Three probabilities
f are shown. For the correlation between the x position of the
walker and the coin MID(x-c), light-blue solid line, f = 0; light-red
dashed line, f = 0.1; and light-green dashed-dotted line, f = 0.5.
For the correlation between the y position of the walker and the coin
MID(y-c), dark-blue circles, f = 0; dark-red rectangles, f = 0.1;
and dark-green crosses, f = 0.5. The initial state for the 2D walker
and the coin is |0〉x |0〉y ⊗ (1/

√
2|R〉 + i/

√
2|L〉).

of the AQW is trapped along the x direction. This localization
of the distribution reduces the correlation between the x and the
y positions of the walker to 0 and makes the 2D walker travel
along the x direction and y direction independently and share
no information. When coin decoherence is introduced in the
AQW [Figs. 6(c) and 6(d)], compared to the no-decoherence
AQW, the correlation between the x and the y positions of the
2D walker decreases to a smaller value. When the probability
f is close to 1 [brown diamonds in Figs. 6(c) and 6(d)], the
correlations between the x and the y positions of the 2D walker
are not 0. As mentioned above, coin decoherence disturbs the
2D AQW weakly, and the motion in the y direction exhibits
quantum behavior whatever value of the probability f is taken.
This weak decoherence affects the movement of the 2D walker
and keeps some correlations between the x and the y directions
of the 2D AQW in which the 2D walker is moving.

Later, we qualify the correlations between the position of
the 2D walker and the state of the coin. In our discussion,
we study the quantum correlations estimated by MID. The
correlation between the x position of the walker and the coin
is represented by MID(x-c); the correlation between the y

position of the walker and the coin is expressed as MID(y-c)
(see Fig. 7).

The time evolutions of quantum correlations MID(x-c) and
MID(y-c) are shown in Fig. 7. Three probabilities f are chosen
to illustrate the decoherence effect. For MID(x-c), the light-
blue solid, light-red dashed, and light-green dotted-dashed
lines correspond to probabilities f = 0, f = 0.1, and f = 0.5,
respectively. For MID(y-c), the dark-blue circles, dark-red
rectangles, and dark-green crosses correspond to probabilities
f = 0, f = 0.1, and f = 0.5, respectively. As shown in
Figs. 7(a) and 7(b), with an increase in the probability f ,
both quantum correlations, MID(x-c) and MID(y-c), decrease.
Because decoherence appears in only one direction of the

2D AQW, the anisotropic quantum correlations between the
x (y) position of the walker and the state of the coin
emerge. In Figs. 7(a) and 7(b), we see that, when there is
no decoherence [solid blue lines and blue circles in Figs. 7(a)
and 7(b)], the quantum correlations MID(x-c) and MID(y-c)
have the same amplitudes with time. When broken line noise
(coin decoherence) is introduced into the walk, because the
decoherence emerges only in the x direction (decoherence
appears only before each step of the walk), the quantum
correlation between the x position of the walker and the state of
the coin MID(x-c) is affected more strongly than that between
the y position of the walker and the state of the coin MID(y-c).
The remaining quantum correlation MID(y-c) is larger than the
correlation MID(x-c). Considering the variances of position
distribution discussed above, when two kinds of decoherence
(broken line noise and coin decoherence) are introduced,
the behavior along the y direction of the 2D AQW exhibits
more ”quantumness” than that along the x direction of the
2D AQW. Such anisotropic quantum correlations, MID(x-c)
and MID(y-c), correspond to the aforementioned anisotropic
position distribution patterns of the 2D AQW.

V. CONCLUSIONS

In this paper, we have studied the dynamics of the
2D alternative quantum walk (AQW) in the presence of
decoherence. We present the analytic expressions for the first
and second moments of the position distribution involving
different kinds of decoherence. The emergence of quantum and
classical behaviors in the AQW are discussed. Taking broken
line noise and coin decoherence as examples of decoherence,
we analyze the diffusion coefficients and the variances of
position distribution in the 2D AQW. We find that, when broken
line noise is applied to the system, the motions along the x and
y directions both change to exhibit classical behaviors. When
the broken probability f approaches 1, movement in the x

direction is trapped, and motion along the y direction displays
quantum behaviors. In comparison, when coin decoherence is
introduced into the walk, the coin is influenced by this weak
decoherence, and only the dynamics along one direction is
affected. In our study, we find that classical behaviors emerge
in motion along the x direction, but motion along the y

direction exhibits quantum behaviors, whatever the strength
of decoherence taken.

In addition, we discuss the correlations between the x

(y) position of the 2D walker and the state of the coin
in the 2D AQW. First, we employ the classical mutual
information and measurement-induced disturbance (MID) to
qualify the classical and quantum correlations between the
x and the y positions of the 2D walker. We find that, with
the appearance of decoherence, the correlations between the
x and the y positions of the walker are smaller than those
with no decoherence. For the broken-line-noise model, when
the broken probability is close to 1, the trap of the position
distribution causes no correlations to exist. However, for the
case of coin decoherence, such decoherence weakly disturbs
the coherent evolution of the system, and the correlations
between the x and the y positions of the walker still exist no
matter how strong the decoherence is. Second, we discuss the
quantum correlation between the x (y) position of the walker
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and the state of the coin. When decoherence is introduced into
the walk, the anisotropic quantum correlations between the x

(y) position of the walker and the state of the coin emerge,
which correspond to the anisotropic position distribution of
the 2D AQW in the presence of decoherence.

Due to the reduced resources required for experimental
realization, the 2D AQW has its advantage in designing
quantum search algorithms. For real experimental realizations,
the decoherence effect from the surrounding environment is
unavoidable. In this paper, we study the 2D AQW involving

decoherence in detail. Our results provide the theoretical basis
for the development of quantum algorithms based on the 2D
AQW in real experimental realizations.
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APPENDIX A: THE EXPRESSIONS OF Rx AND Ry

For a 2D AQW with broken line noise, we have provided the diffusion coefficients Dx and Dy in Eq. (36). The detailed
expressions Rx(f,k,p) and Ry(f,k,p) are

Rx(f,k,p) = 1 + f (−3 + 4f ) + 2(−1 + f ) cos 2k cos2 p + (1 + f ) cos 2p + 2f sin k sin 2p

3 + f (−5 + 4f ) + 2(−1 + f ) cos 2k cos2 p + (−1 + 3f ) cos 2p + 2(−1 + f ) sin k sin 2p
(A1)

and

Ry(f,k,p) = A1 + A2 ∗ A3

A4
, (A2)

where the explicit forms of A1, A2, A3, and A4 are

A1 = 2 ∗ (1 − f )2 cos k sin 2k[(1 − f )(1 − 2f − cos 2p) sin k + f sin 2p],

A2 = f 2 + (1 − f )2 cos 2k

f − 1
,

A3 = −1 + f 2 − 2f 3 + (1 − 2f − f 2) cos 2p − (1 − f )2 cos 2k(1 − 2f − cos 2p) + 2(1 − f )f sin k sin 2p,

A4 = 2 ∗ (1 − f )[3 + f (4f − 5) + 2(f − 1) cos 2k cos2 p + (3f − 1) cos 2p + 2(f − 1) sin k sin 2p]. (A3)

APPENDIX B: THE EXPRESSIONS OF FITTING CURVES
FOR THE VARIANCES 〈x2〉 − 〈x〉2 AND 〈 y2〉 − 〈 y〉2

In this Appendix, we present the expressions of fitting
curves for the numerically obtained variances 〈x2〉 − 〈x〉2

and 〈y2〉 − 〈y〉2 [Figs. 2(c) and 2(d) and Figs. 4(b) and 4(c),
respectively.). The time interval for the fitting curves is chosen
between 0 and 20. For the variances of a 2D AQW with broken
line noise [Figs. 2(c) and 2(d)], the expressions of the fitting
curves are listed in Table I. We also list the coefficients for
different orders of time t in fitting curves in the table.

Then we discuss the variances of a 2D AQW with coin
decoherence and present the expressions of fitting curves for

TABLE I. The broken-line-noise model: Coefficients for different
orders of time t .

t2 t1 t0

〈x2〉 − 〈x〉2, f = 0 0.360 0.080 0.364
〈x2〉 − 〈x〉2, f = 0.1 0.071 1.578 −1.405
〈x2〉 − 〈x〉2, f = 0.5 0.001 0.595 −0.138
〈x2〉 − 〈x〉2, f = 1 0 0 0
〈y2〉 − 〈y〉2, f = 0 0.360 0.080 0.364
〈y2〉 − 〈y〉2, f = 0.1 0.071 1.715 −1.463
〈y2〉 − 〈y〉2, f = 0.5 0.007 1.713 −0.713
〈y2〉 − 〈y〉2, f = 1 1.000 0 0

the obtained numerical values of variances [Figs. 4(b) and
4(c)]. The coefficients for different orders of time t in fitting
curves are listedin Table II.

The coefficients of determination R2 for all of the fitting
curves are larger than 0.999. From the coefficients presented
above, we find that in some cases, the variances change to
increase linearly with time when decoherence is considered,
while when coin decoherence is introduced before each step
of the walk, the variance 〈y2〉 − 〈y〉2 always maintains its
quadratic dependence on time t [Fig. 4(c)].

TABLE II. The coin decoherence model: Coefficients for differ-
ent orders of time t

t2 t1 t0

〈x2〉 − 〈x〉2, f = 0 0.360 0.080 0.364
〈x2〉 − 〈x〉2, f = 0.1 0.155 1.454 −1.402
〈x2〉 − 〈x〉2, f = 0.5 0.010 1.308 −0.496
〈x2〉 − 〈x〉2, f = 1 0 1.000 0
〈y2〉 − 〈y〉2, f = 0 0.360 0.080 0.364
〈y2〉 − 〈y〉2, f = 0.1 0.279 0.707 −0.486
〈y2〉 − 〈y〉2, f = 0.5 0.159 1.333 −1.052
〈y2〉 − 〈y〉2, f = 1 0.131 1.391 −1.006
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APPENDIX C: THE EMERGENCE OF QUANTUM BEHAVIORS AT f = 1

We discuss the emergence of quantum behaviors at f = 1 in this Appendix. For a 2D AQW with broken line noise, we find
that motion along y direction exhibits quantum properties when f = 1 [see Figs. 2(d) and 5(c)]. In this case, the conditional shift
operator along the x direction is

S4
x,b =

∑
x

|x〉〈x| ⊗ (|R〉〈L| + |L〉〈R|), (C1)

and the Kraus operators {En, n = 1,2,3,4} change to E4 only:

E4 = Sy(I ⊗ H )S4
x,b(I ⊗ H ) =

∑
x,y

(|x,y + 1〉〈x,y| ⊗ |R〉〈R| − |x,y − 1〉〈x,y| ⊗ |L〉〈L|). (C2)

After applying the Kraus operator E4 to this initial state, motion along the x direction is trapped and motion along the
position or negative y direction is determined by the coin state |R〉 or |L〉. In the text, the initial state for the 2D AQW is
|0〉x |0〉y ⊗ (1/

√
2|R〉 + i/

√
2|L〉), and the position distribution along the y direction is peaked at the edges of the y-coordinate

axis, which is presented in Fig. 5(c).
For a 2D AQW with coin decoherence, the probability f = 1 means that the coin is measured definitely before each step

of the walk, and the evolution of the 2D AQW starts with the coin state |R〉 or |L〉. In Fig. 4, we find that motion along the y

direction reveals quantum properties. When f = 1, the Kraus operators {En, n = 1,2,3} change to E1 and E2:

E1 = Sy(I ⊗ H )Sx(I ⊗ H )|R〉〈R|

= 1

2

∑
x,y

[|x + 1,y + 1〉〈x,y| ⊗ |R〉〈R| + |x + 1,y − 1〉〈x,y| ⊗ |L〉〈R|

+|x − 1,y + 1〉〈x,y| ⊗ |R〉〈R| − |x − 1,y − 1〉〈x,y| ⊗ |L〉〈R|],
(C3)

E2 = Sy(I ⊗ H )Sx(I ⊗ H )|L〉〈L|

= 1

2

∑
x,y

[|x + 1,y + 1〉〈x,y| ⊗ |R〉〈L| + |x + 1,y − 1〉〈x,y| ⊗ |L〉〈L|

−|x − 1,y + 1〉〈x,y| ⊗ |R〉〈L| + |x − 1,y − 1〉〈x,y| ⊗ |L〉〈L|].
Here, we consider two cases. First, we assume that the conditional shift operator Sx is omitted; the Kraus operators E1 and E2

change to

E′
1 = Sy(I ⊗ H )(I ⊗ H )|R〉〈R| =

∑
y

(|y + 1〉〈y| ⊗ |R〉〈R| + |y − 1〉〈y| ⊗ |L〉〈L|)|R〉〈R|

=
∑

y

|y + 1〉〈y| ⊗ |R〉〈R|,

E′
2 = Sy(I ⊗ H )(I ⊗ H )|L〉〈L| =

∑
y

(|y + 1〉〈y| ⊗ |R〉〈R| + |y − 1〉〈y| ⊗ |L〉〈L|)|L〉〈L|

=
∑

y

|y − 1〉〈y| ⊗ |L〉〈L|. (C4)

In this case, we find that when the coin state is |R〉 (|L〉), the walker travels only along the positive (negative) y direction. Second,
we assume that the conditional shift operator Sy and one coin operator H are omitted; the Kraus operators E1 and E2 change to

E′′
1 = Sx(I ⊗ H )|R〉〈R| = 1√

2

∑
x

(|x + 1〉〈x| ⊗ |R〉〈R| + |x − 1〉〈x| ⊗ |L〉〈R|),

E′′
2 = Sx(I ⊗ H )|L〉〈L| = 1√

2

∑
x

(|x + 1〉〈x| ⊗ |R〉〈L| − |x − 1〉〈x| ⊗ |L〉〈L|). (C5)

From these two operators, E′′
1 and E′′

2 , no matter what state the coin is, the walker has equal probability of traveling along the
positive or negative x direction. The classical probability distribution along the x direction emerges with these two operators,
E′′

1 and E′′
2 . For a 2D AQW with coin decoherence, when f = 1, two Kraus operators for one step evolution are E1 and E2. In

the text, the initial state for the 2D AQW is |ψ0〉 = |0〉x |0〉y ⊗ (1/
√

2|R〉 + i/
√

2|L〉). Compared with the operators E′′
1 and E′′

2 ,
due to the emergence of the same operators, Sx(I ⊗ H )|R〉〈R| and Sx(I ⊗ H )|L〉〈L|, in E1 and E2, we find that motion along
the x direction exhibits classical behavior in the 2D AQW with coin decoherence [see the case where f = 1 in Figs. 4(b) and
5(f)]. Considering the evolution with operators E′

1 and E′
2, when the coin state is |R〉 or |L〉, the walker travels only along the
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positive or negative y direction. With the initial state of the walk |ψ0〉, the probability distribution is peaked at the edges of the
y-coordinate axis. In this case, the variance of the position distribution grows quadratically with time, which is not a characteristic
of the classical walk. When the conditional shift operator Sx is added into E′

1 and E′
2, the operators change to E1 and E2, and the

interaction between the x direction and the y direction is established. Compared with the evolution with operators E′
1 and E′

2,
though some of the probability distribution along the y direction returns to the point of origin with operators E1 and E2, motion
along the y direction still exhibits quantum behavior [see the case where f = 1 in Figs. 4(c) and 5(f)].
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