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The so-called NOON states are quantum optical resources known to be useful especially for quantum
lithography and metrology. At the same time, they are known to be very sensitive to photon losses and rather
hard to produce experimentally. Concerning the former, here we present a scheme where NOON states are the
elementary resources for building quantum error-correction codes against photon losses, thus demonstrating that
such resources can also be useful to suppress the effect of loss. Our NOON code is an exact code that can be
systematically extended from one-photon to higher-number losses. Its loss scaling depending on the codeword
photon number is the same as for some existing, exact loss codes such as bosonic and quantum parity codes,
but its codeword mode number is intermediate between that of the other codes. Another generalization of the
NOON code is given for arbitrary logical qudits instead of logical qubits. While, in general, the final codewords
are always obtainable from multimode NOON states through application of beam splitters, both codewords for
the one-photon-loss qubit NOON code can be simply created from single-photon states with beam splitters. We
give various examples and also discuss a potential application of our qudit code for quantum communication.
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I. INTRODUCTION

So-called NOON states are an important resource in optical
quantum information science [1–4]. They are bipartite entan-
gled, N -photon two-mode states where the N photons occupy
either one of two optical modes, 1√

2
(|N0〉 + |0N〉). NOON

states have been widely used in quantum communication
[5], quantum metrology [6], and quantum lithography [7]
because they allow for supersensitive measurements, e.g.,
in optical interferometry. This is related to the substandard
quantum-limit behavior of NOON states, i.e., a factor

√
N

improvement to the shot noise limit can be achieved [8].
Due to their practical relevance, various schemes for NOON-
state generation based on strong nonlinearities [9,10] or
measurement and feedforward [11–13] have been proposed.
Unfortunately, NOON states are very fragile, which focused
recent research on their entanglement and phase properties in
noisy environments [14] or on the enhancements of NOON-
state sensitivity by non-Gaussian operations [15].

Though very sensitive to losses, NOON states can be useful
resources to build quantum error-correcting codes, as shown
in this paper. Optical quantum information, especially its use
in long-distance quantum communication, suffers from loss.
Here the main mechanism of decoherence is photon loss,
which is theoretically described by the amplitude-damping
(AD) channel that acts on each field mode. To protect quantum
information from photon loss, various kinds of quantum
error-correction codes for AD were proposed [16–18]. In this
context, it was also observed that quantum error-correction
codes fall in one of two classes: exact or approximate. The
usual quantum error-correction conditions are strictly fulfilled
by exact quantum codes, whereas approximate codes only
fulfill a set of relaxed conditions [19].

Recently, quantum parity codes (QPCs) [18,20], as an
example of exact codes for AD, were employed in the context
of long-distance quantum communication. A QPC consumes
N2 photons distributed in 2N2 modes with, at most, one
photon per mode. This code therefore requires a maximal
number of modes. In contrast, an important class of exact AD

codes, the so-called bosonic codes using N2 total photons,
introduced in [17], may use no more than just two modes
at the expense of having up to N2 photons per mode. The
codes to be developed in this paper are intermediate between
QPC and bosonic codes, because they use N2 photons in 2N

modes with, at most, N photons per mode. Our code is a block
code like QPC and unlike the general bosonic code, with the
same number of blocks as QPC, but with the N2 photons
distributed among a smaller number of modes in every block
compared to QPC. Despite their structural differences, all these
loss codes, including our code, protect a logical qubit exactly
against N − 1 photon losses using N2 photons. Thus, only
in our scheme, both the total mode number and the maximal
photon number per mode scale linearly with N to achieve
protection against N − 1 losses. Another crucial difference,
compared to QPC and bosonic codes lies in the systematic
accessibility of our codewords from NOON states and linear
optics. For the simplest special case of a one-photon-loss
qubit code, even only one-photon Fock states are sufficient
as resources for codeword generation, as the N = 2 NOON
state corresponds to the well-known Hong-Ou-Mandel state.
Our systematic approach can be also applied to qudit-code
constructions, while certain examples of bosonic qudit codes
were also given in [17] (see also the recent work in [21]).

The structure of the paper is as follows. In the second
section, the AD model and the basics of quantum error
correction are introduced and some known photon loss codes
are reviewed. In the succeeding section, quantum codes for
logical qubits are systematically developed. The third section
discusses the extension of this systematic scheme to logical
qudits in a natural manner by switching from beam splitters
to general N -port devices. It is shown that the scaling of
the fidelity only depends on the total photon number and,
especially, that it is independent of the dimension of the
logical qudit. Section V presents an in-principle method for
the generation of an arbitrary logical qubit state for the one-
photon-loss qubit code based on linear optics and light-matter
interactions. The last section, as an example of an application,

2469-9926/2016/94(1)/012311(13) 012311-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.94.012311


MARCEL BERGMANN AND PETER VAN LOOCK PHYSICAL REVIEW A 94, 012311 (2016)

describes the use of the qudit code in a one-way quantum
communication scheme. This scheme does not intrinsically
provide an optimal rate between physical versus logical qubits
like another recent approach [22], but nonetheless allows for
sending more quantum information at each time step with the
same loss protection.

II. QUANTUM ERROR CORRECTION AND PHOTON LOSS

Photon loss can be modeled by the AD channel. The
nonunitary error operators Ak , specifying the loss of k photons
in a single mode, are given by [17]

Ak =
∞∑

n=k

√(
n

k

)√
γ

n−k
√

1 − γ
k|n − k〉〈n|, (1)

∀ k ∈ {0,1, . . . ,∞}. Here γ is the damping parameter and
1 − γ corresponds to the probability of losing one photon.
The error operators Ak are related to the positive operator-
valued measure element A

†
kAk � 0, with

∑∞
k=0 A

†
kAk = 1.

The nonunitary evolution of an arbitrary single-mode density
operator ρ under the effect of AD is

ρ → ρf =
∞∑

k=0

AkρA
†
k. (2)

By employing a quantum code, one is partially able to reverse
the dynamics implied by Eq. (2) and recover the original state.
A proper quantum code enables one to detect and correct a
certain set of errors on the encoded state. A quantum code
is a vector space spanned by basis codewords, denoted by
|0̄〉 ≡ |c1〉 and |1̄〉 ≡ |c2〉 for a qubit code, and a subspace of
some higher-dimensional Hilbert space. Normalized elements
of this vector space of the form α|0̄〉 + β|1̄〉 are called logical
qubits. This notion can be extended to qudit codes, where
there are more than two codewords |c1〉, . . . ,|cd〉 to encode a
logical d-level system. To form a proper quantum code, the
logical basis codewords have to fulfill certain conditions. We
state the famous Knill-Laflamme conditions, which are a set
of necessary and sufficient conditions for the existence of a
recovery operation [23].

Theorem 1: Knill-Laflamme. Let C = span{|c1〉,
|c2〉, . . . ,|cd〉} be a quantum code, P be the projector
onto C, and {Ei} the set of error operators. There exists an
error-correction operation R that corrects the errors {Ei} on
C, if and only if

PE
†
i EjP = �ijP, ∀ i,j, (3)

for some positive semidefinite, Hermitian matrix �, with
matrix elements �ij .

For photon loss codes (in particular, those exact codes with a
fixed total photon number), the matrix � is typically diagonal,
i.e., �ij = giδij . This defines nondegenerate codes with
different loss errors (especially different numbers of photons
lost, but also different modes subject to loss) corresponding to
orthogonal error spaces. Nonetheless, certain instances of our
code do exhibit degeneracy for a given number of lost photons.

The Knill-Laflamme (KL) conditions contain two basic
notions. The first notion is the orthogonality of corrupted

codewords, i.e.,

〈ck|E†
i Ej |cl〉 = 0 if k 
= l. (4)

The second one is the nondeformability condition, i.e.,

〈cl|E†
i Ei |cl〉 = gi, ∀ l. (5)

This means that the norm of a corrupted codeword depends
only on the error operator and not on the codeword itself.

Before proceeding with the code construction, we highlight
some examples of existing photon loss codes. In the first ex-
ample, a logical qubit is encoded in a certain two-dimensional
subspace of two bosonic modes. The basis codewords are
chosen in the following way [17]:

|0̄〉 = 1√
2

(|40〉 + |04〉),

|1̄〉 = |22〉; (6)

i.e., any logical qubit has a total photon number N2 = 4. This
code corrects exactly N − 1 = 1 photon losses. The worst-
case fidelity, as defined further below, is found to be F = γ 4 +
4γ 3(1 − γ ) = 1 − 6(1 − γ )2 + 8(1 − γ )3 − 3(1 − γ )4. In the
same reference [17], the following code is given:

|0̄〉 = 1√
2

(|70〉 + |16〉),

|1̄〉 = 1√
2

(|52〉 + |34〉). (7)

This code corrects also all one-photon losses and its worst-
case fidelity is γ 7 + 7γ 6(1 − γ ) = 1 − 21(1 − γ )2 + 70(1 −
γ )3 − 105(1 − γ )4 + 84(1 − γ )5 − 35(1 − γ )6 + 6(1 − γ )7.

Another example that encodes a qubit in three optical modes
with a total photon number of 3 was proposed in [16]. The basis
codewords are

|0̄〉 = 1√
3

(|300〉 + |030〉 + |003〉),

|1̄〉 = |111〉. (8)

The fidelity in this case is γ 3 + 3γ 2(1 − γ ) = 1 − 3(1 −
γ )2 + 2(1 − γ )3. Moreover, note that all three codes given
above are capable of exactly correcting only the loss of one
photon, as can be easily seen by checking the KL conditions.
An example for a proper two-photon-loss code is [17]

|0̄〉 = 1

2
|90〉 +

√
3

2
|36〉,

|1̄〉 = 1

2
|09〉 +

√
3

2
|63〉,

(9)

whose worst-case fidelity is found to be F = γ 9 + 9γ 8(1 −
γ ) + 36γ 7(1 − γ )2 ≈ 1 − 84(1 − γ )3.

What these codes also have in common is their small
number of optical modes, at the expense of having rather large
maximal photon numbers in each mode (in order to obtain a
sufficiently large Hilbert space). Conversely, a code that has,
at most, one photon in any mode, but a correspondingly large
total mode number, is the QPC. The simplest nontrivial QPC,
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denoted as QPC(2,2), reads as follows [18]:

|0̄〉 = 1√
2

(|10101010〉 + |01010101〉),

|1̄〉 = 1√
2

(|10100101〉 + |01011010〉). (10)

It also corrects exactly the loss of one photon. Different from
all these codes that all consist of superpositions of states with
a fixed photon number is the following code [19]:

|0̄〉 = 1√
2

(|0000〉 + |1111〉),

|1̄〉 = 1√
2

(|0011〉 + |1100〉). (11)

This code is conceptually distinct, because it does not satisfy
the usual KL conditions. It satisfies certain relaxed conditions,
which leads, in a more general setting, to approximate quantum
error-correcting schemes [19]. The above approximate code
still satisfies the KL conditions up to linear order in 1 − γ ,
corresponding to one-photon-loss correction, while it requires
four physical qubits (single-rail qubits encoded as vacuum
|0〉 and single-photon |1〉) instead of five physical qubits for
the minimal universal one-qubit-error code. Note that for
dual-rail physical qubits (i.e., the approximate Leung code
[19] concatenated with standard optical dual-rail encoding),
one obtains QPC(2,2), which is then an exact one-photon-loss
code. After setting the stage, we now start to discuss how to
construct new quantum codes for AD to suppress the effect of
photon losses.

III. QUBIT CODES

Let us consider the following qubit codewords defined in
the three-dimensional Hilbert space of two photons distributed
among two modes,

|0̄〉 = 1√
2

(|20〉 + |02〉),

|1̄〉 = |11〉. (12)

The action of the AD channels on the two modes of the logical
qubit |�̄〉 = c0|0̄〉 + c1|1̄〉 is [24]

A0 ⊗ A0|�̄〉 =
√

γ 2|�̄〉,
A1 ⊗ A0|�̄〉 =

√
γ (1 − γ )(c0|10〉 + c1|01〉), (13)

A0 ⊗ A1|�̄〉 =
√

γ (1 − γ )(c0|01〉 + c1|10〉),
including the first three error operators, E1 = A0 ⊗ A0, E2 =
A1 ⊗ A0, and E3 = A0 ⊗ A1, of which the last two describe
the loss of a photon. Obviously, the one-photon-loss spaces
are not orthogonal (they are even identical) and the qubit is
subject to a random bit flip for the one-photon-loss case. A
different choice of codewords would be

|0̄〉 = 1

2
|20〉 + 1

2
|02〉 + 1√

2
|11〉,

|1̄〉 = 1

2
|20〉 + 1

2
|02〉 − 1√

2
|11〉. (14)

After AD, this becomes

A0 ⊗ A0|�̄〉 =
√

γ 2|�̄〉,

A1 ⊗ A0|�̄〉 =
√

γ (1 − γ )

[
c0

1√
2

(|10〉 + |01〉)

+ c1
1√
2

(|10〉 − |01〉)
]
,

A0 ⊗ A1|�̄〉 =
√

γ (1 − γ )

[
c0

1√
2

(|10〉 + |01〉)

− c1
1√
2

(|10〉 − |01〉)
]
. (15)

Here the phase flip in the last line corresponds to a violation
of the KL criteria,〈0̄|E†

2E3|0̄〉 
= 〈1̄|E†
2E3|1̄〉, preventing the

encoding from being a proper quantum error-correcting code.
Indeed, again we have identical one-photon-loss spaces. One
can easily verify that any choice of codewords will lead
to overlapping one-photon-loss spaces or else the qubit is
completely lost. A possible remedy is to construct codes
composed of blocks.

To demonstrate this, we first deal with the specific example
for encoding a logical qubit. Define

∣∣t2,2
0

〉 = B[|20〉] = 1

2
|20〉 + 1

2
|02〉 + 1√

2
|11〉,

∣∣t2,2
1

〉 = B[|02〉] = 1

2
|20〉 + 1

2
|02〉 − 1√

2
|11〉,

(16)

as the “input states” for our encoding, where B[ ] denotes a
50:50 beam-splitter transformation [25]. Note that, in general,
a beam splitter with reflectivity r and transmittance t acts on
a two-mode Fock state as

|m,n〉 →
m,n∑

j,k=0

√
(j + k)!(m + n − j − k)!

m!n!

(
m

j

)(
n

k

)
× (−1)ktn+j−krm−j+k|m + n − j − k,j + k〉.

(17)

In the case of a 50:50 beam splitter (t = r = 1√
2
), this reduces

to

|m,n〉 →
m,n∑

j,k=0

√
1

2

n+m√
(j + k)!(m + n − j − k)!

m!n!

(
m

j

)

×
(

n

k

)
(−1)k|m + n − j − k,j + k〉,

(18)
and we obtain, in particular,

B[|N0〉] =
√

1
2

N N∑
j=0

√(
N

j

)|N − j,j 〉,

B[|0N〉] =
√

1
2

N N∑
j=0

(−1)j
√(

N

j

)|N − j,j 〉. (19)
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Now, by means of a Hadamard-type operation on |t2,2
0 〉 and

|t2,2
1 〉, the following states are obtained:

|̃0〉 = 1√
2

(∣∣t2,2
0

〉 + ∣∣t2,2
1

〉) = 1√
2

(|20〉 + |02〉),

|̃1〉 = 1√
2

(∣∣t2,2
0

〉 − ∣∣t2,2
1

〉) = |11〉. (20)

Note that |̃1〉 equals B[ 1√
2
(|20〉 − |02〉)], whereas |̃0〉 is the

two-photon NOON state which is invariant under the beam-
splitter transformation. A logical qubit can now be encoded
according to

|�̄〉 = c0 |̃0〉|̃0〉 + c1 |̃1〉|̃1〉 ≡ c0|0̄〉 + c1|1̄〉. (21)

We prove in the following that the codewords

|0̄〉 = |̃0〉|̃0〉 = 1√
2

(|20〉 + |02〉) 1√
2

(|20〉 + |02〉)

= 1

2
(|2020〉 + |2002〉 + |0220〉 + |0202〉), (22)

|1̄〉 = |̃1〉|̃1〉 = |1111〉,
form a quantum error-correcting code for the AD channel.
Calculating the action of AD on the basis codewords and
checking the KL conditions, we obtain

A0 ⊗ A0 ⊗ A0 ⊗ A0|�̄〉 =
√

γ 4|�̄〉,
A1 ⊗ A0 ⊗ A0 ⊗ A0|�̄〉

=
√

γ 3(1 − γ )

[
c0√

2
(|1020〉 + |1002〉) + c1|0111〉

]
,

A0 ⊗ A1 ⊗ A0 ⊗ A0|�̄〉

=
√

γ 3(1 − γ )

[
c0√

2
(|0120〉 + |0102〉) + c1|1011〉

]
,

A0 ⊗ A0 ⊗ A1 ⊗ A0|�̄〉

=
√

γ 3(1 − γ )

[
c0√

2
(|2010〉 + |0210〉) + c1|1101〉

]
,

A0 ⊗ A0 ⊗ A0 ⊗ A1|�̄〉

=
√

γ 3(1 − γ )

[
c0√

2
(|2001〉 + |0201〉) + c1|1110〉

]
.

(23)

The KL conditions are obviously fulfilled for one-photon-loss
errors. Note that, after losing any two or more photons, the
logical qubit cannot be recovered anymore.

To be able to actively perform quantum error correction,
it is a necessary task to determine the syndrome information,
i.e., in our case the location (the mode) where a photon loss
occurred. To get this information, we first measure the total
photon number per block. If the result is “2” on each block,
there is no photon missing and the logical qubit is unaffected.
However, if, for example, a photon got lost on the first mode,
the result is “1” for the first block and “2” for the other.
This result is not unique, because there are still two possible
corrupted states with this measurement pattern. In order to
resolve this, interblock photon number parity measurements
with respect to modes 2 + 3 and 1 + 4 are suitable. The

results “even-odd” and “odd-even” uniquely determine the
corrupted state which can then be accordingly recovered. Note
that all the measurements discussed here are assumed to be
of quantum-nondemolition-type (QND) such that also higher
photon losses can be nondestructively detected. However, so
far, these cannot be corrected by means of the encoding.

A convenient measure for the quality of a quantum error-
correcting code is the worst-case fidelity, defined as [17,23]

F = min
|�̄〉∈C

〈�̄|R(ρ̄f )|�̄〉, (24)

where ρ̄f is the final mixed state after multimode amplitude
damping (with the only assumption that each AD channel
acts independently on each mode) and R is the recovery
operation. Note that the recovery operation always exists if the
KL conditions are fulfilled. The fidelity defined in Eq. (24) is a
suitable figure of merit to assess the performance of a quantum
error-correction code [26]. In particular, it also reveals if an
encoding is not a proper code [see, e.g., the encoding in Eq.
(14)]. In our case, the worst-case fidelity is easily calculated
as

F = γ 4 + 4γ 3(1 − γ ) ≈ 1 − 6(1 − γ )2. (25)

Note that this code has the same scaling as the four-photon
code of [17] described by Eq.(6).

For higher losses, we can use NOON states with higher
photon number to encode a logical qubit. For this purpose, let
us define the input states for the codewords as∣∣t2,3

0

〉 = B[|30〉]

= 1

2
√

2
|03〉 + 1

2

√
3

2
|12〉 + 1

2

√
3

2
|21〉 + 1

2
√

2
|30〉,∣∣t2,3

1

〉 = B[|03〉]

= − 1

2
√

2
|03〉 + 1

2

√
3

2
|12〉 − 1

2

√
3

2
|21〉 + 1

2
√

2
|30〉,

(26)
such that this time

|̃0〉 = 1√
2

(∣∣t2,3
0

〉 + ∣∣t2,3
1

〉) = 1

2
|30〉 +

√
3

2
|12〉

= B

[
1√
2

(|30〉 + |03〉)
]
,

|̃1〉 = 1√
2

(∣∣t2,3
0

〉 − ∣∣t2,3
1

〉) = 1

2
|03〉 +

√
3

2
|21〉

= B

[
1√
2

(|30〉 − |03〉)
]
,

(27)

become the states after the Hadamard-type gate. We could now
again build a qubit like in Eq. (21). However, we find that the
resulting six-photon two-block (four-mode) code corrects only
certain two-photon losses and therefore there is no significant
enhancement compared to the N = 2 code above. This can be
understood by looking at the corrupted logical qubit for losses
of up to two photons. The details for this are presented in
Appendix A. The conclusion is that some of the orthogonality
requirements are violated for certain two-photon losses which
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consequently cannot be corrected. To overcome this problem
and to improve the code, instead we take the following
codewords for N = 3 photons per block (with N2 = 9 as the
total number of photons):

|0̄〉 = |̃0〉|̃0〉|̃0〉, |1̄〉 = |̃1〉|̃1〉|̃1〉, (28)

which are now composed of three blocks for a total number of
six modes. To verify that this code corrects all losses up to two

photons, we can calculate the action of AD on the logical qubit.
Due to symmetry reasons, it is sufficient to calculate the action
of only certain error operators on the codewords, because all
other corrupted codewords with at most two lost photons can
be obtained by permutations of the blocks. Therefore, if the
KL conditions are fulfilled for the following error operators,
then they are also satisfied by the block-permuted corrupted
states. The relevant error operators are

A1 ⊗ A0 ⊗ A0 ⊗ A0 ⊗ A0 ⊗ A0|�̄〉 =
√

3

2
γ 8(1 − γ )

[
c0√

2
(|20〉 + |02〉)|̃0〉|̃0〉 + c1|11〉|̃1〉|̃1〉

]
,

A0 ⊗ A1 ⊗ A0 ⊗ A0 ⊗ A0 ⊗ A0|�̄〉 =
√

3

2
γ 8(1 − γ )

[
c0|11〉|̃0〉|̃0〉 + c1√

2
(|20〉 + |02〉)|̃1〉|̃1〉

]
,

A1 ⊗ A1 ⊗ A0 ⊗ A0 ⊗ A0 ⊗ A0|�̄〉 =
√

3

2
γ 7(1 − γ )2(c0|01〉|̃0〉|̃0〉 + c1|10〉|̃1〉|̃1〉),

A2 ⊗ A0 ⊗ A0 ⊗ A0 ⊗ A0 ⊗ A0|�̄〉 =
√

3

2

√
γ 7(1 − γ )2(c0|10〉|̃0〉|̃0〉 + c1|01〉|̃1〉|̃1〉),

A0 ⊗ A2 ⊗ A0 ⊗ A0 ⊗ A0 ⊗ A0|�̄〉 =
√

3

2

√
γ 7(1 − γ )2(c0|10〉|̃0〉|̃0〉 + c1|01〉|̃1〉|̃1〉),

A1 ⊗ A0 ⊗ A1 ⊗ A0 ⊗ A0 ⊗ A0|�̄〉 = 3

2

√
γ 7(1 − γ )2

[
c0

1√
2

(|20〉 + |02〉) 1√
2

(|20〉 + |02〉)|̃0〉 + c1|11〉|11〉|̃1〉
]
,

A0 ⊗ A1 ⊗ A1 ⊗ A0 ⊗ A0 ⊗ A0|�̄〉 = 3

2

√
γ 7(1 − γ )2

[
c0|11〉 1√

2
(|20〉 + |02〉)|̃0〉 + c1

1√
2

(|20〉 + |02〉)|11〉|̃1〉
]
,

A0 ⊗ A1 ⊗ A0 ⊗ A1 ⊗ A0 ⊗ A0|�̄〉 = 3

2

√
γ 7(1 − γ )2

[
c0|11〉|11〉|̃0〉 + c1

1√
2

(|20〉 + |02〉) 1√
2

(|20〉 + |02〉)|̃1〉
]
,

A1 ⊗ A0 ⊗ A0 ⊗ A1 ⊗ A0 ⊗ A0|�̄〉 = 3

2

√
γ 7(1 − γ )2

[
c0

1√
2

(|20〉 + |02〉)|11〉|̃0〉 + c1|11〉 1√
2

(|20〉 + |02〉)|̃1〉
]
. (29)

One can easily verify that a recovery of the logical qubit
is, in principle, possible by again detecting the photon number
for each block with additional interblock parity measurements.
It is then also not difficult to see that the KL conditions are
fulfilled for these operators, so, indeed, the corresponding two-
photon loss errors can be corrected with this encoding. Note
that the code is degenerate; i.e., the effect of some nonidentical
loss errors on the logical qubit is identical. For the loss of three
or more photons, the code ceases to be a complete loss code.
The corresponding worst-case fidelity is

F = γ 9 + 9γ 8(1 − γ ) + 36γ 7(1 − γ )2

≈ 1 − 84(1 − γ )3.
(30)

This is the same result as for the bosonic code in Eq. (9).
However, note that in order to promote the encoding from a
one-photon-loss to a two-photon-loss code, in our scheme the
maximal photon number per mode only needs to go up from
two to three photons [as opposed to four versus nine photons in
Eqs. (6) and (9), respectively]. Similarly, the two-photon-loss
code QPC(3,3) requires as many as 18 optical modes compared
to a modest number of six modes in our case.

Our procedure can be generalized for arbitrary N (i.e.,
N photons per block and N2 total number of photons),

setting

∣∣t2,N
0

〉 = B[|N0〉], ∣∣t2,N
1

〉 = B[|0N〉], (31)

applying the Hadamard-type gate [using Eqs. (19) and (31)],

|̃0〉 = 1√
2

(∣∣t2,N
0

〉 + ∣∣t2,N
1

〉)
= 1

√
2

N−1

N∑
j=0

√(
N

2j

)
|N − 2j,2j 〉

= B

[
1√
2

(|N0〉 + |0N〉)
]

|̃1〉 = 1√
2

(∣∣t2,N
0

〉 − ∣∣t2,N
1

〉)
= 1

√
2

N−1

N∑
j=0

√(
N

2j + 1

)
|N − 2j − 1,2j + 1〉

= B

[
1√
2

(|N0〉 − |0N〉)
]
, (32)
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FIG. 1. Worst-case fidelities for different qubit loss NOON codes
as a function of γ : N 2 = 4 (orange line), N2 = 9 (green line),
N 2 = 16 (blue line), and N2 = 25 (magenta line), each correcting
N − 1 photon losses. Notice the change of ordering with higher-order
codes beating the lower-order codes for small losses and the converse
for larger losses (see inset). The small-loss regime γ ∈ [0.95,1]
would correspond to a communication channel length of ∼1 km (see
Sec. VI).

and finally introducing the N -block structure,

|0̄〉 = |̃0〉⊗N, |1̄〉 = |̃1〉⊗N . (33)

By construction (for more details, see the next section),
this code corrects the loss of up to N − 1 photons using N2

photons. For any order, i.e., photon number, the codewords of
our NOON code can always be obtained from NOON-state
resources using beam splitters. The worst-case fidelities of
different qubit codes are compared in Fig. 1.

One interesting feature of our qubit code construction
is the interchangeability of the beam-splitter transformation,
Hadamard operation, and block building. For example, con-
sider the N2 = 4 case. In order to produce the codewords, we
first apply the symmetric beam-splitter transformation on |20〉
and |02〉, followed by the Hadamard gate, and finally build the
blocks. The logical basis codewords obtained in this way are

|0̄〉 =
[

1√
2

(|20〉 + |02〉)
]⊗2

= 1

2
(|2020〉 + |2002〉 + |0220〉 + |0202〉),

|1̄〉 =
[

1√
2

(|20〉 − |02〉
]⊗2

= 1

2
(|2020〉 − |2002〉 − |0220〉 + |0202〉),

(34)

which correspond to the codewords obtained as before up to
a beam-splitter transformation on each block. The details to
verify that this encoding is also a proper code as well as its
extension to qudits can be found in Appendix B.

IV. GENERALIZATION TO QUDIT CODES

Our method can be directly generalized to logical qudits.
Let us again illustrate the idea by a specific example, namely

that for a qutrit code (d = 3). Define the states∣∣t3,2
0

〉 = T [|200〉]

= 1

3
|200〉 + 1

3
|020〉 + 1

3
|002〉 +

√
2

3
|101〉

+
√

2

3
|011〉 +

√
2

3
|110〉,∣∣t3,2

1

〉 = T [|020〉]

= 1

3
|200〉+ 1

3
exp(4πi/3)|020〉+ 1

3
exp(−4πi/3)|002〉

+
√

2

3
exp(−2πi/3)|101〉 +

√
2

3
|011〉

+
√

2

3
exp(2πi/3)|110〉,∣∣t3,2

2

〉 = T [|002〉]

= 1

3
|200〉+ 1

3
exp(−4πi/3)|020〉+ 1

3
exp(4πi/3)|002〉

+
√

2

3
exp(2πi/3)|101〉 +

√
2

3
|011〉

+
√

2

3
exp(−2πi/3)|110〉, (35)

where T now represents a “tritter” transformation, i.e.,
a symmetric 3-splitter. The encoding works via a qutrit
Hadamard-type gate:

|̃0〉 = 1√
3

(∣∣t3,2
0

〉 + ∣∣t3,2
1

〉 + ∣∣t3,2
2

〉)
= 1√

3
|200〉 +

√
2

3
|011〉,

|̃1〉 = 1√
3

[∣∣t3,2
0

〉 + exp(2πi/3)
∣∣t3,2

1

〉 + exp(−2πi/3)
∣∣t3,2

2

〉]
= 1√

3
|020〉 +

√
2

3
|101〉,

|̃2〉 = 1√
3

[∣∣t3,2
0

〉 + exp(−2πi/3)
∣∣t3,2

1

〉 + exp(2πi/3)
∣∣t3,2

2

〉]
= 1√

3
|002〉 +

√
2

3
|110〉. (36)

The logical qutrit state is then defined as

|�̄〉 = c0 |̃0〉|̃0〉 + c1 |̃1〉|̃1〉 + c2 |̃2〉|̃2〉. (37)

The states obtained from the logical qutrit after the loss of
exactly one photon are

A1 ⊗ A0 ⊗ A0 ⊗ A0 ⊗ A0 ⊗ A0|�̄〉

=
√

2

3
γ 3(1 − γ )(c0|100〉|̃0〉 + c1|001〉|̃1〉 + c2|010〉|̃2〉),

A0 ⊗ A1 ⊗ A0 ⊗ A0 ⊗ A0 ⊗ A0|�̄〉

=
√

2

3
γ 3(1 − γ )(c0|001〉|̃0〉 + c1|010〉|̃1〉 + c2|100〉|̃2〉),
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A0 ⊗ A0 ⊗ A1 ⊗ A0 ⊗ A0 ⊗ A0|�̄〉

=
√

2

3
γ 3(1 − γ )(c0|010〉|̃0〉 + c1|100〉|̃1〉 + c2|001〉|̃2〉),

A0 ⊗ A0 ⊗ A0 ⊗ A1 ⊗ A0 ⊗ A0|�̄〉

=
√

2

3
γ 3(1 − γ )(c0 |̃0〉|100〉 + c1 |̃1〉|001〉 + c2 |̃2〉|010〉),

A0 ⊗ A0 ⊗ A0 ⊗ A0 ⊗ A1 ⊗ A0|�̄〉

=
√

2

3
γ 3(1 − γ )(c0 |̃0〉|001〉 + c1 |̃1〉|010〉 + c2 |̃2〉|100〉),

A0 ⊗ A0 ⊗ A0 ⊗ A0 ⊗ A0 ⊗ A1|�̄〉

=
√

2

3
γ 3(1 − γ )(c0 |̃0〉|010〉 + c1 |̃1〉|100〉 + c2 |̃2〉|001〉).

(38)

Again, the KL conditions are obviously fulfilled, so the
code can correct the loss of up to one single photon. As
before, the error spaces can be discriminated by identifying
in which block the photon was lost and by measuring global
interblock observables (while simple interblock parities no
longer work). An extension to higher photon numbers and to
higher-dimensional quantum systems is natural,∣∣td,N

0

〉 = Sd [|N00 · · · 0〉], . . . ,∣∣td,N
d−1

〉 = Sd [|000 · · · 0N〉].
(39)

Here Sd represents a d-splitter, i.e., a symmetric d-port
device where d is the number of modes. It is the multimode
generalization of a symmetric beam splitter and the tritter,
as discussed above (thus, S2 = B and S3 = T ). As a linear
optical device, it is defined by the linear relation between the
annihilation operators of the input modes ai,i = 1, . . . ,d and
the annihilation operators of the output modes bi :

bi =
d∑

j=1

Uijaj . (40)

Here the unitary matrix U , connecting the input and output
modes and ensuring photon number preservation, is given by

Ukl = 1√
d

exp

(
i
2πkl

d

)
. (41)

Then we define the states

|̃k〉 = 1√
d

d−1∑
j=0

exp(2πikj/d)
∣∣td,N

j

〉
(42)

for k = 0, . . . ,d − 1. A general logical qudit is then expressed
by the dN-mode, N2-photon state,

|�̄〉 = c0 |̃0〉⊗N + c1 |̃1〉⊗N + · · · + cd−1| ˜d − 1〉⊗N . (43)

By construction, this code can correct up to N − 1 photon
losses. The orthogonality of corrupted codewords, required by
the KL conditions, is easy to check, because the codewords
are built blockwise. The nondeformation criterion, however,
requires a more rigorous check. Let us first calculate the input
state |td,N

0 〉 for general N and d,

|N00 · · · 〉

= a
†N
1√
N !

|000 · · · 〉 → Sd [|N000 · · · 〉]

= 1√
N !

√
1

d

N

(a†
1 + a

†
2 + · · · + a

†
d )N |000 · · · 〉

= 1√
N !

√
1

d

N ∑
�k∈A

(
N

k1,k2, . . . ,kd

)
a
†k1
1 a

†k2
2 · · · a†kd

d |000〉

= 1√
N !

√
1

d

N ∑
�k∈A

(
N

k1,k2, . . . ,kd

)

×
√

k1!
√

k2! · · ·
√

kd !|k1,k2, . . . ,kd〉

= 1√
N !

√
1

d

N ∑
�k∈A

N !√
k1!k2! · · · kd !

|k1,k2, . . . ,kd〉. (44)

In the third line, we used the multinomial theorem, bearing in
mind that all the creation operators commute with each other.
Furthermore, we defined the multinomial coefficient,(

N

k1,k2, . . . ,kd

)
= N !

k1!k2! · · · kd !
, (45)

as the number of arrangements of N objects in which there are
kj objects of type j , kq objects of type q, and so on. We also
introduced the set of d-dimensional vectors with fixed column
sum, i.e., A ≡ {�k ∈ Nd

0 |
∑d

i=1 ki = N}, to parametrize the set
of all d-mode Fock states with fixed photon number N . Fur-
thermore, we define A′ ≡ {�k ∈ Nd

0 |
∑d

i=1 ki = N and k1 � 1}
and A′′ ≡ {�k ∈ Nd

0 |
∑d

i=1 ki = N − 1}.
We consider the loss of exactly one photon in the first mode;

i.e., we apply the operator A1 ⊗ A⊗d−1
0 :

A1 ⊗ A⊗d−1
0 Sd [|N00 · · · 〉] = 1√

N !

√
1

d

N ∑
�k∈A

N !√
k1!

√
k2! · · · √kd !

A1 ⊗ A⊗d−1
0 |k1,k2, . . . ,kd〉

= 1√
N !

√
1

d

N ∑
�k∈A′

N !√
k1!

√
k2! · · · √kd !

√
γ

N−1
√

1 − γ
√

k1|k1 − 1,k2, . . . ,kd〉

= 1√
N !

√
1

d

N√
γ

N−1
√

1 − γ
∑
�k∈A′

N !√
(k1 − 1)!

√
k2! · · ·√kd !

|k1 − 1,k2, . . . ,kd〉
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= 1√
N !

√
1

d

N√
γ

N−1
√

1 − γ
∑
�q∈A′′

N !√
q1!

√
q2! · · ·√qd !

|q1,q2, . . . ,qd〉

=
√

N

√
1

d

√
γ

N−1
√

1 − γ Sd (|N − 1,0,0, . . .〉). (46)

For symmetry reasons, the loss of a photon in a dif-
ferent mode acts identically. The same is true for the
other input states; i.e., Sd [|0,0, . . . ,N,0,0, . . .〉] decays into
Sd [|0,0, . . . ,N − 1,0,0, . . .〉] after losing one photon. Higher
losses can be treated by induction. Because the blocks of the
basis codewords are exactly superpositions of these states, no
deformation can take place after photon loss. Together with the
orthogonality of corrupted codewords, this proves our qudit
encoding to be a quantum-error correction code.

V. PHYSICAL IMPLEMENTATION

In order to substantiate the importance of the encodings, we
describe a scheme of how to generate an arbitrary logical qubit
for the simplest code with just two photons per block (N = 2).
We assume that the states 1√

2
(|20〉 ± |02〉) are experimentally

accessible from two single-photon states |1〉 ⊗ |1〉 with a
phase-free and an appropriately phase-inducing, 50:50 beam
splitter. In addition, we need one auxiliary photon in two ancilla
modes to produce the following states:

|ψ1〉 = |0〉 1√
2

(|20〉 + |02〉)|1〉,

|ψ2〉 = |1〉 1√
2

(|20〉 − |02〉)|0〉. (47)

As pointed out in [27], by employing an ancilla ion-
trap system, the generation of a symmetric entangled
state, 1√

2
(|φ1〉|φ2〉 + |φ2〉|φ1〉), is, in principle, possible for

arbitrary photonic input states |φ1〉 and |φ2〉. Applied to |ψ1〉
and |ψ2〉, one obtains

1√
2

[
1√
2

(|20〉 + |02〉) 1√
2

(|20〉 − |02〉)|0110〉

+ 1√
2

(|20〉 − |02〉) 1√
2

(|20〉 + |02〉)|1001〉
]
, (48)

where we already reordered the modes. The next step is to
apply a general beam splitter with complex transmittance t and
reflectivity r , with the coefficients in the desired superposition
determined later, to the first and second pair of the ancilla
modes. This leads to

1√
2

[
1√
2

(|20〉 + |02〉) 1√
2

(|20〉 − |02〉)(r|10〉 − t |01〉)

× (t |10〉 + r|01〉) + 1√
2

(|20〉 − |02〉) 1√
2

(|20〉 + |02〉)

× (t |10〉 + r|01〉)(r|10〉 − t |01〉)
]
. (49)

Measuring the photons after the beam splitter and detecting
“1001” projects the state onto

r2√
|r|4 + |t |4

1√
2

(|20〉 + |02〉) 1√
2

(|20〉 − |02〉)

− t2√
|r|4 + |t |4

1√
2

(|20〉 − |02〉) 1√
2

(|20〉 + |02〉). (50)

Finally, a phase shift of π/2 on the last mode gives the logical
qubit (i.e., applying exp ( iπn̂

2 ) to it),

|�̄〉 = r2√
|r|4 + |t |4

1√
2

(|20〉 + |02〉) 1√
2

(|20〉 + |02〉)

− t2√
|r|4 + |t |4

1√
2

(|20〉 − |02〉) 1√
2

(|20〉 − |02〉)

= c0
1√
2

(|20〉 + |02〉) 1√
2

(|20〉 + |02〉)

+ c1
1√
2

(|20〉 − |02〉) 1√
2

(|20〉 − |02〉), (51)

similar to Eq. (21). Because |t |2 + |r|2 = 1, this means
that with an appropriate choice of r and t (assuming a
known logical qubit) and a final symmetric beam-splitter
transformation on the blocks, any superposition of the logical
codewords can be generated. Note that the logical qubit in Eq.
(51) (without the final symmetric beam splitter) corresponds
to the four-photon, alternative NOON-code qubit (see Sec. III
and Appendix B).

VI. APPLICATION IN A ONE-WAY
COMMUNICATION SCHEME

In practice, especially for quantum communication, the
direct transmission of a photonic state is performed through a
noisy quantum channel which leads to an exponential decay of
the success rate with the total distance due to photon loss. To
overcome this problem, besides the standard quantum repeater
[28,29], a one-way quantum communication scheme can be
applied [20]. Here an encoded quantum state is sent from
a sending station directly through an optical fiber of length
L0 to reach the first repeater station while suffering from a
moderate amount of photon loss for sufficiently small L0. In
each intermediate station, teleportation-based error correction
(TEC) [30] is performed before the corrected state is sent to
the next repeater station. For logical qubits, TEC is realized by
Bell-state preparation and Bell measurements at the encoded
level, which requires encoded Pauli operations as well as
encoded Hadamard and CNOT gates. As pointed out in [22],
TEC can be generalized to logical qudits using qudit Pauli and
SUM gates together with qudit Hadamard gates.
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FIG. 2. Success probabilities for the one-way scheme with
different encodings: N2 = 4 (orange, ultrafine dashed line), N2 = 9
(green, fine dashed line), N2 = 16 (blue, dashed line), and N2 = 100
(magenta, solid line) total photons for L = 1000 km (L0 in km).

Based on the results of the last sections, the success
probability for one-way communication over a total distance
L with repeater spacings L0 of an (N2,d) encoded qudit is
[31]

Psucc =
[

N−1∑
k=0

(
N2

k

)
γ N2−k(1 − γ )k

]L/L0

. (52)

Here the damping parameter is given by γ = exp (− L0
Latt

) with
the attenuation length Latt = 22 km for telecom fibers and
photons at telecom wavelengths. Note that Psucc depends only
on N and especially not on d. The success probability for the

one-way scheme over a total distance of 1000 km using various
codes is shown in Fig. 2.

To assess the resources needed in a scheme with our qudit
codes, we furthermore define a (spatial) cost function as [20]

C(N,d) = N2

Psucc log2(d)L0
, (53)

which depends on the photon number N per block and
the dimension of the qudit d [32]. Fixing the total photon
number, the cost is obviously suppressed by the inverse of the
binary logarithm of the qudit dimension (corresponding to the
effective number of encoded logical qubits) such that qudit
encodings make the one-way scheme more efficient. More
interesting is the comparison of different qudit encodings with
different total photon numbers, as shown in Fig. 3. The plot
shows the cost functions of various codes. The cost decreases
with N as Psucc is increasing at the same time for a suitably
chosen L0.

Note that also N2 = 1 can be realized in the so-
called multiple-rail qudit encoding, where a single pho-
ton occupies one of d modes, i.e., |0̄〉 = |1000 · · · 〉,|1̄〉 =
|0100 · · · 〉, . . . ,|d − 1〉 = |00 · · · 01〉. Since the scaling of the
transmission probability with the loss parameter γ only
depends on the total photon number (and especially not on
the qudit dimension d), a cost reduction can be achieved
already in this case by increasing d. However, the multiple-rail
encoding is not a quantum error-correction code; it is only
a quantum error-detection code [23] that can detect but not
correct loss errors. By including the number of modes into
the cost function, e.g., C(N,d) = N3d

Psucc log2(d)L0
[33,34], we

0.2 0.4 0.6 0.8 1.0L0

1× 1020
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4× 1020

5× 1020
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(a) N2 = 1
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(b) N2 = 9
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FIG. 3. Cost function for codes with different photon numbers and dimensions for L = 1000 km: d = 2 (red line), d = 3 (green line),
d = 4 (blue line) (from top to bottom, L0 in km).
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no longer get a cost reduction by increasing the logical
dimension d.

In our illustrative example here, we have assumed that
adding extra modes is cheap compared to adding extra photons
and hence used the cost function in Eq. (53) as a figure of
merit. This point of view is different compared to the usual,
information theoretical secret-key analysis, where the key rate
is calculated per mode [34].

VII. CONCLUSIONS

We presented a systematic approach for constructing a class
of exact quantum error-correcting codes for the amplitude-
damping channel. Based on quantum optical NOON-state
resources, logical qubits can be encoded in a block code
consuming a total of N2 photons in N blocks. These codes
are capable of correcting N − 1 photon losses, which is the
same scaling obtainable with existing exact loss codes for the
same fixed total photon number. Nonetheless, only our codes
have a total mode number and a maximal photon number per
mode that both scale linearly with N .

All our codes have logical codewords that can be built from
NOON states with linear optics. A method for the experimental
generation of the N2 = 4 qubit code including arbitrary logical
qubits was also proposed. This method relies on the presence
of an ion-trap ancilla system. Furthermore, the NOON-code
approach can be generalized to logical qudits of arbitrary
dimension by increasing the mode number per block without

losing the loss robustness; i.e., the fidelity always only depends
on the total photon number N2 and not on the dimension of
the logical qudit.

As for an application, this feature is exploited in a one-
way communication scheme where general qudit codes turn
out to be beneficial in terms of the spatial resource cost.
Limitations of our codes are that there is no simple and
efficient method known for the experimental generation of
qubit codes with higher loss resistance and for that of arbitrary
qudit codes (including arbitrary logical quantum states). This
is, however, necessary for the presented one-way scheme,
because for achieving a useful success probability at moderate
intermediate distances L0 ∼ 1 km, N2 = O(100) will be
required. In addition, the proposed QND-type measurement
for syndrome identification and the corresponding recovery
operation, possibly implemented via encoded qudit quantum
teleportation, are experimentally hard to achieve.
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APPENDIX A: INEFFICIENCY OF THE N = 3
TWO-BLOCK CODE

By calculating the corrupted codewords, the violation of
the KL conditions becomes manifest:

A0 ⊗ A0 ⊗ A0 ⊗ A0|�̄〉 =
√

γ 6|�̄〉,

A1 ⊗ A0 ⊗ A0 ⊗ A0|�̄〉 =
√

3

2
γ 5(1 − γ )

[
c0

1√
2

(|20〉 + |02〉)|̃0〉 + c1|11〉|̃1〉
]
,

A0 ⊗ A1 ⊗ A0 ⊗ A0|�̄〉 =
√

3

2
γ 5(1 − γ )

[
c0|11〉|̃0〉 + c1

1√
2

(|20〉 + |02〉)|̃1〉
]
,

A0 ⊗ A0 ⊗ A1 ⊗ A0|�̄〉 =
√

3

2
γ 5(1 − γ )

[
c0 |̃0〉 1√

2
(|20〉 + |02〉) + c1 |̃1〉|11〉

]
,

A0 ⊗ A0 ⊗ A0 ⊗ A1|�̄〉 =
√

3

2
γ 5(1 − γ )

[
c0 |̃0〉|11〉 + c1 |̃1〉 1√

2
(|20〉 + |02〉)

]
,

A1 ⊗ A1 ⊗ A0 ⊗ A0|�̄〉 =
√

3

2
γ 4(1 − γ )2(c0|01〉|̃0〉 + c1|10〉|̃1〉),

A0 ⊗ A0 ⊗ A1 ⊗ A1|�̄〉 =
√

3

2
γ 4(1 − γ )2(c0 |̃0〉|01〉 + c1 |̃1〉|10〉),

A2 ⊗ A0 ⊗ A0 ⊗ A0|�̄〉 =
√

3

2

√
γ 4(1 − γ )2(c0|10〉|̃0〉 + c1|01〉|̃1〉),

A0 ⊗ A2 ⊗ A0 ⊗ A0|�̄〉 =
√

3

2

√
γ 4(1 − γ )2(c0|10〉|̃0〉 + c1|01〉|̃1〉),

A0 ⊗ A0 ⊗ A2 ⊗ A0|�̄〉 =
√

3

2

√
γ 4(1 − γ )2(c0 |̃0〉|10〉 + c1 |̃1〉|01〉),

A0 ⊗ A0 ⊗ A0 ⊗ A2|�̄〉 =
√

3

2

√
γ 4(1 − γ )2(c0 |̃0〉|10〉 + c1 |̃1〉|01〉),
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A1 ⊗ A0 ⊗ A1 ⊗ A0|�̄〉 = 3

2

√
γ 4(1 − γ )2

[
c0

1√
2

(|20〉 + |02〉) 1√
2

(|20〉 + |02〉)) + c1|1111〉
]
,

A0 ⊗ A1 ⊗ A0 ⊗ A1|�̄〉 = 3

2

√
γ 4(1 − γ )2

[
c1

1√
2

(|20〉 + |02〉) 1√
2

(|20〉 + |02〉) + c0|1111〉
]
,

A0 ⊗ A1 ⊗ A1 ⊗ A0|�̄〉 = 3

2

√
γ 4(1 − γ )2

[
c0|11〉 1√

2
(|20〉 + |02〉) + c1

1√
2

(|20〉 + |02〉)|11〉
]
,

A1 ⊗ A0 ⊗ A0 ⊗ A1|�̄〉 = 3

2

√
γ 4(1 − γ )2

[
c1|11〉 1√

2
(|20〉 + |02〉) + c0

1√
2

(|20〉 + |02〉)|11〉
]
. (A1)

Note that, for example, the corrupted logical basis states in the last two lines are, in general, not orthogonal such that a recovery
is not possible. This means that, besides all one-photon losses, only certain two-photon-loss errors are correctable, which gives
a worst-case fidelity of F ≈ 1 − 9(1 − γ )2. This result is still worse compared to our N = 2 four-photon, two-block code.

APPENDIX B: ALTERNATIVE NOON-CODE CONSTRUCTION

1. Qubit codes

The action of the AD channel on the codewords |0̄〉 = [ 1√
2
(|20〉 + |02〉)]⊗2 = 1

2 (|2020〉 + |2002〉 + |0220〉 + |0202〉) and

|1̄〉 = [ 1√
2
(|20〉 − |02〉]⊗2 = 1

2 (|2020〉 − |2002〉 − |0220〉 + |0202〉) is

A0 ⊗ A0 ⊗ A0 ⊗ A0|0̄〉 =
√

γ 4|0̄〉,
A0 ⊗ A0 ⊗ A0 ⊗ A0|1̄〉 =

√
γ 4|1̄〉,

A1 ⊗ A0 ⊗ A0 ⊗ A0|0̄〉 =
√

γ 3(1 − γ )
1√
2

(|1020〉 + |1002〉),

A1 ⊗ A0 ⊗ A0 ⊗ A0|1̄〉 =
√

γ 3(1 − γ )
1√
2

(|1020〉 − |1002〉),

A0 ⊗ A1 ⊗ A0 ⊗ A0|0̄〉 =
√

γ 3(1 − γ )
1√
2

(|0120〉 + |0102〉),

A0 ⊗ A1 ⊗ A0 ⊗ A0|1̄〉 =
√

γ 3(1 − γ )
1√
2

(−|0120〉 + |0102〉),

A0 ⊗ A0 ⊗ A1 ⊗ A0|0̄〉 =
√

γ 3(1 − γ )
1√
2

(|0210〉 + |2010〉),

A0 ⊗ A0 ⊗ A1 ⊗ A0|1̄〉 =
√

γ 3(1 − γ )
1√
2

(−|0210〉 + |2010〉),

A0 ⊗ A0 ⊗ A0 ⊗ A1|0̄〉 =
√

γ 3(1 − γ )
1√
2

(|2001〉 + |0201〉),

A0 ⊗ A0 ⊗ A0 ⊗ A1|1̄〉 =
√

γ 3(1 − γ )
1√
2

(−|2001〉 + |0201〉). (B1)

Obviously, this also defines a quantum error-correcting code which can correct the loss of one photon. Since the fidelity depends
only on the photon number in the codewords, one obtains the same result as for the other N2 = 4 code.

Similar to the code construction presented in the main text, the extension to codes with higher loss protection works by
building blocks of NOON states with higher photon number. For a total photon number N2 = 9, the logical basis states read

|0̄〉 =
[

1√
2

(|30〉 + |03〉)
]⊗3

= 1

2
√

2
(|303030〉 + |303003〉 + |300330〉 + |300303〉 + |033030〉 + |033003〉 + |030330〉 + |030303〉),

|1̄〉 =
[

1√
2

(|30〉 − |03〉)
]⊗3

= 1

2
√

2
(|303030〉 − |303003〉 − |300330〉 + |300303〉 − |033030〉 + |033003〉 + |030330〉 − |030303〉).

(B2)
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It is not difficult to show that this encoding also represents a
quantum error-correction code, this time capable of correcting
up to two-photon losses.

In general,

|0̄〉 =
[

1√
2

(|N0〉 + |0N〉)
]⊗N

,

|1̄〉 =
[

1√
2

(|N0〉 − |0N〉)
]⊗N

,

(B3)

defines a quantum code correcting N − 1 photon losses using
N2 total photons.

2. Qudit codes

The idea for the qubit code construction can be directly
generalized to arbitrary qudit codes. Consider d = 3 and N =
2 and the qutrit Hadamard transformation H3. Then we choose

|̃0〉 = H3(|200〉) = 1√
3

(|200〉 + |020〉 + |002〉),

|̃1〉 = H3(|020〉)

= 1√
3

(|200〉 + exp

(
2πi

3

)
|020〉 + exp

(
4πi

3

)
|002〉),

|̃2〉 = H3(|002〉)

= 1√
3

(|200〉 + exp

(
4πi

3

)
|020〉 + exp

(
8πi

3

)
|002〉),

(B4)
and build the blocks to construct the basis codewords,

|0̄〉 = |̃0〉|̃0〉,
|1̄〉 = |̃1〉|̃1〉, (B5)

|2̄〉 = |̃2〉|̃2〉.

It is easy to check that this is a qutrit quantum error-correction
code, because the loss of a single photon on an individual block
gives

A1 ⊗ A0 ⊗ A0 |̃0〉 = A1 ⊗ A0 ⊗ A0 |̃1〉
= A1 ⊗ A0 ⊗ A0 |̃2〉

= 1√
3

√
γ 3(1 − γ )|100〉,

A0 ⊗ A1 ⊗ A0 |̃0〉 = 1√
3

√
γ 3(1 − γ )|010〉,

A0 ⊗ A1 ⊗ A0 |̃1〉 = 1√
3

√
γ 3(1 − γ ) exp

(
2πi

3

)
|010〉,

A0 ⊗ A1 ⊗ A0 |̃2〉 = 1√
3

√
γ 3(1 − γ ) exp

(
4πi

3

)
|010〉,

A0 ⊗ A0 ⊗ A1 |̃0〉 = 1√
3

√
γ 3(1 − γ )|001〉,

A0 ⊗ A0 ⊗ A1 |̃1〉 = 1√
3

√
γ 3(1 − γ ) exp

(
4πi

3

)
|001〉,

A0 ⊗ A0 ⊗ A1 |̃2〉 = 1√
3

√
γ 3(1 − γ ) exp

(
8πi

3

)
|001〉,

(B6)
which proves the nondeformation of corrupted codewords. The
orthogonality is ensured by the block structure.

To construct a general qudit code, we set

|0̄〉N,d = [Hd (|N000 · · · 〉)]⊗N,

|1̄〉N,d = [Hd (|0N00 · · · 〉)]⊗N,

...

|d − 1〉N,d = [Hd (|000 · · · 0N〉)]⊗N,

(B7)

which is again a qudit code correcting N − 1 photon losses
using N2 total photons.
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