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We study entanglement generation and control in bidirectional-waveguide QED driven by a two-photon
Gaussian wave packet. In particular, we focus on how increasing the number of qubits affects the overall
average pairwise entanglement in the system. We also investigate how the presence of a second photon can
introduce nonlinearities, thereby manipulating the generated entanglement. In addition, we show that, through
the introduction of chirality and small decay rates, entanglement can be stored and enhanced up to factors of
2 and 3, respectively. Finally, we analyze the influence of finite detunings and time-delays on the generated
entanglement.
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I. INTRODUCTION

Entanglement generation, maintenance, and control lie at
the heart of quantum teleportation, quantum communica-
tion, quantum cryptography and quantum computation [1,2].
Several quantum information processing protocols rely on
controlled light-matter interactions which can entangle matter
qubits through strongly or weakly interacting photons [3]. In
this context, cavity QED [4] setups have been extensively
studied with the aim of enabling entanglement transfer from
photons to atoms [5–8]. However, for longer distance quantum
communication, coupling of qubits with flying photonic
mode reservoirs is a more advantageous approach. For this
reason, the study of waveguide QED systems has garnered
considerable recent attention [9,10]. In the standard setup
of waveguide QED, qubits (atoms, quantum dots, nitrogen
vacancy centers in diamond, or superconducting Josephson
junctions [11–14]) are placed near a waveguide (an optical
fiber or a nanowire), and long-distance waveguide mediated
qubit-qubit entanglement can be established.

A related development is the study of two qubit entan-
glement in plasmonic waveguide systems [15–17]. Recently,
Otten et al. have considered up to four plasmonically entangled
quantum dots [18]. In such investigations, either an input
coherent state pulse or a single photon generated within the
system serves as a generator of entanglement. Interestingly,
it has also been found that breaking the symmetry of qubit
emission in chiral waveguides [19]) can lead to enhancement
of the generated entanglement [20,21].

The study of the propagation of quantum states of light
through various material media is a subject of both fundamen-
tal and applied interest. A few examples reflecting this interest
include the observation of two-photon speckle patterns [22],
radiative transport and scattering of two-photon entangled
light [23,24], two-photon imaging [25], and two-photon based
quantum communications [26]. Two-photon waveguide QED
has also been investigated in recent years from the point of view
of analyzing photon correlations and spectra. The problem
of qubit-qubit entanglement generation has been relatively
less studied, mainly due to the fact that a single photon can
accomplish this task. However, the presence of a second

photon in the waveguide can alter qubit-qubit entanglement in
nontrivial ways. For instance, Ballestero et al. have shown that,
by launching two single-photon pulses from opposite ends of a
waveguide, it is possible to manipulate the pattern of two-qubit
entanglement by introducing a small time delay between the
the pulses [27]. Moreover, such a scheme gives better control
of the patterns of collapse and revival of qubit entanglement.

Motivated by the above considerations, in this paper we
study two-photon entanglement in multiqubit waveguide QED
systems. In contrast to utilizing a weak laser pulse or other
means to generate entanglement, here we consider a two-
photon factorized Gaussian wave packet pulse as an entan-
glement generator. Our main focus in this work is to examine
how the presence of two simultaneously launched photons
can introduce nonlinearities in the qubits and thus affect the
resulting multiqubit entanglement. To this end, we derive and
apply a two-photon bidirectional Fock state master equation.
This approach differs from the most common techniques that
are used to study the quantum dynamics of waveguide QED
systems, namely Lehmberg type master equations [21,28],
the real space formalism [29], and generalized input-output
theory [30].

We find that for a two-qubit system, two photons produce
a dip profile in the entanglement which diminishes as the
number of qubits N increases. In addition, the maximum
value of entanglement shows a reduction of approximately
10% for the N = 2 case compared to the N = 5 case.
However, preferential directional emission of photons into the
waveguide modes (chirality) can enhance the entanglement
for the N = 5 case by a factor of 2. Similarly, the choice
of smaller decay rates can improve the entanglement storage
times by a factor 3. Finally, we note that finite detuning
between the peak frequency of the two-photon drive and
the atomic transition frequency leads to a slight reduction in
overall entanglement. Moreover, smaller delays support larger
entanglement independent of N .

The remainder of this paper is organized as follows. In
Sec. II we describe the setup and dissipative dynamics of the
system under study. Next, in Sec. III we present and discuss
our results. Finally, in Sec. IV we formulate our conclusions.
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The derivation of the two-photon master equation we employ
is presented in the Appendix.

II. THEORETICAL DESCRIPTION

A. Setup

The system under investigation consists of a chain of
two-level atoms (referred to as qubits) coupled to an optical
waveguide, as shown in Fig. 1. The atomic transition frequency
between the ground state |gi〉 and excited state |ei〉 of the ith
atom is denoted by ωegi and σ̂i is the corresponding atomic
lowering operator, for i = 1,2, . . . ,N . The waveguide, which
is assumed to be lossless and dispersionless, consists of two
oppositely directed continua, referred to as left and right.
Annihilation of a photon in right (left) going continuum is
described by the operator b̂R(ω1) (b̂L(ω2)). The nonvanishing
commutation relations among these operators are of the form

[b̂R(ω1),b̂R(ω
′
1)] = δ(ω1 − ω

′
1), [σ̂ †

i ,σ̂j ] = σ̂ziδij ,

[b̂L(ω2),b̂L(ω
′
2)] = δ(ω2 − ω

′
2), (1)

where σ̂i = |gi〉〈ei | is the atomic lowering operator and σ̂
†
i

is the corresponding raising operator and σ̂zi = |ei〉〈ei | −
|gi〉〈gi |. The system is taken to be driven from both ends
of the waveguide. From the right-hand side, it is driven by
a reservoir R2, which is initially in the pure vacuum state
|�R2〉 = |vac〉R2

. On the left-hand side, the system is driven by
an initial two-photon state |�R1〉, which has the form∣∣�R1

〉 = 1√
2

∫ ∞

0

∫ ∞

0
g(ω1,ω

′
1)b̂†R(ω1)b̂†R(ω

′
1)|vac〉R1

dω1dω
′
1,

(2)

where g(ω1,ω
′
1) is the spectral envelope of the two-photon

wave packet. Note that normalization of |�R1〉 requires that∫ ∞
0

∫ ∞
0 |g(ω1,ω

′
1)|2dω1dω

′
1 = 1.

B. Dissipative dynamics and master equation

The above system is an open quantum system due to the
interaction of the qubits with the waveguide continua. The
dynamics of the state of the system is described by the
following set of two-photon bidirectional Fock state master
equations:

dρ̂s(t)

dt
= L̂cs[ρ̂s(t)] + L̂pd [ρ̂s(t)] + L̂cd [ρ̂s(t)] +

N∑
i=1

√
2γiR(eik0di g(t)[ρ̂12(t),σ̂ †

i ] + e−ik0di g∗(t)[σ̂i ,ρ̂21(t)]),

dρ̂21(t)

dt
= L̂cs[ρ̂21(t)] + L̂pd [ρ̂21(t)] + L̂cd [ρ̂21(t)] +

N∑
i=1

√
γiR(eik0di

√
2g(t)[ρ̂11(t),σ̂ †

i ] + e−ik0di g∗(t)[σ̂i ,ρ̂
†
20(t)]),

dρ̂20(t)

dt
= L̂cs[ρ̂20(t)] + L̂pd [ρ̂20(t)] + L̂cd [ρ̂20(t)] +

N∑
i=1

√
2γiReik0di g(t)[ρ̂10(t),σ̂ †

i ],

(3)
dρ̂11(t)

dt
= L̂cs[ρ̂11(t)] + L̂pd [ρ̂11(t)] + L̂cd [ρ̂11(t)] +

N∑
i=1

√
γiR(eik0di g(t)[ρ̂01(t),σ̂ †

i ] + e−ik0di g∗(t)[σ̂i ,ρ̂
†
01(t)]),

dρ̂10(t)

dt
= L̂cs[ρ̂10(t)] + L̂pd [ρ̂10(t)] + L̂cd [ρ̂10(t)] +

N∑
i=1

√
γiReik0di g(t)[ρ̂00(t),σ̂ †

i ],

dρ̂00(t)

dt
= L̂cs[ρ̂00(t)] + L̂pd [ρ̂00(t)] + L̂cd [ρ̂00(t)].

The above Liouvillian operators are defined by

L̂cs[�̂(t)] = − i

�
[Ĥsys,�̂(t)],Ĥsys = �

N∑
i=1

	iσ̂
†
i σ̂i ,

L̂pd [�̂(t)] = −
N∑

i=1

γiRL(σ̂ †
i σ̂i �̂(t) − 2σ̂i �̂(t)σ̂ †

i + �̂(t)σ̂ †
i σ̂i),

(4)

L̂cd [�̂(t)] = −
N∑

i �=j=1

(
√

γiRγjRδi>j + √
γiLγjLδi<j )

×{(σ̂ †
i σ̂j �̂(t) − σ̂i �̂(t)σ̂ †

j )e−2πiD(i−j )

− (σ̂j �̂(t)σ̂ †
i − �̂(t)σ̂ †

j σ̂i)e
2πiD(i−j )}. (5)

Here δi≶j = 1 for all i ≶ j and γiL(γiR) is the ith atom
decay rate into the left-moving (right-moving) continuum.
In addition, di specifies the location of any ith atom, ωeg

is the common atomic transition frequency for all atoms and
D = L/λ0, with λ0 = 2π/k0 = 2πvg/ωeg the wavelength of
the emitted photon. The function g(t) is a Gaussian obtained
from the spectral profile function g(ω1,ω2), as discussed in
the next section. The derivation of the master equations (3) is
presented in the Appendix.

The first term on the right-hand side of the master equation
for ρ̂s(t) describes the closed system dynamics, the second
term [with prefactor γiRL = (γiR + γiL)/2] represents the pure
decay of energy from the atoms into the waveguide continua,
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FIG. 1. A bidirectional-waveguide QED setup. Atoms are separated by a distance L which produces a time delay τ = L/c for the photon to
propagate between any two consecutive atoms. The quantity c ≡ vg is the group velocity of the photons in the waveguide medium. Atoms can
absorb incoming photons and then photons can either be emitted by the atoms into a free space channel (with rate i for the ith atom) or in one
of the two directions in the waveguide. Consequently, the coupling fraction parameter βi = (γiL + γiR)/(γiL + γiR + i) has been set equal to
unity throughout this paper [21]. Neglecting free space losses, the processes of photon emission and absorption result in the entanglement of
the atoms in the chain.

and finally the terms multiplied by
√

γiRγjR,
√

γiLγjL are
the cooperative decay terms, with j = 1,2, . . . ,N . These
cooperative decay terms originate from the coupling of the
discrete energy levels of the atoms to the two common
waveguide continua. The operators appearing in Eq. (3) are
of the form

ρ̂21(t) = TrR
[
Û (t−t0)ρ̂s(t)

∣∣2ω1ω
′
1

〉
R1R1

〈�1|ρ̂R2 (t0)Û †(t−t0)
]
,

(6a)

ρ̂20(t) = TrR
[
Û (t − t0)ρ̂s(t)

∣∣2ω1ω
′
1

〉
R1R1

〈vac|ρ̂R2 (t0)Û †(t − t0)
]
,

(6b)

ρ̂11(t) = TrR
[
Û (t − t0)ρ̂s(t)|�1〉R1R1〈�1|ρ̂R2 (t0)Û †(t − t0)

]
,

(6c)

ρ̂10(t) = TrR
[
Û (t − t0)ρ̂s(t)|�1〉R1R1〈vac|ρ̂R2 (t0)Û †(t − t0)

]
,

(6d)

ρ̂00(t) = TrR
[
Û (t − t0)ρ̂s(t)|vac〉R1R1〈vac|ρ̂R2 (t0)Û †(t − t0)

]
,

(6e)

where |2ω1ω
′
1
〉 = |�R1〉. Here |�R1〉 has been defined in Eq. (2),

|�1〉 = b̂R(ω1)|�R1〉 is the one-photon reservoir state and
Û (t − t0) is the time evolution operator. Owing to their
non-Hermitian nature, the operators ρ̂21(t), ρ̂20(t), and ρ̂10(t)
cannot be categorized as physical density operators, but they
still obey the property ρ̂

†
21(t) = ρ̂12(t), ρ̂

†
20(t) = ρ̂02(t), and

ρ̂
†
10(t) = ρ̂01(t).

We note that Baragiola et al. [31] have derived a similar
two-photon Fock state master equation using the machinery
of quantum stochastic differential equations. However, we
have not only followed a different route in derivation here,
but our master equation also incorporates bidirectionalities,
which is the central feature in waveguide QED problems.
We note that the last three equations in (3) can describe the
complete evolution of the state of the system ρ̂s(t) ≡ ρ̂11(t),
if a single-photon wave packet drives the system. Moreover,
in the absence of any drive, the last master equation in (3)
is sufficient to describe the evolution of the atomic chain.

Note that such a no-drive master equation can also be derived
using second-order perturbation theory under the application
of the standard weak Born-Markov assumption, as originally
described by Lehmberg [28].

III. RESULTS AND DISCUSSION

In this section we utilize the master equations (3) to answer
two questions. First, how do the atomic state populations
evolve in response to the input drive? Second, how does the
incoming two-photon wave packet generate and manipulate
entanglement among the qubits? To set the stage, we begin with
the simplest possible situation, namely a system consisting of
only one atom.

A. One-atom system

For this example, the system Hamiltonian becomes Ĥsys =
�ωegσ̂

†σ̂ and we denote the decay rates by γ1R = γ1L ≡ γ .
We assume that initially the atom is in its ground state:

ρ̂s(t0) = |g〉〈g| and ρ̂21(t0) = ρ̂20(t0) = ρ̂10(t0) = 0. As a
useful consequence, we obtain ρ̂11(t0) = ρ̂00(t0) = |g〉〈g|.
The spectral shape of the two-photon wave packet depends on
the nature of the two-photon source. Here we assume that the
two photons are produced by two independent single-photon
sources such that the function g(ω1,ω

′
1) can be factorized in

a symmetrized fashion using the Schmidt decomposition as

g(ω1,ω
′
1) = 1

2 (g1(ω1)g2(ω
′
1) + g2(ω1)g1(ω

′
1)). (7)

If we take each of the above factors to be Gaussian, then the
two-photon wave packet will have a two Gaussian function
product profile. In that case, the inverse Fourier transform
of the spectral profile of any one of component functions is
given by

g(t) = 1

(2π )1/4
√

	t
e−(t−t)2/4(	t)2

, (8)

where t and 	t specify the mean value and width of the Gaus-
sian distribution, respectively. For experimental work related
to the generation of two-photon states see Refs. [32–34].

012309-3



IMRAN M. MIRZA AND JOHN C. SCHOTLAND PHYSICAL REVIEW A 94, 012309 (2016)

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

Γt

PT t
Pe t
Pg t
t 2

FIG. 2. Time evolution of populations for a single side-coupled
atom driven by a two-photon wave packet with time-dependent
strength �(t) = √

2γ g(t). Populations in the ground state [Pg(t)]
and excited state [Pe(t)] are represented by black dotted dashed
and blue longer dashed curves. The quantity PT (t) = Pg(t) + Pe(t)
(green solid line) is shown to demonstrate conservation of the total
population and the temporal pulse shape |�(t)|2 is shown in red with
shorter dashing. The parameters used are t = 5γ −1, 	t = 1.5γ −1

with zero detuning between the peak frequency of the incoming wave
packet and the atomic transition frequency.

In Fig. 2 we plot the atomic state populations under
conditions when a two-photon wave packet strongly drives
the atom [|�(t)|max > γ ]. The parameter choices have been
made according to Ref. [35] to obtain the highest probability
of excitation. We note that, as the wave packet enters the
waveguide, after a small waiting time �0.5γ −1 the population
Pe(t) begins to grow. The highest value achieved by the
excited state population is approximately 48%. This value is
smaller than the single-atom excitation probability reported in
Ref. [35]. The difference between the values can be attributed
to the presence of bidirectional decays in our model. We
also note that the overall temporal shape of the excited state
population [Pe(t)] follows a symmetric behavior around its
maximum value. Moreover, when the wave packet amplitude
|�(t)| vanishes at t ∼ 7γ −1, the atom still remains excited up
to 40% of its maximum value. The excited state population
Pe(t) takes a further time t ∼ γ −1 to completely diminish.

B. Two-atom chain and entanglement generation

Next, we consider the case of two atoms. The presence of
the second atom in the chain opens up the possibility of qubit-
qubit entanglement. The two atoms in our system constitute a
mixed state. The concurrence C(ρ̂s) is an appropriate measure
of entanglement in a bipartite mixed state [36]. Following
Wootters, we define the concurrence C(t) as

C(t) = max(0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4), (9)

where λi are the eigenvalues (in descending order) of the spin
flipped density matrix ρ̃s = ρ̂s(σ̂y ⊗ σ̂y)ρ̂∗

s (σ̂y ⊗ σ̂y), with σ̂y

being the Pauli spin flip operator. Note that 0 � C � 1 and
that C = 1 corresponds to a maximally entangled state while
C = 0 indicates a completely separable state.

In Fig. 3 we plot the population dynamics and the temporal
profile of the entanglement. We see that the presence of the
second atom means that there are now different possibilities
available for the system to be excited. For instance, both atoms
can be excited simultaneously (P2) or only one of the atoms
can be excited (P1). Since both atoms are indistinguishable,
we have plotted the sum of the probabilities of either one of the
atoms to be excited. We observe that the maximum probability
of either of the atoms to be excited is almost twice as high as
the probability of both atoms to be excited simultaneously.
Moreover, P2 vanishes when the drive vanishes, while P1

requires an additional time t ∼ γ −1 to vanish.
To facilitate our discussion of the concurrence, we first

specify some notation and provide some details of our
calculations. The relevant Hilbert space of the problem is
spanned by the two-qubit basis {|g1g2〉,|e1g2〉,|g1e2〉,|e1e2〉},
which we will refer to as {|1〉,|2〉,|3〉,|4〉}. The density matrix
consists of 16 elements. Through numerical integration of the
equations of motion using the Runge-Kutta method of order 4
together with the initial condition ρ̂s(t = 0) = |1〉〈1|, we find
that all density matrix elements are real and nine elements
remain zero for all time. This leads us to the simplified form

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

Γt

a

0 2 4 6 8 10 12
0.0
0.1
0.2
0.3
0.4
0.5
0.6

Γt

b

t

t

FIG. 3. Time evolution of (a) populations and (b) entanglement for a system of two identical atoms (qubits) coupled to a waveguide
and driven by a two-photon wave packet. For simplicity, we have assumed all decay rates (pure and cooperative) to be equal. That is
γ1L = γ2L = γ1R = γ2R ≡ γ . All other parameters are the same as in Fig. 2. In the inset of Fig. 3(a) we use the notational convention that the
first (second) slot specifies the state of the first (second) atom.
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FIG. 4. Time evolution of (a) populations and (b) average pairwise concurrences for systems of 3, 4, and 5 qubits. All decay rates are
chosen to be equal, with the remaining parameters the same as in Fig. 3. Here we use the notation that, for P

(l)
k (t) and Ck(t), l = G,1,2. In

addition G,1,2 correspond to zero, one, and two excitations in the system, while k = 3,4,5 is the number of qubits in the chain.

of the spin flip density matrix:

ρ̃s(t) =

⎛⎜⎜⎜⎝
ρ2

4 (t) + ρ1(t)ρ16(t) 0 0 ρ1ρ4

0 2ρ2
6 (t) 2ρ2

6 (t) 0

0 2ρ2
6 (t) 2ρ2

6 (t) 0

ρ1ρ4 0 0 ρ1(t)ρ16(t)

⎞⎟⎟⎟⎠,

(10)

where ρ1(t) ≡ 〈1|ρ̂s(t)|1〉, ρ4(t) ≡ 〈1|ρ̂s(t)|4〉, ρ6(t) ≡
〈2|ρ̂s(t)|2〉, and ρ16(t) ≡ 〈4|ρ̂s(t)|4〉. Diagonalization of ρ̃s(t)
yields the following eigenvalues:

λ1 = 0, λ2 = 4ρ2
6 (t), (11a)

λ3 = ρ1(t)ρ16(t) + 1
2ρ4(t)

(
ρ4(t) −

√
ρ2

4 (t) + 4ρ1(t)ρ16(t)
)
,

(11b)

λ4 = ρ1(t)ρ16(t) + 1
2ρ4(t)

(
ρ4(t) +

√
ρ2

4 (t) + 4ρ1(t)ρ16(t)
)
.

(11c)

Inserting these eigenvalues into the definition of the
concurrence, we obtain the required entanglement, which is
plotted in Fig. 3(b). We find that the two-photon wave packet
generates entanglement between qubits while the highest value
of the concurrence is 12%. In addition, the temporal profile of
entanglement shows a dip in between the two maxima. The first
maximum appears at the time when the input drive reaches its
highest value, at t = 5γ −1. The second maximum appears after
a gap t = 2γ −1 when the wave packet has died out. We can
explain these results by noting that, when the two-photon input
drive enters the system, both atoms are excited simultaneously
(we have neglected any time delays between the qubits). The
atoms then gradually form a (|00〉 + |11〉)/√2 Bell state and
the entanglement correspondingly increases. Later, one of the
atoms loses a photon and the system forms a (|10〉 + |01〉)/√2
Bell state. The gap between the peaks in the concurrence can
be interpreted as the time required for a single photon to be lost
after shuttling between the qubits. Finally, at time ∼t = 9γ −1

the qubits becomes unentangled.

C. Multiqubit chain and average pairwise concurrence

We now extend our study to include many atoms in the
chain. The main novelty of this section is the departure from
a bipartite to a multipartite mixed state. We note that the
entanglement quantification for multipartite mixed states is
an open problem [37,38]. Here, we use the pairwise average
concurrence as an entanglement measure [37,39–41]. To this
end, we divide the system into all possible bipartite pairs
of atoms, where the concurrence of the ith pair is given
by Ci(t) and the total concurrence C(t) is given by C(t) =
(
∑n

i=1 Ci(t))/n, where n = N/2 is the total number of qubit
pairs. We note that this definition of the concurrence has the
same properties (including bounds on the highest and lowest
values) as obeyed by the concurrence of a pair of atoms.

In Fig. 4(a) we present the population dynamics. We
observe that, as we increase the number of atoms in the chain,
the probability that one or two atoms are excited decreases.
Moreover, the populations show a fast decay with increasing
number of atoms. This observation can be attributed to the
availability of more decay channels when the number of qubits
in the system increases.

The pairwise entanglement [Fig. 4(b)] also attains smaller
maxima and begins to decay quickly for an increasing number
of qubits. Approximately 1/3 and 1/2 of the concurrence
remains as we increase the number of qubits from 3 to 4 and
4 to 5. In addition, the dip profile observed in the two-qubit
case also vanishes. This happens due to the availability of
more qubits in the system which can absorb a photon emitted
by one of the atoms. Thus, later in time, it is possible to
partially generate both type of Bell states [(|00〉 + |11〉)/√2
and (|10〉 + |01〉)/√2] in any one of the qubit pairs, which
cannot happen in the two-qubit case.

D. Small decays

We now direct our attention to the case of small decay rates,
which can be obtained by making use of reservoir engineering
techniques (see for instance [42,43]). The main goal here is to
optimize qubit decay rates so that the entanglement survival
times can be increased. To this end we set the decay rate
γ̃ = γ /10. The corresponding results are presented in Fig. 5.
In Fig. 5(a) we see that the single and double excitations remain
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FIG. 5. Influence of small decay rate on the time evolution of (a) populations and (b) pairwise concurrence for 2, 3, 4, and 5 qubit systems.
All parameters are the same as used in Fig. 4 except we have chosen smaller cooperative as well as pure decay rates, i.e., γ̃iL = γ̃iR = γ̃

while γ̃ = 0.1γ . (c) Entanglement survival time 	tc in terms of the pulse duration time 	tp as a function of N , plotted for both the γ̃ and γ

scenarios.

in the system for more than double the time compared to Fig. 4.
Similarly, we notice in Fig. 5(b) that the concurrence also
survives longer.

The key point learned from Fig. 5 is that using small
decay rates, the entanglement survival times can be increased
without compromising the maximum entanglement achieved.
This point is illustrated in Fig. 5(c), where the concurrence
survival time 	tc is plotted as a function of pulse duration
	tp as the number of qubits in the chain is increased. We find
that for small decay rates the entanglement survives for nearly
twice as long compared to the results in Fig. 4. Finally, we point
out that such a longer sustained entanglement is necessary in
performing certain quantum information processing protocols
(see Refs. [44–46] and applications mentioned therein).

E. Chirality in atom-waveguide coupling

There have been exciting recent developments in the subject
of preferential atomic emission in waveguide QED systems
due to spin-orbit interaction of light (chirality) [19,20,47,48].
In this section we analyze the ways in which chirality can
impact the entanglement. To this end, we set the parameters
γR = 5γL, γiR = γR , and γiL = γL for all i. Note that this
choice of parameters lies within the recently achieved 90%

directionalities and 98% atom-waveguide coupling strengths
in photonic crystal systems [49].

As shown in Fig. 6, there is a marked effect of chirality
on the populations as well as on the entanglement dynamics
of the system. In Fig. 6(a), we see that the single excitation
populations become twice as large as in the nonchiral case
[compare to Fig. 4(a)] and there is a corresponding increase in
the survival time. Most interestingly, the two-photon excitation
population becomes almost five times larger than in the
nonchiral case, especially when there are higher numbers of
qubits in the chain. Finally, we note that in the populations
plot for the five-qubit chain, at the time t ∼ 6γ −1

L the system
is fully excited and the ground state population vanishes. This
novel feature is a pure chirality effect.

The above-described enhancement in the populations also
translates into higher and longer survival of the entanglement,
as shown in Fig. 6(b). We note that, independently of the num-
ber of qubits, the pairwise concurrence displays an irregular
oscillatory behavior. Moreover, for the case of two qubits,
the phenomenon of entanglement death and revival [50,51]
appears. Along with the longer storage of entanglement,
which can also be obtained using small decay rates, the
main advantage chirality offers is the enhancement of the
achievable maximum entanglement. This point is emphasized
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FIG. 6. Illustrating the effect of breaking the symmetry in the atomic emission directions for a multiqubit waveguide system. (a) Population
and (b) entanglement dynamics. We have chosen the parameters γ1L = γ2L = γ3L = γ4L = γ5L ≡ γL (similarly for all γiR , for i = 2,3,4,5)
except γiR/γiL = 5. The remainder of the parameters are the same as in Fig. 2. In order to emphasize the fact that chirality enhances the
maximum entanglement generated in the system, we have also plotted the maximum concurrence (Cmax) as a function of N for both chiral and
nonchiral (γiR = γiL = 1) situations.
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FIG. 7. (a) Effect of detuning on the entanglement evolution. All atoms in the chain are assumed to have the same resonant frequency ωeg ,
which is 0.5γ detuned from ωp . We are using the notation that CkN and CkD are the concurrence for the no-detuning and finite detuning cases,
respectively, where k = 2,3,4,5. (b) Entanglement dynamics in the presence of time delays between the atoms. Three cases are plotted, namely
d1 = L, d2 = L/8, and d3 = L/16. The remaining parameters are the same as in Fig. 2.

in Fig. 6(c) where we have plotted the maximum entanglement
for the chiral and nonchiral cases. We see that for all N ,
under chiral conditions, the maximum concurrence provides
an upper bound on the nonchiral maximum concurrence, and
for some N can cause the entanglement to be even twice as
large as in the nonchiral case. Note that Ballestero et al. [21]
have reported that chirality can enhance the single-photon
entanglement in a two-qubit waveguide system by a factor of
approximately 1.5. We, on the other hand, we have shown that
using two-photon Gaussian wave packets leads to a twofold
enhancement in entanglement in two-qubit chiral waveguide
systems.

F. Detuning and delays

We now consider the situation in which ωp (two-photon
wave packet peak frequency) is slightly detuned from ωeg . In
particular, we focus on how detuning alters the on-resonance
entanglement among qubits. In Fig. 7(a) we plot our results.
We notice that, in all cases, detuning preserves the qualitative
features of the concurrence but the entanglement is slightly
reduced. Beginning with the two-atom case, we observe that
detuning reduces the maximum entanglement by a factor
of ∼8%, while the dip profile is preserved. Moreover, the
difference between C2N and C2D tends to be greater for
the second maximum, which causes the concurrence to die
out quickly. As we increase the number of qubits in the
chain, we note that the maximum entanglement difference
becomes ∼17%, 10%, and 6% for the 3, 4, and 5 qubit cases,
respectively.

Next, we consider the effect of delays on entanglement.
Although we have neglected the time delays between the qubits
originating form the input-output relations (see the Appendix),
there are still phases that appear in the atom-waveguide
interaction Hamiltonian which carry information about the
atomic positions. The two-photon master equation we have
derived retains memory of the reservoir state and hence has
a non-Markovian structure (see the Appendix). To this end,
we have considered three cases of inte-atomic separations,
keeping in mind the already reported condition (γD � vg) for
Markovian dynamics to hold [52,53]. In Fig. 7(b) we study
entanglement in the presence of finite delays. In the two-qubit

case, we observe that as the separation is reduced from L/8 to
L/16 the oscillatory profile survives, but the dip is suppressed.
Note that even for L/16, the dip vanishes completely and
a dark period of entanglement between t = 5.5 to 8γ −1

emerges. Around t = 8γ −1, the entanglement revives and
after quickly reaching a maximum value it decays steadily.

In the case of N � 2 qubits, the smallest separation
produces an overall larger entanglement accompanied by dark
and bright periods of entanglement. For instance, for the N = 4
example Cmax ∼ 0.125, which is more than two times greater
than the maximum entanglement in the largest separation case
(∼ 0.055). Note that in all of these plots the entanglement
decay and revival patterns originate from the delays. Therefore,
through proper tuning of qubit-waveguide interaction phases,
one can control the entanglement revival times, which may
find applications in quantum networks based on multiqubit
waveguide QED.

IV. CONCLUSIONS

In summary, we have calculated and analyzed two-photon
induced entanglement in multiqubit waveguide QED. Using
a bidirectional Fock state master equation together with the
average pairwise concurrence as a measure of entanglement,
we found that an incoming two-photon wave packet can
entangle two qubits up to ≈12% and that the entanglement
survives even after the passage of the driving wave packet.
However, the maximum pairwise entanglement decreases
and decays rapidly as the number of qubits increases. The
entanglement survival times can be increased by a factor of
2 with almost the same maximum entanglement, by using
smaller decay rates γ̃ = γ /10.

The maximum value of the entanglement decreases by
increasing the number of qubits. This problem can be mitigated
by making use of chiral waveguide networks. We concluded
that by choosing a five times larger decay rate in the direction
of the incoming two-photon wave packet, we can achieve up
to a factor of 2 greater maximum entanglement compared to
the nonchiral situation.

Finally, we studied the effects of detunings and delays.
We found that detuning does not change the overall temporal
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profile of the entanglement, but a slight reduction in entangle-
ment does occur. In contrast, delays independent of the value of
N , produce death and revival patterns of entanglement, where
the smallest interqubit separations support an overall higher
entanglement.
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APPENDIX: TWO-PHOTON MASTER EQUATION

In this appendix we derive the two-photon master equation
that we use throughout the paper. We begin by dividing a
system of N qubits coupled to a bidirectional waveguide into N

subsystems, where each subsystem consists of a single atom (or
the ith quantum system with operators ĉi , ∀i = 1,2,3, . . . ,N)
and X̂i is an arbitrary operator.

We begin by deriving the dissipative dynamics of the
first subsystem in the Heisenberg picture while ĉ1 = σ̂1. The
Hamiltonian of the first system interacting with two reservoirs
is given by

Ĥ = Ĥsys1 +
∫ ∞

−∞
�ω1b̂

†
R(ω1)b̂R(ω1)dω1

+
∫ ∞

−∞
�ω2b̂

†
L(ω2)b̂L(ω2)dω2

− i�

√
γ1R

2π

∫ ∞

−∞
(eik0d1 ĉ

†
1b̂R(ω1) − e−ik0d1 b̂

†
R(ω1)ĉ1)dω1

− i�

√
γ1L

2π

∫ ∞

−∞
(e−ik0d1 ĉ

†
1b̂L(ω2) − eik0d1 b̂

†
L(ω2)ĉ1)dω2.

(A1)

Next, we transform to the Heisenberg picture, where the right-
moving continuum evolves as

db̂R(ω1; t)

dt
= −iω1b̂R(ω1; t) +

√
γ1R

2π
e−ik0d1 ĉ1(t). (A2)

For some initial time t0, we obtain the solution at time t in the
form

b̂R(ω1; t) = b̂R(ω1; t0)e−iω1(t−t0)

+
√

γ1R

2π
e−ik0d1

∫ t

t0

c1(t
′
)e−iω1(t−t

′
)dt

′
. (A3)

Similarly, for the left-moving continuum we find

b̂L(ω2; t) = b̂L(ω2; t0)e−iω2(t−t0)

+
√

γ1L

2π
eik0d1

∫ t

t0

c1(t
′
)e−iω2(t−t

′
)dt

′
. (A4)

Next, we introduce an arbitrary operator X̂1(t) which obeys
the Heisenberg equations of motion

dX̂1(t)

dt
= −i

�
[X̂1(t),Ĥsys1]

−
√

γ1R

2π
eik0d1

∫ ∞

−∞
[X̂1(t),c†1(t)]b̂R(ω1)dω1

+
√

γ1R

2π
e−ik0d1

∫ ∞

−∞
b̂
†
R(ω1)[X̂1(t),c1(t)]dω1

−
√

γ1L

2π
e−ik0d1

∫ ∞

−∞
[X̂1(t),c†1(t)]b̂L(ω2)dω2

+
√

γ1L

2π
eik0d1

∫ ∞

−∞
b̂
†
L(ω2)[X̂1(t),c1(t)]dω2. (A5)

After eliminating the continua in the above equation, we arrive
at

dX̂1(t)

dt
= −i

�
[X̂1(t),Ĥsys1] − [X̂1(t),ĉ†1(t)]

(√
γ1Reik0d1 b̂(1R)

in (t) + √
γ1Le−ik0d1 b̂(1L)

in (t) +
(

γ1R + γ1L

2

)
ĉ1

)

+
(√

γ1Re−ik0d1 b̂†(1R)
in (t) + √

γ1Leik0d1 b̂†(1L)
in (t) +

(
γ1R + γ1L

2

)
ĉ
†
1

)
[X̂1(t),ĉ1(t)]. (A6)

The above quantum Langevin equation [54] describes the
dissipative dynamics of the first subsystem in the Heisenberg
picture. In writing this equation we have identified two input
operators

b̂(1R)
in (t) = 1√

2π

∫ ∞

−∞
b̂R(ω1,t0)e−iω1(t−t0)dω1, (A7a)

b̂(1L)
in (t) = 1√

2π

∫ ∞

−∞
b̂L(ω2,t0)e−iω2(t−t0)dω2. (A7b)

The input operators obey the causality condition manifested
by the commutation relation [b̂(1j )

in (t),b̂†(1j )
in (t

′
)] = δ(t − t

′
),

with j = R,L. We note that corresponding to each input
operator there exists an output operator with corresponding

input-output relations. For system 1 coupled to the right-
and left-moving continua, the input-output relation takes
the form

b̂
(1R)
out (t) = b̂(1R)

in (t) + √
γ1Re−ik0d1 ĉ1(t), (A8a)

b̂
(1L)
out (t) = b̂(1L)

in (t) + √
γ1Leik0d1 ĉ1(t), (A8b)

we have defined the output operator as

b̂
(1R/L)
out (t) = 1√

2π

∫ ∞

−∞
b̂R/L(ω1,t1)e−iω1(t−t1)dω1, (A9)

where t1 is some future time. Following along the same lines,
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FIG. 8. Bidirectional coupling among qubits caused by intrawaveguide input-output relations, where the output from one atom serves as
the input to another.

one can derive a quantum Langevin equation obeyed by each
member in the atomic chain.

Next, we note that the output from one subsystem feeds
into the nearest subsystems as a time-delayed input (see
Fig. 8). For instance, for the case of two subsystems,

we have

b̂(2R)
in (t) = b̂

(1R)
out (t−τ ) = b̂(1R)

in (t − τ )+√
γ1Re−ik0d1 ĉ1(t − τ ),

b̂(1L)
in (t) = b̂

(2L)
out (t−τ ) = b̂(2L)

in (t − τ )+√
γ1Reik0d1 ĉ2(t − τ ).

(A10)

Thus, for N subsystems we arrive at the following form of the combined Langevin equations:

dX̂(t)

dt
= −i

�
[X̂(t),Ĥsys] −

N∑
i=1

{
[X̂(t),ĉ†i (t)]

(√
γiReik0di b̂(iR)

in (t) + √
γiLe−ik0di b̂(iL)

in (t) +
(

γiR + γiL

2

)
ĉi

+
N∑

j �=i=1

eik0(di−dj )(
√

γiRγjRδi>j ĉj (t) + √
γiLγjLδi<j ĉj (t))

)

+
(√

γiRe−ik0di b̂†(iR)
in (t) + √

γiLeik0di b̂†(iL)
in (t) +

(
γiR + γiR

2

)
ĉ
†
i

+
N∑

j �=i=1

e−ik0(di−dj )(
√

γiRγjRδi>j ĉ
†
j (t) + √

γiLγjLδi<j ĉ
†
j (t))

)
[X̂(t),ĉi(t)]

}
. (A11)

Here we have neglected all intra-atom time delays under the assumption that the system evolves on a time scale much slower
than the time a photon takes to travel between the atoms. That is, ωegi,γil � 1/τ = L/c, l = R,L. Next, we transform to the
Schrödinger picture using the identity

TrS⊕R

[
dX̂(t)

dt
ρ̂(t0)

]
= TrS

[
X̂(t0)

dρ̂s(t)

dt

]
, (A12)

where ρ̂s(t) is the system reduced density matrix we are seeking. Using the cyclic property of the trace, we finally arrive at the
master equation

dρ̂s(t)

dt
= − i

�
[Ĥsys,ρ̂s(t)] −

N∑
i=1

(
γiR + γiL

2

)
(ĉ†i ĉi ρ̂s(t) − 2ĉi ρ̂s(t)ĉ

†
i + ρ̂s(t)ĉ

†
i ĉi)

−
N∑

i �=j=1

(
√

γiRγjRδi>j + √
γiLγjLδi<j )

× (e−ik0(di−dj )[ĉ†i ĉj ρ̂s(t) − ĉi ρ̂s(t)ĉ
†
j ] − eik0(di−dj )[ĉj ρ̂s(t)ĉ

†
i − ρ̂s(t)ĉ

†
j ĉi])

− TrS⊕R

[
N∑

i=1

(√
γiR(eik0di [X̂(t),ĉ†i (t)]b̂(1R)

in (t)ρ̂(t0) − e−ik0di b̂†(1R)(t)
in [X̂(t),ĉi(t)]ρ̂(t0)

)
− √

γiL

(
e−ik0di [X̂(t),ĉ†i (t)]b̂(NL)

in (t)ρ̂(t0) − eik0di b̂†(NL)(t)
in [X̂(t),ĉi(t)]ρ̂(t0)

))]
. (A13)
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We now focus our attention on the input terms. First, we notice a considerable simplification, namely that the left-moving
continuum is initially in a vacuum state. As a result, all terms involving the b̂(NL)

in (t) operator vanish:

TrS⊕R

[
[X̂(t),ĉ†i (t)]b̂(NL)

in (t)ρ̂(t0)
] = TrS⊕R

[
[X̂(t),ĉ†i (t)]ρ̂s(t0) ⊗ ρ̂R1(t0) ⊗ b̂(NL)

in (t)|vac〉〈vac|] = 0, (A14)

where we have taken the initial system-environment state to be
factorizable. Next, we focus on the right-moving continuum
input terms; these do not vanish due to the presence of two
photons in the initial state of this reservoir:

b̂(1R)
in (t)

∣∣2ω1ω
′
1

〉 = 2
∫ ∞

0
gR(ω1,t)b̂

†
1(ω1)|vac〉dω1, (A15)

where

gR(ω1,t) = 1√
2π

∫
g(ω1,ω

′
1)e−iω

′
1(t−t0)dω

′
1. (A16)

Note that the action of the input operator causes the reservoir
state to collapse to a single photon state, but that the resultant
state is still time dependent, due to the presence of g1(ω1,t).
The function g1(ω1,t) introduces a memory effect in the

reservoir which gives a non-Markovian structure to the final
master equations. Finally, we note that for a symmetrized and
factorized two-photon spectral envelope we obtain

√
γiR TrS⊕R

[
[X̂(t),ĉ†i (t)]b̂(1R)

in (t)ρ̂(t0)
]

= �(t)TrS[X̂(t0)[ĉ†i ,ρ̂12(t)]], (A17)

where �(t) ≡ √
2γiRg(t). Using this result in the above master

equation and replacing ĉi with the atomic lowering operator
σ̂i , we obtain the required two-photon bidirectional Fock state
master equation for ρ̂s(t). The master equations obeyed by the
remaining operators ρ̂ij can also be derived analogously, by
using the identity

TrS⊕R

[
dX̂(t)

dt
ρ̂ij (t0)

]
= TrS

[
X̂(t0)

dρ̂ij (t)

dt

]
. (A18)
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