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Quantum steering is observed when performing appropriate local measurements on an entangled state. Here we
discuss the possibility of simulating classically this effect, using classical communication instead of entanglement.
We show that infinite communication is necessary for exactly simulating steering for any pure entangled state,
as well as for a class of mixed entangled states. Moreover, we discuss the communication cost of steering for
general entangled states, as well as approximate simulation. Our findings reveal striking differences between Bell
nonlocality and steering and provide a natural way of measuring the strength of the latter.
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I. INTRODUCTION

The concept of steering, first introduced by Schrodinger [1],
was recently put on firm grounds in a quantum-information-
theoretic setting [2]. It describes the following genuinely
quantum effect: consider an experiment with two distant
observers, Alice and Bob, sharing an entangled quantum
state. By performing a local measurement on her subsystem,
Alice can remotely steer the quantum state of the system
held by Bob. Quantum steering thus elegantly captures
the celebrated “spooky action at a distance” discovered by
Einstein, Podolsky, and Rosen and represents a fundamental
form of nonlocality in quantum theory, intermediate between
entanglement and Bell nonlocality [2,3]. It can be detected via
the violation of so-called steering inequalities [4] (analogous
to Bell inequalities), and experimental demonstrations have
been reported [5]. Moreover, steering is directly connected to
measurement incompatibility [6,7] and offers applications in
quantum information theory [8,9].

In order to gain insight into this strikingly counterintuitive
aspect of quantum theory, it is relevant to discuss quantum
steering from the perspective of more general nonlocal re-
sources. While the observation of steering (e.g., via violation of
a steering inequality) rules out any explanation based on purely
classical correlations (local resources), one may ask whether
the use of an additional nonlocal resource, such as classical
communication, could explain the phenomenon. In particular,
it is then relevant to ask how much classical communication
would be required in order to perfectly reproduce quantum
steering.

The goal of the present is precisely to explore these
questions. Specifically, we discuss the communication cost
of quantum steering, i.e., the minimal amount of classical
communication required for reproducing the statistics of a
given quantum steering experiment, without using any entan-
glement. The communication cost will generally depend on
which entangled state is considered, and which measurements
are performed. We believe that this provides a natural way of
measuring the strength of quantum steering, complementary
to previously introduced measures [9—11]. Moreover, this
measure allows for a direct comparison of steering with other
notions of nonlocality in quantum theory, in particular with

2469-9926/2016/94(1)/012308(8)

012308-1

Bell nonlocality [12,13]. Indeed, the communication cost of
simulating Bell nonlocal quantum correlations has received
much attention [14-20].

Here we show that the communication cost of perfectly
simulating the steering of any pure entangled state, considering
all possible projective measurements, is infinite. Interestingly,
this is in strong contrast with the case of Bell nonlocality
where a few bits of communication suffice in several cases.
For instance, the statistics of projective measurements on a
two-qubit maximally entangled state can be simulated using
only one bit of communication [18]. Then, we develop a
general method for lower-bounding the communication cost
of an arbitrary quantum-steering experiment. These bounds
are given in terms of a variant of a steering quantifier
called the robustness of steering [9]. Finally we discuss the
communication cost of approximately simulating steering
experiments and conclude with some open questions.

The paper is organized as follows. Section II is devoted
to introducing the setting and notation. In Sec. III we show
that the classical-communication cost of simulating steering is
infinite for all pure entangled states as well as for some mixed
entangled ones. In Sec. IV we lower-bound the communication
cost for arbitrary states under generic measurements. In Sec. V,
in turn, we discuss the approximate simulation of the steering
in pure entangled states. To end up with, we present our
conclusions and some open questions in Sec. VI.

II. SCENARIO

Consider a game with two distant players, Alice and Bob,
sharing a quantum state oag. The players want to convince
a referee that the state they share is entangled (see Fig. 1).
In order to do so, the referee will perform the following test.
He will ask Alice to perform a measurement x on her half
of the state, and announce its result a, while Bob is asked
to send his subsystem to the referee. Then, by performing
tomography over many instances of the game, the referee
can characterize the conditional (unnormalized) state of Bob’s
subsystem, which is given by

Oglx = trA[-QAB (Ma\x & ﬂ)], (1)
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FIG. 1. (a) Quantum steering experiment, (b) local hidden state
strategy, and (c) local hidden state strategy augmented with classical
communication, the scenario investigated in the present work.

where M, denotes the positive operator-valued measure
(POVM) element (effect operator) of Alice corresponding to
the outcome a of the measurement setting x. The collection
0 = {0y} of conditional states o,y = p(alx) Q4. 1S termed
an assemblage [21]; here p(alx) = tr[o,,] and g4, is a
normalized quantum state. Importantly, one should enforce
that Alice and Bob cannot communicate during the game (e.g.,
by ensuring spacelike separation). Note, in addition, that the
presentation here, including an external referee, is different
from how steering is often presented, e.g., in [2], where Bob
also implicitly plays the role of the referee. As will become
clear in what follows, since we wish to allow communication
between Alice and Bob, we need to keep the role played by
the referee and Bob distinct.

Recently, Wiseman et al. [2] discussed the above game
in an information-theoretic setting and showed formally how
the referee can ensure that the players do indeed share
entanglement. Specifically, they characterized the most general
cheating strategy, referred to as a local hidden state (LHS)
model. Consider the case in which Alice and Bob do not
share an entangled state, but only classical correlations (or
equivalently a separable quantum state) represented by a
shared classical variable A. Upon receiving measurement
setting x from the referee, Alice provides an outcome a
according to a response function p(a|x,A). At the same time,
Bob sends a (normalized) quantum state o, (unentangled to
Alice) to the referee. With such a strategy, the assemblage
prepared for the referee by Alice and Bob necessarily has the
form

Gate = f 2 10 plalx. 1) s, @)
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where (L) represents the probability density of the shared
variable A, i.e., f dA u(Ar) = 1. Assemblages of the above form
are said to admit a LHS model. Therefore, if the assemblage
held by the referee has a LHS model, he will not be convinced
that Alice and Bob do indeed share entanglement, and Alice
and Bob thus lose the game. On the contrary, if the referee can
certify that the assemblage cannot be decomposed as above,
he concludes that Alice and Bob share entanglement, and thus
they win the game.

Interestingly, while entanglement is clearly necessary in
order to demonstrate steering (i.e., win the game), it is in
general not sufficient. That is, there exist entangled states
for which Alice and Bob can never win the game, as the
state admits a LHS model. For any possible measurement
performed by Alice, the corresponding assemblage can be
perfectly reproduced using only shared classical variables.
This was first demonstrated when the referee only asks Alice
to perform projective measurements, and recently extended to
general POVMs. More generally, this line of research aims at
understanding the relation between various forms of quantum
correlations.

In the present work, we consider LHS models augmented
by classical communication between Alice and Bob. In
other words, we consider more general cheating strategies.
This scenario is motivated in various ways. First, classical
communication represents the most natural classical resource
for obtaining nonlocality. Hence, the minimal amount of
classical communication required to reproduce a quantum
assemblage provides a natural measure of the strength of
steering. Moreover, as this approach has a long history of
studies in the context of Bell nonlocality, it offers a natural
way of quantitatively comparing quantum steering and Bell
nonlocality.

More formally, we consider the following cheating strate-
gies. First, note that only communication from Alice to Bob
is relevant, as the communication from Bob to Alice is a free
operation for steering and, therefore, useless to fake steering
[11]. So, upon receiving her measurement setting x from the
referee, Alice is now allowed to send a classical message m of
t bits to Bob. This allows Bob to send a (normalized) quantum
state om to the referee, having now partial (or complete)
knowledge about x:

o =Y / dr u() g(m|x, ) p(alx, ) oms, ()

where g(m]|x,}) is the probability for Alice to send m given
setting x and shared variable A. Clearly, LHS assemblages
represent a subclass of the above ones. It is worth emphasizing
that the cheating strategies we consider reproduce both the
conditional quantum states g, of Bob and the local statistics
plalx) of Alice.

Our interest then is in the length ¢ of the shortest message
that Alice needs to send Bob in order to reproduce a given
assemblage. Note that in the worst case Alice needs to send
only her input x to Bob, hence ¢ < log, |x|. We are interested
in knowing when this upper bound is tight, and in general to
find lower bounds on ¢ as close as possible to this upper bound.
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III. QUANTUM STATES WITH INFINITE
COMMUNICATION COST

We first show the communication cost of steering is infinite
for any pure entangled bipartite state. More precisely, we show
the following:

Result 1. Consider that Alice and Bob share an arbitrary
bipartite pure entangled state (of any dimension) and Alice
performs local projective (rank-1) measurements. The result-
ing assemblage cannot be simulated using a LHS model
augmented with finite communication; the length ¢ of the
transmitted message m must be infinite, i.e., t = co.

Proof. For clarity, we detail the proof for the case of a two-
qubit entangled state, |Y) = cos 6 |00) + sin 8 |11), with 0 <
0 < m/4. We consider arbitrary projective qubit measurements
on Alice’s side; hence, we identify the measurement label x
with unit Bloch vectors X. The corresponding projectors are
{ojix, ITyjg}, with I3 = |¢ajz) (@ajxl. Using Eq. (1) we obtain

that
Gas = trallbarz) (Pacl ® LYo} (Vo l)
= p(al%)|Pyg) (P, )
where
p(al®) = tr(|pajs) (aicl ® 11¥) (o). 5)
and
Do) = (Guzl ® 1) /v/p(al%) 6)

is the steered state. First, note that Eq. (4) shows that 0,3 is
proportional to a rank-1 projector. Second, the measurement
setting runs over all possible Bloch vectors; hence, it follows
that the steered states |®,z) run over all possible pure qubit
states.

Now, the most general assemblage that can be generated
using a LHS model augmented with classical communication
takes the form of Eq. (3). Then, since the target assemblage
consists of pure states and (1) g(m|X,A) > 0forallm, ), each
©Om,, must be the same rank-1 projector; i.e., for each a and %,

Om,. = |Pax) (Pyizl Ym,A such that (1) g(m|X,A) > 0.
(N
Recall furthermore that A is independent of X, having been
distributed before Alice learns X from the referee, and consider
a particular value A* which occurs with nonzero probability.
If a message m of any finite length 7 is sent from Alice to
Bob, then there are at most 2 distinct pure states om 3+ (for
each A*) that Bob can send to the referee. However, we already
noted that the states |®,z) (P4 2| in the target assemblage run
over infinitely many pure states. Therefore, no finite-length
message can reproduce the target assemblage. The extension
to higher dimension uses the same argument (although note
that the inputs are not described by Bloch vectors any more)
and is straightforward. ]
Note that in this case the trivial upper bound is ¢ < oo,
as, since the measurements now run over a continuum, their
number becomes infinite. The previous theorem shows that this
infinite upper bound is in fact tight in this limiting situation.
This is in striking contrast to Bell scenarios, where in some
cases, even for infinitely many measurements, the required
communication is finite [18].
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A natural question following from the above is to ask
whether the communication cost of steering for more general
entangled states, not only pure entangled states, could be
infinite. Our second result is to show that indeed there exist
mixed entangled states that also have infinite communication
cost.

Result 2. Consider that Alice and Bob’s shared state is the
(normalized) projector onto the antisymmetric subspace of two
qudits,

' 2A4
anti
= —) 8
Q4 dd—1) 3
where
As= 1= il ©)
d—2 a LAPAVESN B
ij

and that Alice performs local projective (rank-1) measure-
ments. The resulting assemblage cannot be simulated using a
LHS model augmented with finite communication; the length
t of the transmitted message m must be infinite, i.e., t = oo.
Proof. Let us denote the projectors of the (arbitrary)
measurement of Alice I, 3 = |¢ajx) (¢axl. Using Eq. (1) with

0" we obtain

Gu = g (1 = Ibaig) (D)) (10)

which has the property that each steered state of Bob is
orthogonal to the measurement direction |¢,5) of Alice. Since
the measurement settings X of Alice run over all projective
measurements (i.e., bases), she can ensure that Bob’s state is
orthogonal to one of the states in any given basis.

Again, the most general assemblage that can be generated
using a LHS model augmented with classical communication
takes the form of Eq. (3). It follows that each oy ; must be
orthogonal to the same rank-1 projector; i.e., for each a and X,

(bais|om 2 |Paig) = 0V m,A such that u(2) g(mI&, 1) > 0.
1D
Identically to before, A is independent of X. If a message m of
any finite length ¢ is sent from Alice to Bob, then there are at
most 2’ distinct pure states g, ; (for each 1) that Bob can send
to the referee. However, we already noted that the states |, z)
in the target assemblage to which Bob’s simulated states need
to be orthogonal run over infinitely many states. Therefore,
since no finite set of states can be orthogonal to all states, no
finite-length message can reproduce the target assemblage. B
Result 2 shows that the communication cost of steering is
infinite not only for pure entangled states but also for some
mixed entangled states. The examples we have found are not
full-rank states and, hence, like pure states, lie on the boundary
of the set of quantum states. It is an open question if full-rank
entangled states requiring infinite communication exist.
Notably, Results 1 and 2 show that the communication
costs of quantum steering and of quantum nonlocality are
totally different. In particular, while the communication cost of
steering is infinite for any pure entangled two-qubit state, a few
bits of communication are enough in the context of nonlocality.
Specifically, the statistics of local projective measurements on
amaximally entangled state can be reproduced with a single bit
of communication [18], while two bits are enough for partially
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entangled states [18]. For higher-dimensional states, it was
shown that two bits of communication suffice to reproduce
the correlations of dichotomic measurements on any bipartite
entangled state [20]. Nevertheless, it is known that the statistics
of general measurements on d x d maximally entangled states
require an amount of communication that increases (at least)
as 0(d) [15].

It is also worth making a connection to entanglement
theory. The certification of entanglement can be recast in the
setting of Fig. 1, by demanding now that Alice also sends a
quantum state to the referee (similarly to Bob). In this case,
even infinite communication will not help the players, since
entanglement cannot be created by LOCC, i.e., local operations
assisted by an arbitrary amount of (possibly two-way) classical
communication. An analogy can be drawn to semiquantum
games [22] (where players receive quantum inputs) for which
it was also demonstrated that infinite communication can never
replace an entangled state [23].

These results further confirm that steering can be considered
a form of quantum nonseparability which is intermediate
between entanglement and Bell nonlocality.

IV. COMMUNICATION COST FOR
ARBITRARY ASSEMBLAGES

A natural question following the above is to discuss the
communication cost of steering for more general entangled
states, and in situations that do not involve a continuous set
of measurements. In particular, one may expect the cost to be
finite for entangled states which are of full rank. To discuss this
point, we provide a method for placing a lower bound on the
communication cost for simulating an arbitrary assemblage,
considering an arbitrary (but finite) number of measurements.

Result 3. Consider the steering scenario where Alice steers
Bob. Suppose that they want to reproduce exactly an arbitrary
assemblage o. Then, the length ¢ of the message is lower
bounded by

t = log,[v(o) + 1]. (12)

Here v(o) is a quantifier of steering termed the LHS robustness,
defined as the minimum p € R such that the assemblage
1 Iz
cf=—04+—7 13
I+pu 1+ pun (13)

is a LHS assemblage, with & any LHS assemblage.

We note that the LHS robustness v is a variant of a quantifier
introduced in [9], and it is a steering monotone [11].

Proof of Result 3. Let us suppose that o can be simulated
with a protocol using a message of length ¢. The strategy of
the proof is to show that this implies that the assemblage

1 1
is LHS for a LHS 6. Rewriting Eq. (14) as
O L 22D 5 g
S TR N I TR

identifying pu — 2" — 1 implies v(oy) < 2" — 1, and the
claim follows.
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Hence, it only remains to be shown that indeed o* is
LHS. For this, we show that the communication protocol to
simulate o with a message of length 7 can be recast into a
LHS model of the form (2) for o*. The details are provided in
Appendix A, but the main idea to construct the LHS model is
the following. Suppose ¢ is the length of the message that Alice
has to send Bob to simulate o. Using the shared randomness
A, they now choose one m among all the possible length 7
messages. Bob then prepares the state oy, 5. Alice, in turn, is
given an input x and should provide an output a: the way she
produces this outcome is the following. If the message m is
the one she would send Bob for this x when simulating o, she
outputs a according to the simulation protocol of the target
assemblage. This happens with probability % and produces o.
Otherwise, she outputs a according to an arbitrary but fixed
pl(alx). This happens with probability 1 — % and produces a
LHS assemblage 6. Altogether, this reproduces o*, proving
that it is indeed LHS, which concludes the proof. |

To illustrate the relevance of the method, we obtain lower
bounds on the communication cost ¢ for a class of full-rank
mixed entangled states, namely two-qudit isotropic states,

o(V)=Vig] ) o1+ (1 —V)1/d°, (16)

where Iqu) = Zflz_ol |i)]i)/+/d and V is the visibility. To do
so, we use the fact that v(o) can alternatively be shown
to be equal to the largest possible normalized violation of
any linear steering inequality. We then use the recent results
on unbounded violations of steering inequalities [24] to find
strong lower bounds. In particular, in prime-power dimension,
by measuring (d + 1) mutually unbiased bases, we find

1 > log,(VNd/2). (17

Similarly, by measuring log,(d) dichotomic Clifford observ-
ables, we find

t = log,(V/log,(d)/2/2). (18)

In both cases, the amount of communication is seen to
grow with the dimension d, even though a finite number of
measurements are made, and is robust in the presence of white
noise. All details can be found in Appendix B.

V. APPROXIMATE SIMULATION

Finally, we consider the question of how much com-
munication is needed for the approximate simulation of an
assemblage. More precisely, given an approximation error
€ > 0, whatis the minimum length 7 of the message from Alice
to Bob such that each element aﬁfT;m) of Bob’s assemblage,
given by Eq. (3), is close in trace distance to the target one,
0Oy|x- That is, we demand that

d(ga|x,gfj?l>) < €, Ya,x such that p(alx) > 0, (19)

where d(p,0’) = % lo — ©'|| denotes the trace distance between

((lsli;n) — o_(sim)/tr[o_(sim)

o and ¢, and g alx ale
simulated conditional state.

An upper bound on ¢ can be readily obtained from so-
called epsilon nets [25], i.e., sets of pure states for which
Eq. (19) is known to hold. Here, however, we are interested

in lower-bounding ¢, which must necessarily take into account

] is the normalized
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(sim)

alx  Ccanbe

the general situation where the conditional states o
mixed. This is the content of our next result.
Result 4. Consider the steering scenario where Alice steers
Bob by performing projective rank-1 measurements. Suppose
that they want to reproduce approximately the assemblage that
arises from all such measurements on a pure entangled state

of two qubits [1/y). Then,
2
) ; (20)

1 — /1 —4e2
where € > 0 is the tolerated error.

We note that, for small values of €, a Laurent expansion of
the right-hand side of Eq. (20) yields

1
Thound ~ 10g2 (6_2) .

Clearly, thouna — o0 for € — 0, thus recovering Result 1. The
proof of Result 4 is given in Appendix C.

t > tyound = lOg, <

VI. CONCLUSION

We discussed the communication cost of quantum steering,
i.e., the minimal amount of classical communication required
to simulate a quantum-steering experiment without using
any entanglement. In particular, we demonstrated that this
communication cost is infinite for any pure bipartite entangled
state. This further confirms that steering can be considered
a form of quantum nonseparability which is intermediate
between entanglement and Bell nonlocality, revealing striking
differences between these concepts.

Also, we showed that the communication cost of steering is
infinite even for certain mixed (non-full-rank) entangled states.
While this cannot be the case for all non-full-rank entangled
states, as some of these admit a LHS model [26,27], it would
be interesting to find examples of full-rank entangled states
with infinite communication cost, or to prove that such states
necessarily cannot exist.

Moreover, we showed how the communication cost of
steering can be lower bounded in general, for arbitrary mixed-
state assemblages and also in approximate simulations. In the
future it would be interesting to find methods for placing upper
bounds on the communication cost. In particular, one could
consider the problem of constructing explicit LHS models
assisted with ¢ bits of classical communication in order to
simulate steering for given entangled mixed states. Notably,
such a model was presented very recently for the case t = 1
and two-qubit Werner states [28].

Finally, one may study the communication cost in mul-
tipartite steering experiments [29,30], where many different
communication patterns can be considered. In particular, it
would be interesting to investigate the effect of postquantum
steering [31], which is only possible in the multipartite case.

Note added. Recently, we became aware of related and
complementary work by Nagy and Vértesi [28].
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APPENDIX A: DETAILS OF THE PROOF OF RESULT 2

In this appendix we present the details of the classical
protocol without communication that Alice and Bob use in
the section on minimum communication cost for arbitrary
assemblages to construct the assemblage o *. This assemblage
is a probabilistic mixture of the “target” assemblage o, with
probability % ,and aLHS one &, with probability 1 — % , where
t is the length of the message that Alice should send Bob to
simulate o.

First of all, since the target assemblage o can be simulated
by Alice and Bob when she is allowed to send him a message
m of 7 bits, it holds that o = o®'™, with 0™ given in Eq. (3).
Without loss of generality we can assume that the choice of
message m is deterministic on X and X; hence,

ous = [ 1.0 palfh) om. (A1)

Now, the protocol to produce o* goes as follows:

(i) Alice and Bob choose uniformly at random a message
m from a set of {0,1}' prefixed messages, aided by the shared
randomness A.

(i) Bob prepares the normalized state oy 5.

(iii) Alice, given x and A, if m = m (i.e., the message she
would send Bob given x and A when simulating o), outputs
a with the probability p(a|X,A) given in Eq. (Al). Otherwise,
she outputs a according to an arbitrary but fixed probability
palX).

The LHS assemblage produced by this protocol has the
following form:

1 .
OLx = E/d)‘ w(A) p(alX,A) Om,x

1
+o [ dAu) Y pa®ons (A2

m#m

The first term clearly prepares o with probability 2'—, Now we
prove that the second term prepares a LHS assemblage 6, with
components

1
Gat = 57— / di.u(h) Y plal®) om (A3)

m#m

with probability 1 — 5.

Because of the above preparation protocol, & is guaran-
teed to be LHS; we just need to prove that it is a well-
defined assemblage. First, we need to prove that Za Cax =
ﬁ f drp)d 4 4m 02 is positive semidefinite and inde-
pendent of X, despite the fact that m does depend on X.
The former is clear, since the o ) are positive semidefinite
themselves. For the latter, notice that

ous = [ druorpain | X - Y Jeas,

m#m

(A4)
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which implies

/wmmZﬁm=/mmekm—@,(M>

m#m

where g = ), 04 is the reduced state on Bob’s laboratory.
Since the right-hand side of Eq. (AS) is independent of X,
we prove our first claim. Second, we need to prove that & is
normalized. We do this by noticing that the left-hand side of
Eq. (A5) has trace 2" — 1.

From this, and using Egs. (A1)-(A3), Eq. (14) finally
follows, which finishes the proof.

APPENDIX B: COMMUNICATION COST
FOR ISOTROPIC STATES

In this appendix we present the details of the lower bound
on the communication cost for the example full-rank states
given in the main text. First, we elaborate on an equivalent
definition of the LHS robustness and then compute the lower
bound on the communication cost for simulating two particular
assemblages.

The LHS robustness of steering v defined by Eq. (13) can
be expressed as a semidefinite program (SDP) in the following
way:

14+2v(c) = min tr +tr s |,
such that

oux + y_ Dlalx, ) oy =Y Dialx,h)p; Va,x,
A A

0,20, pp=20 VA,

where D(a|x,\) are deterministic conditional probability
distributions.

When moving on to the dual of such an SDP, the LHS
robustness can be computed via

(BI)

1+ 2v(0) = max tr( Fu,xoﬂx)
such that

1> FuxD(alx.n) > -1 V.

a,x

(B2)

Hence the LHS robustness can be obtained by maximizing the
violation of a steering inequality provided that its LHS bound
satisfies |Brus| < 1.

The following examples rely on steering inequalities with
unbounded quantum violations. They both focus on the
steering scenario where Alice steers Bob by performing m

measurements on the d-dimensional isotropic state
(ot 1
ov="VIg; ey + (1 — V)d_Z’

where |¢j) is the maximally entangled state in dimension d.
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1. Projective measurements via mutually
unbiased bases (MUBs)

Consider the steering scenario where Alice steers Bob by
performing m projective d-outcome measurements I, on the
isotropic state of dimension d. Assume, moreover, that these
measurements are given by the m = d + 1 mutually unbiased
bases in C¢.

The assemblage that is produced has the form
Vi 1ovi
d ™ a4 d
Now consider the particular steering inequality given by

. ). . .
the operators F“. = T The result of [24] 1rT1pl1es
that these F, . satisfy constraint (B2); hence, the violation of
the corresponding steering inequality by o, will lower-bound
its LHS robustness. More precisely,

1+2v(0) > tr(z Fus am)

Lo}

Hence, a lower bound on the communication required to

simulate this oy, is
1+d [ 1 ( 1 >] }
t>1lo —|=-4+V{1l—=)|+1; —1.
g2{1+ﬁd d
In the limit of large dimensions, that is, a large number of
measurements and outcomes, this bound behaves as

Vvd
t > log, (T\/_>

2. Clifford operators assemblages

(B3)

Oalx =

Consider the steering scenario where Alice steers Bob by
performing m = log,(d) dichotomic measurements M, =
]1+(+)MA*‘ on the isotropic state of dimension d. Assume that
these operators A, are traceless Hermitian operators {A; }i—1.»
on the Hilbert space Hg, with the property that A2 = 14
and that they anticommute. Such a set is given by Hermitian
operators among the generators of a Clifford algebra [24].

The assemblage produced by Alice has the form

VIi+=D)*ta, 1-v1
d 2 d 2

Now consider the particular steering inequality given by
Fox= % A,. The result of [24] implies that these Fj .
satisfy constraint (B2); hence, the violation of the corre-
sponding steering inequality by o, will lower-bound its LHS
robustness. That is,

14+2v(0) > tr(Z Fus a“) —v /%.

A lower bound on the communication required to simulate
this oy, is hence

Oglx =

(B4)

Vym/2+1
t > log, <#>,
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which in the limit of large dimensions, that is, a large number
of dichotomic measurements, behaves as

V/log,(d)/2

APPENDIX C: PROOF OF RESULT 4

We recall here the scenario laid out in Result 1, where
the measurement x is identified with a direction in the Bloch
sphere X of the corresponding projector of Alice’s measure-
ment on the maximally entangled state. The assemblage that
has to be reproduced approximately, o,%, is given by Eq. (4).
In this case, Eq. (19) takes the form

d(|Pa) (Paigl.0S5") < €.¥a % such that p(a|%) > 0. (C1)

The proof strategy consists in showing that if Eq. (20) is not

fulfilled, the maximal number Ny, of different possible states

Qisli;n) in the assemblage o“™ = {p(a|X) Qis‘i;n)} with which

Alice and Bob try to cheat is not enough for Eq. (C1) to hold.
(sim)

First, note that each ¢,

Gim) _ 1+y0  here y = y(a,%) € R? is the Bloch

alx 2

vector of fo;n), with Euclidean norm y < 1, and o is the Pauli
operator vector. Using Eq. (C1) and the fact that the Bloch
vector of 9413 = [Py z) (Py x| has unit Euclidean norm (because

. i 12y cos 0472 .
it is pure), we get d(Qup.0"a") = #ﬂ, where 0 is

alx
the angle between the two Bloch vectors in question. Due to

can be written in Bloch represen-

tation as o

Eq. (C1), folgn) will yield a valid approximate simulation of a

given g,z only if 6 is such that

— 2
\/1 27/;0394-)/ <e

(C2)

We want each Qflslgn) to approximately simulate as large an
area on the surface of the Bloch sphere as possible. That is, we

PHYSICAL REVIEW A 94, 012308 (2016)

wish to find the optimal length 1, of ¥ that maximizes 6. To
this end, we minimize cos 6;,,x over y subject to the constraint
(C2). This gives

cOS Opax = V' 1 — 4€2, (C3)

which is attained at the optimal length Y, = +/1 — 4€2. The
latter maximal angle corresponds to a total solid angle 2z (1 —
€0s Omax ), centered at the direction of p, on the surface of the
Bloch sphere.

Then, clearly, if

4

— Dbound , (C4)
27 (1 — coS Bpax)

Nmax <
the simulation will not satisfy Eq. (C1). Furthermore, even
Npmax = 2" is not sufficient either. To see this, notice that
the latter case corresponds to the well-known geometrical
problem of packing equally sized circles on the surface of
a sphere [32]. In particular, packing the surface of the unit
sphere—of total area 47t —with 2" circles of area 4 /2/bomd
cannot be done without the circles overlapping and, therefore,
necessarily leaving uncovered areas. This, in turn, implies that
there are pure target states o,z from which the closest stllim)
will be further away than €. Hence, it must hold that

Nipax > 2/, (C5)

Now, as in the proof of Result 1, since A and X are
independent, the only way to have a successful simulation

with Ny, different states Qfls‘gn) is that, for at least one value 1*,

there are already Np, different states ijl;nz Conditioned on

an arbitrary value A*, the simulated average state is given by the
mixture foll;n; = Zm q(m|X,1*) om 1+, but, also as in the proof
of Result 1, there are at most 2’ distinct such mixtures. Hence,
it must hold that 2" > Ny, which, together with Eq. (C5),

renders Eq. (20) true.
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