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Bipartite separability and nonlocal quantum operations on graphs
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In this paper we consider the separability problem for bipartite quantum states arising from graphs. Earlier it
was proved that the degree criterion is the graph-theoretic counterpart of the familiar positive partial transpose
criterion for separability, although there are entangled states with positive partial transpose for which the degree
criterion fails. Here we introduce the concept of partially symmetric graphs and degree symmetric graphs by using
the well-known concept of partial transposition of a graph and degree criteria, respectively. Thus, we provide
classes of bipartite separable states of dimension m × n arising from partially symmetric graphs. We identify
partially asymmetric graphs that lack the property of partial symmetry. We develop a combinatorial procedure
to create a partially asymmetric graph from a given partially symmetric graph. We show that this combinatorial
operation can act as an entanglement generator for mixed states arising from partially symmetric graphs.
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I. INTRODUCTION

Graph theory [1,2] is a well-established branch of math-
ematics. It forms the core of complex systems [3,4], widely
used in economics, social sciences, and systems biology [5], as
well as in communications and information systems [6]. It is
also used to address foundational aspects of different branches
of mathematics and physics [7]. Combinatorial graphs have
been used in quantum mechanics and information theory [8]
in four different ways: (a) In the quantum graph approach,
a differential or pseudodifferential operator is associated
with a graph. The operator acts on functions defined on
each edge of the graph when the edges are equipped with
compact real intervals [9,10]. (b) In the graph state approach,
combinatorial graphs are used to describe interactions between
different quantum states [11–13]. Here the vertices of the
graph represent the quantum mechanical states, while the
interactions between them are represented by the edges. Graph
states were proposed as a generalization of cluster states,
which is the entanglement resource used in one-way quantum
computation. (c) In the combinatorial approach to local opera-
tions and classical communication (LOCC) transformations in
multipartite quantum states, the graph-theoretic methods are
applied to the analysis of pure maximally entangled quantum
states distributed among multiple geographically separated
parties [14,15]. (d) In the approach of Braunstein et al., a single
quantum state is represented by a graph [16,17]. Combinatorial
properties of a quantum mechanical state can be studied using
this approach.
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This work is in the spirit of the Braunstein et al. approach.
Representing a quantum state by a graph is beneficial for
research in both quantum information theory and complex
networks. Graphs provide a platform to visualize quantum
states pictorially [18] such that different states have different
pictographic representations [17] and some important unitary
evolutions can also be represented by changes in their represen-
tations [19]. In this way, graphs form an intuitively appealing
framework for quantum information and communication. On
the other hand, measuring entropy and complexity of large
complex networks is a challenging part of network science.
The correspondence between graphs and quantum states
provides an insightful connection between the Shannon and
von Neumann entropies on the one hand and the complexity
of networks [20,21] on the other, the details of which can be
found in [22–25]. This interconnection has also been exploited
in quantum gravity and quantum spin networks [26].

A combinatorial graph G = [V (G),E(G)] is an ordered
pair of sets V (G) and E(G), where V (G) is called the vertex
set and E(G) ⊆ V (G) × V (G) is the edge set. In this paper we
are concerned with simple graphs, which are graphs without
multiple edges and loops. Between any two vertices there is
a maximum of one edge. There is no edge linking a vertex to
itself. An edge is denoted by (i,j ), which links the vertices i

and j . The adjacency matrix A(G) = (aij ) associated with a
simple graph G is a binary (all elements are 0,1) symmetric
matrix defined as

aij =
{

1 if (i,j ) ∈ E(G)
0 otherwise.

Thus, the order of A(G) is |V (G)|, where |V (G)| denotes the
number of elements of the vertex set V (G). The degree of a
vertex u is the number of edges incident to it, denoted by dG(u).
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The degree matrix D(G) of G is the diagonal matrix of order
|V (G)|. Its ith diagonal entry is the degree of the ith vertex
of G, i = 1,2, . . . ,|V |. Two simple graphs G1 and G2 are
isomorphic if there exists a bijective map f : V (G1) → V (G2)
such that (i,j ) ∈ E(G1) if and only if [f (i),f (j )] ∈ E(G2).
When G1 and G2 are isomorphic there is a permutation matrix
P such that A(G1) = P T A(G2)P .

In quantum mechanics a density matrix ρ is a positive
semidefinite Hermitian unit-trace matrix. Familiar positive-
semidefinite matrices related to a graph are the combinatorial
Laplacian matrix L(G) = D(G) − A(G) [2], the signless
Laplacian matrix Q(G) = D(G) + A(G) [27], and the nor-
malized Laplacian matrix M(G) [28,29]. In this work we are
concerned with the density matrices corresponding to L(G)
and Q(G) only. They are defined as [17]

ρl(G) = L(G)

Tr[L(G)]
, ρq(G) = Q(G)

Tr[Q(G)]
.

For any two isomorphic graphs G1 and G2,

L(G1) = P T L(G2)P, Q(G1) = P T Q(G2)P,

⇒ ρl(G1) = P T ρl(G2)P, ρq(G1) = P T ρq(G2)P.

Throughout this paper we denote a general density matrix by ρ,
while ρl(G) and ρq(G) are specific density matrices as defined
above, collectively written as ρ(G).

Here we are concerned with bipartite systems distributed
between two parties A and B. It is well known that a state of
such a system, represented by the density matrix ρ, is separable
if and only if it can be represented as a convex combination
of product states, i.e., there are two sets of density matrices
{ρ(A)

k : O(ρ(A)
k ) = m} and {ρ(B)

k : O(ρ(B)
k ) = n} corresponding

to A and B, respectively, such that

ρ =
∑

k

pkρ
(A)
k ⊗ ρ

(B)
k ,

∑
k

pk = 1, pk � 0.

Here and below ⊗ denotes the tensor product of matrices [30].
Trivially, the dimension of ρ is mn. The state corresponding to
ρ is called entangled if it is not separable [31]. If k = 1 in the
above equation, ρ is called a pure state; otherwise it is a mixed
state that is a probabilistic mixture of different pure states.
Detection of entangled states, known as the quantum separa-
bility problem (QSP), is one of the fundamental problems of
quantum information theory [32] due to its wide applications in
various quantum communication and information processing
tasks. The Peres-Horodecki criterion [33–35], also known
as the positive partial transpose (PPT) criterion, provides
a necessary condition for separability. It also provides a
sufficient condition for systems of dimensions 2×2 and 2×3.
However, sufficiency for higher-dimensional systems requires
in general other techniques, like an entanglement witness. As
ρ is a matrix of order mn, it can be written as an m×m block
matrix with each block of size n×n. The partial transpose
corresponding to B, denoted by ρTB , is obtained by taking
the individual transpose of each block [35]. The PPT criterion
states that for any separable state, ρTB is a positive-semidefinite
matrix [33]. However, the converse is true only for bipartite

systems of dimensions 2×2 and 2×3 [34]. There are a number
of other separability criteria [31].

The graph-theoretic approach to solving the QSP has
generated a great deal of interest in the past decade after
the seminal paper by Braunstein et al. [16]. This approach
is beneficial as it is more efficient for mixed states. The state
ρ(G) is pure if it consists of a single edge; otherwise it is
mixed [16,17]. The separability of bipartite quantum states
corresponding to random graphs is considered in [36]. Some
families of graphs were invented for which separability can
be tested easily [37]. The idea of entangled edges [16] was
generalized in [38]. Motivated by the PPT criterion, the QSP
problem for ρl(G) was considered in [39], where the concept
of a partial transpose was introduced graph theoretically. It
introduced the degree criterion as the condition for separability.
However, the degree criterion failed to detect bound entangled
states, that is, entangled states with a positive partial transpose.
Thus, finding sufficient conditions on graphs that can generate
separable states is a current topic of interest in the literature. A
class of graphs that produce 2 × p separable quantum states
was identified in [40]. The degree criterion was generalized
for tripartite states in [41]. In [42–44] the QSP for higher-
dimensional states was addressed. For some particular class of
graphs, the properties of corresponding quantum states were
discussed in [45,46]. An interesting fact, already discussed
in the literature regarding the QSP, is that the separability of
ρ(G) does not depend on graph isomorphism. Two isomorphic
graphs may correspond to quantum states with different
separability properties [16,39,44]. This is contradictory to
our classical world phenomena, wherein any two isomorphic
graphs possess the same properties.

In [39], the degree criterion was shown to be equivalent to
the PPT criterion. Hence, a stronger criterion for separability
than the degree criterion is essential. Inspired by the degree
criterion, in this paper, we define degree symmetric graphs. The
motivation for this is that entanglement of ρl(G) and ρq(G)
may depend on some symmetry hidden in the graph. Inspired
by this idea, we define here a notion of partial symmetry. We
generalize the result of [40] to partially symmetric graphs.
Then we derive a class of partially symmetric graphs that pro-
duce separable quantum states ρl(G) and ρq(G) of dimension
m×n. To generate bigger graphs providing separable states
from smaller graphs we define a graph product G �� H for
a simple graph G and a partially symmetric graph H that
corresponds to separable bipartite states.

We collect our ideas related to separability and partially
symmetric graphs in Sec. II. Here we also introduce the
concept of a multilayered system in the context of graphs.
In Sec. III we use graph isomorphism as an entanglement
generator. As a by-product of the separability criterion,
we propose some graph isomorphisms, which are nonlocal
in nature, to generate entanglement from a given partially
symmetric graph. Finally, we provide an example of an
entangled state generated by employing this nonlocal operation
on a partially symmetric graph that represents separable states.
Thus, we conclude from this example that nonlocal operations
are not limited to the use of CNOT gate operations on separable
states, as is observed in quantum information theory. In Sec. IV
we summarize and discuss some issues arising from this
work.
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II. PARTIAL SYMMETRIC GRAPHS AND SEPARABILITY

This section begins with the creation of layers in a
graph G. It partitions density matrices ρ(G) into blocks.
We also define the graph-theoretic partial transpose (GTPT),
the graph-theoretic analog of the partial transpose. This is
an equivalence relation on the set of all graphs. The GTPT
equivalent graphs preserve the separability property. Next we
define partial symmetric graphs. A sufficiency condition is
provided for separability of states that arise from partially
symmetric graphs. We also define a product operation for two
graphs such that the density matrices corresponding to the
resultant graph represent separable states.

Let the vertex set of the graph G, V (G), with the number of
vertices mn be labeled by integers 1,2, . . . ,mn. Then V (G) is
partitioned into m layers with n vertices in each layer. Let the
layers be C1,C2, . . . ,Cm, where Ci = {vi,1,vi,2, . . . ,vi,n} with
vi,k = ni + k. This allows A(G) to be partitioned into blocks
as follows:

A(G) =

⎡
⎢⎢⎣

A1 A1,2 · · · A1,m

A2,1 A2 · · · A2,m

...
...

...
...

Am,1 Am,2 · · · Am

⎤
⎥⎥⎦, (1)

where Ai,j (i �= j ) and Ai are matrices of order n. Here Ai,j

(i �= j ) represents edges between Ci and Cj and Ai represents
edges between vertices of Ci . Trivially, AT

i = Ai and AT
i,j =

Aj,i for all i �= j . Observe that Ai,j need not be symmetric.
Throughout this article, G is a simple graph with standard
labeling on the vertex set V (G) = {1,2, . . . ,mn} with layers
as described above.

This article deals with quantum entanglement of bipartite
states of dimension m × n that arise from simple graphs of
mn vertices. We mention that the bipartition does not exist a
priori in the graph, but is induced by the above layering. We
wish to understand how the two abstract particles, created by
this induction based on vertex labels, are related to G. Here
V (G) is arranged as a matrix of dots as follows:

C1 = •v1,1 •v1,2 . . . •v1,n

C2 = •v2,1 •v2,2 . . . •v2,n

...
Cm = •vm,1 •vm,2 . . . •vm,n

.

(2)

Effectively, one particle, of dimension n, is assumed to
correspond to the horizontal direction, while another particle,
of dimension m, corresponds to the perpendicular direction.
Thus, the first and second indices of every vertex label Aj,k

comes from the vertical and horizontal particles, respectively.
More particles can be induced in the system in different
orthogonal directions by drawing G in an orthogonal higher-
dimensional structure, which will be explored elsewhere. In the
analogous construction for a three-partite system of dimension
lmn, we can arrange the entries of Aj,k as a three-dimensional
stack, with the vertical layer of height l. Then the entries Aj,k

(j = 1, . . . ,m; k = 1, . . . ,n) will be on the ground layer, with
the next layer having the entries Aj,k (j = m + 1, . . . ,2m; k =
n + 1, . . . ,2n) and in general the rth layer (1 � r � l) having
the entries Aj,k [j = (r − 1)m + 1, . . . ,rm; k = (r − 1)n +
1, . . . ,rn]. Note that this scheme can be introduced for any

number of induced particles, but the simple assignment of
direction to particles as vertical and horizontal will no longer
be possible for three or more particles.

Let us return to the bipartite case. As defined in [39,40],
we recall that the partially transposed graph G′ is obtained by
employing the algebraic partial transposition to the adjacency
matrix of a given graph G. This idea is equivalent to a partial
transposition on the second party in a bipartite system density
matrix. For convenience in dealing with our labeling of the
vertices in the graph G, we reformulate the definition of a
partially transposed graph by introducing it as a by-product of
the following combinatorial operation.

Definition 1. The graph theoretical partial transpose is
an operation on the graph G replacing all existing edges
(vi,k,vj,l) (k �= l and i �= j ) by (vi,l,vj,k), keeping all other
edges unchanged.

Thus, the GTPT generates a new simple graph G′ =
[V (G′),E(G′)] from a given simple graph G = [V (G),E(G)],
where V (G′) = V (G) with the labeling unchanged. Note that
G can also be constructed from G′ by the GTPT as (G′)′ = G.
We call G and G′ GTPT equivalent. It is easy to verify that
A(G′) = A(G)TB and hence |E(G)| = |E(G′)|.

Example 1. The GTPT of the star graph with four vertices
is depicted by

•1 •2

•3 •4

GTPT−−−−→ •1 •2

•3 •4

Example 1 establishes that the GTPT of a connected graph
need not be connected. Also, it changes the degree sequence
of the graph. A relevant question here is whether there exists a
graph for which the degree sequence remains invariant under
GTPT. Inspired by the degree criteria introduced in [16,39],
we define degree symmetric graphs as follows.

Definition 2. A graph G is called degree symmetric if
dG(u) = dG′(u) for all u ∈ V (G) = V (G′).

Thus, for a degree symmetric graph, the degree sequence
of the graph is preserved under the GTPT.

Example 2. The following is an example of a degree
symmetric graph [16]:

•1 •2 •3 •4 •5

•6 •7 •8 •9 •10

It was conjectured in [16] that ρl(G) is a separable bipartite
state in any dimension if and only if G and G′ have the same
degree sequence. In other words, ρl(G) is separable if and only
if G is a degree symmetric graph. Later the conjecture was
proved to be false in [39]. An example of a degree symmetric
graph G was provided for which ρl(G) is entangled. It was
established that the PPT criterion is equivalent to the degree
criteria for ρl(G). However, the separability of ρl(G′) and
ρq(G′) was not discussed there [39]. In this work we prove
that degree symmetric graphs preserve the separability even
after the GTPT. This result can be stated as a theorem.
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Theorem 1. Separability of ρl(G) implies the separability
of ρl(G′) if and only if G is degree symmetric. Similarly,
separability of ρq(G) implies separability of ρq(G′) if and
only if G is degree symmetric.

The proof can be found in the Appendix.
Now we introduce the concept of partially symmetric

graphs. This will play a central role in the development of
the rest of the paper. Our aim is to make a more stringent
condition of symmetry in a degree symmetric graph. We focus
on symmetry in the partial transposition of the adjacency
matrix of a graph and hence define partially symmetric graphs
(in analogy with the partial transpose) as follows.

Definition 3. A graph G is partially symmetric if (vi,l ,vj,k) ∈
E(G) implies (vi,k,vj,l) ∈ E(G)∀i,j,k,l,i �= j .

In the above definition, i and j indicate layers Ci and Cj

such that vertices vi,l ∈ Ci and vj,k ∈ Cj . Suffixes l and k

represent the relative positions of the vertices in the individual
layers.

Note that the GTPT keeps a partial symmetric graph
unchanged as Ai,j = AT

i,j and D(G) = D(G′). This leads to
the following lemma.

Lemma 1. Every partial symmetric graph G is degree
symmetric.

The converse of Lemma 1 need not be true. There are many
graphs that are degree symmetric but not partially symmetric.
For example, consider the graph depicted in Example 2.

The above lemma leads us to the next theorem. It is a
sufficient condition for separability of density matrices arising
from partial symmetric graphs. We mention that this result
generalizes the result of [40], where a similar result was
obtained for a (2 × n)-dimensional system.

Theorem 2. Let G be a partially symmetric graph with the
following properties. (a) Between two vertices of any partition
Ci there is no edge: (vi,l,vi,k) /∈ E(G) for all i,l,k. (b) Either
there is no edge between vertices of Ci and Cj or Ai,j =
Ak,l for all i,j,k,l,i �= j and k �= l. (c) The degrees of all the
vertices in a layer are the same, i.e., dCi

(vr ) = dCi
(vs) for all

vr and vs ∈ Ci for all i.
Then ρ(G) is separable, i.e., ρ(G) = ∑

i wiρ
i
A ⊗ ρi

B and∑
i wi = 1.
Its proof is deferred to the Appendix.
Example 3. An example of a partially symmetric graph H

satisfying all the conditions of Theorem 2 is as follows:

H = •1 •2 •3 •4

•5 •6 •7 •8

•9 •10 •11 •12

Theorem 2 is a sufficient condition but is not necessary.
There are classes of partial symmetric graphs generating
separable states without satisfying the conditions of this
theorem. Some of them will be discussed now.

Recall that the union graph of two graphs G =
[V (G),E(G)] and H = [V (H ),E(H )] is defined as the new
graph G ∪ H = [V (G) ∪ V (H ),E(G) ∪ E(H )] [1]. Let G be
a graph of order n with vertex labeling {1,2, . . . ,n}. Define

mG = G ∪ G ∪ · · · ∪ G (union of m copies of G) with vertex
labeling {vj,k : vj,k = jn + k}. Note that copies of G form the
layers of mG. There is no edge between two layers. Hence, mG
is trivially partially symmetric and it violates the first condition
of Theorem 2, which states that there will be no edge between
two vertices located in the same layer. Interestingly, we will
show now that mG represents separable states. Observe that

A(mG) = diag{A(G),A(G), . . . ,A(G)(m times)} = Im ⊗ A(G),

D(mG) = diag{D(G),D(G), . . . ,D(G)(m times)} = Im ⊗ D(G),

L(mG) = diag{L(G),L(G), . . . ,L(G)(m times)} = Im ⊗ L(G),

Q(mG) = diag{Q(G),Q(G), . . . ,Q(G)(m times)} = Im ⊗ Q(G),

where Im denotes the identity matrix of order m. Trivially,
ρl(mG) = L(mG)

tr[L(mG)]
and ρq(mG) = Q(mG)

tr[Q(mG)]
are separable

states. This result may be expressed as follows.
Lemma 2. For any graph G, ρl(mG) and ρq(mG) represent

separable bipartite states of dimension m × n with respect to
standard labeling on mG.

Note that G may not correspond to a separable state but mG

always represents a separable state. This lemma is significant
as it suggests more general conditions for separability.

We define a new graph operation as follows. Consider a
partially symmetric graph H with m different layers, each
layer having a number of vertices n with H satisfying all the
conditions of Theorem 2 and G being a simple graph with n

vertices. We define the new graph G �� H as the graph that is
constructed by replacing each layer of H by the graph G. Note
that V (G �� H ) = V (H ). The following example illustrates
the operation G �� H .

Example 4. Consider the star graph G with four vertices
given by

•4

•1 •2 •3

In addition, H is a graph given in Example 3. Then the graph
G �� H is

•4

•1 •2 •3

•8

•5 •6 •7

•12

•9 •10 •11

Now we present some properties of G �� H , where G

and H are the graphs as discussed above. The graph H
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satisfies all the conditions of Theorem 2. Hence, there is no
edge joining two vertices belonging to the same layer. This
implies that the diagonal blocks of A(H ) are zero matrices.
The graph G is placed m times on the layers of H . Thus all
m diagonal blocks of A(G �� H ) are A(G). Hence, we have
the following lemma.

Lemma 3. A(G �� H ) = A(mG) + A(H ), where Im is the
identity matrix of order m.

It is clear from the construction of G �� H that the degree
of a vertex in G �� H is the sum of its degree in H and its
degree in G. Incorporating this in the expression of A(G ��
H ), we obtain the following result.

Lemma 4. D(G �� H ) = D(mG) + D(H ).
The above two lemmas together imply the structure of the

Laplacian L(G) and the signless Laplacian Q(G), i.e., the
structures of the density matrices ρl(G) and ρq(G).

Lemma 5. L(G �� H ) = L(H ) + L(mG) and Q(G ��
H ) = Q(H ) + Q(mG).
Proof.

L(G �� H ) = D(G �� H ) − A(G �� H )

= Im ⊗ D(G) + D(H ) − Im ⊗ A(G) − A(H )

= Im ⊗ [D(G) − A(G)] + D(H ) − A(H )

= Im ⊗ L(G) + L(H )

= L(H ) + L(mG).

�
Similarly, Q(G �� H ) = Q(H ) + Q(mG).
All the above lemmas together indicate the separability of

G �� H .
Theorem 3. G �� H represents a bipartite separable state

of dimension m × n.
Example 5. Consider the Werner state, which is a mixture of

projectors onto the symmetric and antisymmetric subspaces,
with the relative weight psym being the only parameter that
defines the state

ρ(d,psym) = psym
2

d2 + d
Psym + (1 − psym)

2

d2 − d
Pas,

where Psym = 1
2 (1 + P ) and Pas = 1

2 (1 − P ) are the projectors
and P = ∑

ij |i〉 〈j | ⊗ |j 〉 〈i| is the permutation operator that
exchanges the two subsystems.

Only ρ(d,0) = I−P
d2−d

is represented by a Laplacian matrix
of simple graphs. For example, for d = 2,3 we have

ρ(2, 0) =

⎡
⎢⎣

0 0 0 0
0 0.5 −0.5 0
0−0.5 0.5 0
0 0 0 0

⎤
⎥⎦

≡ •1 •2

•3 •4

ρ(3, 0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0
0 0.1667 0 −0.1667 0 0 0 0 0
0 0 0.1667 0 0 0 −0.1667 0 0
0 −0.1667 0 0.1667 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0.1667 0 −0.1667 0
0 0 −0.1667 0 0 0 0.1667 0 0
0 0 0 0 0 −0.1667 0 0.1667 0
0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≡ •1 •2 •3 •4

•5 •6 •7 •8

•9 •10 •11 •12

•13 •14 •15 •16

It is easy to verify that these graphs are not degree symmetric
and hence not partially symmetric. Further, these graphs
represent entangled states.

III. NONLOCAL QUANTUM OPERATION ON GRAPHS

Observe that the definition of partially symmetric graphs
relies on the labeling of the vertices. In fact, in the
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graph-theoretic approach of interpretation of quantum states, it
is well known that properties of a density matrix derived from
a graph are vertex labeling contingent. A graph that represents
a separable state corresponding to a vertex label may also
produce an entangled state for a different vertex label. In this
section we describe graph isomorphism as a nonlocal operation
to generate entanglement. We begin with an example.

Example 6. Let G be a graph given by

• • • •

It is easy to verify that the density matrix ρl(G1) corresponding
to the graph G1 with labeled vertices given below represents a
separable state:

•1 •2

•3 •4

whereas ρl(G2) represents an entangled state for the following
graph G2 with different vertex labeling:

•1 •2

•3 •4

It is evident that these graphs are isomorphic. It has also
been proved that separability of ρl(G) when G is a completely
connected simple graph does not depend on vertex labeling
and the states ρl(G) corresponding to a star graph with respect
to any labeling are entangled [16]. In [16] it was also asked
if there exist any other graphs that have this property. We
mention that, in the search of partially symmetric graphs, we
found one more graph given below, having the property that,
for any vertex labeling, the graph represents an entangled state.
In fact, this graph has no vertex labeling for which it can be
made a partially symmetric graph.

Example 7. The graph G for which no vertex labeling
produces a partially symmetric graph is

• • •

• • •
(3)

Based on the above observations, we classify the set of all
graphs with a fixed number of vertices into the following three
classes.

(i) E graph. Independent of vertex labeling, all quantum
states related to this graph are entangled.

(ii) S graph. Independent of vertex labeling, all quantum
states related to this graph are separable.

(iii) ES graph. Quantum states related to some of the vertex
labeling are entangled and others are separable.

Obviously the completely connected graph is an S graph,
the star graph is an E graph, and the graph in Example 7 is an
E graph.

In this section, we are interested in ES graphs. These graphs
provide a platform for generating entanglement using graph
isomorphism as a nonlocal operation. Changing the vertex
labeling on a graph representing a separable state generates its
isomorphic copy representing an entangled state. It was proved
in the literature [16,17] that any graph with more than one edge
represents a mixed state. Hence, graph isomorphism acts as an
entanglement generator on both pure and mixed states. For
example, the isomorphism φ : V (G1) → V (G2) defined as

φ(1) = 2, φ(2) = 1, φ(3) = 3, φ(4) = 4

act as a mixed state entanglement generator in Example 6. The
following example of a pure state entanglement generator may
be of interest to the quantum information community.

Example 8. The following graph represents the density
matrix of the separable state 1√

2
|0 + 1〉 |1〉:

G1 = •v00 •v01 •v10 •v11• ≡ •v00 •v01

•v10 •v11

We define a graph isomorphism φ acting on G1: φ(v00) = v00,
φ(v01) = v01, φ(v10) = v11, and φ(v11) = v10. It generates the
graph

G2 = •v00 •v01 •v10 •v11• • ≡ •v00 •v01

•v10 •v11

The graph G2 represents the Bell state 1√
2
|00 + 11〉 [17]. Note

that graph G1 was partially symmetric but graph G2 is not.
The graph isomorphism φ here acts in a fashion analogous to
a CNOT gate. Note that every graph isomorphism corresponds
to permutation similar matrices (for example, Laplacian and
signless Laplacian matrices) associated with the graph and its
isomorphic copy. This has a resemblance to a CNOT gate, which
is itself a permutation matrix. At the end of this section we
present an example where the permutation matrix is different
from the CNOT operation. Thus, we may conclude that graph
isomorphisms are in general entangling operations.

These examples inspire a number of questions for further
investigation. For instance, which isomorphisms will act as
an entanglement generator? In the rest of this work we try to
address this question.

Definition 4. In a graph G the partial degree of a vertex
vi,k ∈ Ci , with respect to the layer Cj , is denoted by ldCj

(vi,k)G
and defined by the number of edges from vi,k to the vertices
of Cj . When no confusion occurs, instead of ldCj

(vi,k)G, we
may write ldCj

(vi,k).
Definition 5. In a graph G, a vertex vi,k is internally related

to vertex vi,l in Ci with respect to layer Cj if (vi,k,vj,l) and
(vi,l,vj,k) ∈ E(G).

Here ldCj
(vi,k) is the number of vertices internally related

to vi,k in Ci with respect to Cj for a partial symmetric graph.
Definition 6. G is called partially asymmetric if

∃(vi,k,vj,l) ∈ E(G) (i �= j and k �= l) such that (vi,l,vj,k) /∈
E(G).
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The incidence set of v ∈ V (G) is IG(v) = {w : (w,v) ∈
E(G)}, that is, a set of all vertices incident to vertex v. The
incidence interchange between two vertices u,v, denoted by

u
i↔ v, is a graphical operation to construct a graph H from

G, defined as

u
i↔ v ≡

{
IH (u) = IG(v)
IH (v) = IG(u). (4)

This operation can generate mixed entangled states from a
mixed separable state, as described later. Note that this is not
a physical operation between two preexisting particles, but a
purely mathematical operation between two formal particles
induced by how we bipartition the graph. Hence there is no
contradiction with the physical principle of the nonincrease
of entanglement under LOCC. This form of entanglement
creation is reminiscent of the idea put forth in [47], that
the degrees of freedom and hence entanglement are observer
induced.

Note that H is a layered graph and is also isomorphic to G.
Let us see an example.

Example 9. Initially we consider a graph G with the
following labels and layers C1 = {1,2,3} and C2 = {4,5,6}:

•1 •2 •3

•4 •5 •6

(5)

Here H is generated from G by graphical operation 1 ↔ 2,
namely,

•1 •2 •3

•4 •5 •6

(6)

Note that in the above example initially G was a partially
symmetric graph. Also, dlC1 (1) = 1 but dlC1 (2) = 2. After
interchanging the vertex labels of 1 and 2 the new graph is
H , which is partially asymmetric. It can be generalized for an
arbitrary partially symmetric graph.

If we let in a partially symmetric graph G, ldCj
(vi,k) �

ldCj
(vi,l), then ldCj

(vi,k) − ldCj
(vi,l) � 1. Here ldCj

(vi,k) and
ldCj

(vi,l) represent the number of internally related vertices
in Ci of vi,k and vi,l with respect to Cj , respectively. Thus,
there exists at least one vertex vi,s , internally related to vi,k but
not with vi,k . After interchanging vertex labels there will be at
least one edge incident to vi,s without any complement as the
complement edge is misplaced by the interchange. Hence, the
new graph H , isomorphic to G, is partially asymmetric. This
can be expressed as a lemma.

Lemma 6. Assume that ldCj
(vi,k) �= ldCj

(vi,l) in a partially
symmetric graph G. Graph H is generated after interchanging
vertex labels of the vertices vi,l and vi,k ∈ E(G). Then H is
partially asymmetric.

Also, (vi,s,vj,l) /∈ E(G) implies the complement of
(vi,l,vj,k) /∈ E(H ), but (vi,l,vj,k) ∈ E(H ). Trivially, H is not
partially symmetric.

Lemma 7. Let (vi,l,vj,k) ∈ E(G) (i �= j and l �= k), but
(vi,s,vj,l) /∈ E(G) for some s, where G is a partially symmetric
graph. The interchange of the vertex labels of vi,s and vi,l will
generate the partial asymmetric graph H .

This exchange of labels may not generate partial asymmetry
in all the cases. Suppose that any two vertices of Ci are not
internally related with respect to Cj . Hence, any edge between
vertices of Ci and Cj is of the form (vi,k,vj,k)∀k = 1,2, . . . ,n.
Consider any two vertices of Ci , say, vi,l and vi,k . The
interchange of the vertex labels of these two vertices will
generate new edges (vi,l,vj,k) and (vi,k,vj,l). This implies
partial symmetry in the new graph. We write it as a lemma.

Lemma 8. Suppose any two vertices of Ci are not internally
related with respect to Cj . Also assume that ldCj

(vi,l) =
ldCj

(vi,k)∀k,l = 1,2, . . . n. Then the interchange of the vertex
labels of any two vertices of Ci will not generate partial
asymmetry.

Graph isomorphism is an equivalence relation on the set of
all simple graphs, which forms disjoint equivalence classes.
Let G be one such class and L be the set of all isomorphisms
on G. Here ◦ is the composition of mappings.

Trivially (L,◦) forms a group that is a permutation group
over #[V (G)] elements. For an ES graph G = E ∪ S, E ∩ S =
φ, E �= φ, and S �= φ. Here E and S are subclasses of G
consisting of all graphs providing entangled and separable
states, respectively.

LetLe andLs be the group of all graph isomorphisms acting
on E and S. Trivially (Le,◦) and (Ls ,◦) also form groups.
Entanglement generators are invertible mappings from (Ls ,◦)
to (Le,◦).

Remark 1. In Example 9, the graphical operation 1 ↔ 2
represents a quantum entanglement generator that transforms
the separable states ρ(G) to entangled states ρ(H ).

Example 10. It is clear to us that graph isomorphism acts
as a global unitary operator and it is capable of generating a
mixed entangled state from a mixed separable state. Consider
two isomorphic graphs

•1 •2 •3

•4 •5 •6

→ •1 •2 •3

•4 •5

•2 •3

•5 •6

→ •1 •2

•4 •5 •6

The corresponding permutation is
(

1 2 3 4 5 6
6 1 3 4 5 2

)
.

The permutation matrix is

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
1 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

.

This operator acts as an entanglement generator. Density
matrices corresponding to the first graph are separable but
for the second graph ρl and ρq both are entangled.
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IV. CONCLUSION AND OPEN PROBLEMS

The quantum separability problem is an important and
difficult open problem in quantum information theory. For
quantum states related to simple combinatorial graphs some
sufficiency conditions are available in the literature. For
bipartite systems they were applicable for some special cases
of 2×p systems. Here we have generalized these results to
m×n systems.

In another direction, our work proposes the use of graph
isomorphisms as entanglement generators, which can generate
mixed entangled states from mixed separable states. Note
that these isomorphisms are formal operations, in contrast to
physical operations such as LOCC, which cannot generate
entanglement. As mentioned above, combinatorial graphs
enable us to visualize changes of quantum states under
a particular quantum operation pictorially. In this context,
graph isomorphisms pictorially depict certain actions that lead
to entanglement generation. Finally, this work puts forth a
number of problems or directions for future investigation.
(a) Can a combinatorial criterion be defined to detect entangled
states arising from graphs? Can the quality of entanglement
be defined by using the partially asymmetric graphs? (b) Can
the formulation of partially symmetric graphs be generalized
for weighted graphs that may possibly open up the combi-
natorial formulation of separable states? (c) Can the bipartite
separability criterion arising from partially symmetric graphs
be generalized to the case of multipartite states? (d) Further
investigations are required for the identification of ES graphs
(see Example 7). Precisely, when is a graph an ES graph? How
much entanglement can be generated from a separable copy of
an ES graph using graph isomorphism? Here the results of [14]
should be leveraged.

We hope that this work contributes to the graphical
representation of quantum mechanics, in general, and the
separability problem, in particular.
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APPENDIX

The following is a proof of Theorem 1.
Proof. Let G be a graph and ρl(G) be separable. Then

ρl(G) =
∑

i

piρ
A
i ⊗ ρB

i

⇒ ρl(G)TB =
∑

i

piρ
A
i ⊗ (

ρB
i

)TB

= 1

Tr[L(G)]
[L(G)]TB

= 1

Tr[L(G)]
{[D(G)]TB − [A(G)]TB }

= 1

Tr[L(G)]
[D(G) − A(G′)]

= 1

Tr[L(G)]
[D(G) − D(G′) + D(G′) − A(G′)]

= 1

Tr[L(G)]
[D(G) − D(G′) + L(G′)]

= 1

Tr[L(G′)]
L(G′) + 1

Tr[L(G)]
[D(G) − D(G′)]

× {∵ d(G)=d(G′)⇒Tr[L(G)] = Tr[L(G′)]},

ρl(G
′) = ρl(G)TB − 1

Tr[L(G)]
[D(G) − D(G′)]

=
∑

i

piρ
A
i ⊗(

ρB
i

)TB − 1

Tr[L(G)]
[D(G)−D(G′)],

ρl(G
′)TB =

∑
i

piρ
A
i ⊗ ρB

i − 1

Tr[L(G)]
[D(G) − D(G′)]

× {∵ [D(G)]TB = D(G)}.
Thus, the desired result follows for ρl(G). Simi-
larly, ρq(G′)TB = ∑

i piρ
A
i ⊗ ρB

i + 1
Tr[Q(G)] [D(G) − D(G′)],

assuming ρq(G′) = ∑
i piρ

A
i ⊗ ρB

i . This completes the
proof. �

The following is a proof of Theorem 2.

Proof. Since Ai,j is a symmetric matrix, the spectral decomposition of Ai,j is given by Ai,j = ∑
r λruru

t
r , where {ur :

r = 1 : n} is a complete set of orthonormal eigenvectors corresponding to the eigenvalues λr,r = 1 : n of Ai,j . For Ai,j = 0,
Ai,j = ∑

r 0.uru
t
r . Since ur,r = 1 : n are normalized eigenvectors, uru

t
r is a trace 1 positive-semidefinite matrix for each r . Since

there are no edges between any two vertices n of any layer Ci , Ai = 0 for all i. Further, Di = diag{di} = diI since Ai,j = Ak,l

for all i,j,k,l,i �= j and k �= l. Then

L(G) =

⎡
⎢⎢⎣

d0.I A0,1 A0,2 · · · A0,(m−1)

A0,1 d1.I A0,2 · · · A0,(m−1)
...

...
...

...
...

A0,(m−1) A1,(m−1) A2,(m−1) · · · dm−1.I

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

d0
∑

r uru
t
r

∑
r λruru

t
r

∑
r λruru

t
r · · · ∑

r λruru
t
r∑

r λruru
t
r d1

∑
r uru

t
r

∑
r λruru

t
r · · · ∑

r λruru
t
r

...
...

...
...

...∑
r λruru

t
r

∑
r λruru

t
r

∑
r λruru

t
r · · · d(m−1)

∑
r uru

t
r

⎤
⎥⎥⎦
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=
∑

r

⎡
⎢⎢⎣

d0 λr λr · · · λr

λr d1 λr · · · λr

...
...

...
...

...
λr λr λr · · · dm−1

⎤
⎥⎥⎦ ⊗ uru

t
r

=
∑

r

B(r) ⊗ uru
t
r ,

where

B(r) =

⎡
⎢⎢⎣

d0 λr λr · · · λr

λr d1 λr · · · λr

...
...

...
...

...
λr λr λr · · · dm

⎤
⎥⎥⎦.

Note that Ai,j = 0 ⇒ bi,j = 0. Now we want to show that B is a positive-semidefinite matrix.
Note that the spectral radius of Ai,j � ‖Ai,j‖∞, where ‖Ai,j‖∞ is the subordinate matrix norm defined by

‖Ai,j‖∞ = maxi

∑n
j=1 |ai,j |. In addition, di = ∑m−1

k=0 maxi

∑n
j=1 |ai,j | = m maxi

∑n
j=1 |ai,j |. Then (m − 1)λr � (m − 1) ×

(spectral radius of Ai,j ) � di∀i. Hence, B is a diagonally dominant symmetric matrix with all positive entries. So B is a
positive-semidefinite matrix. Hence ρl(G) is separable. The result follows similarly for ρq(G). �
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[5] L. Lü and T. Zhou, Physica A 390, 1150 (2011).
[6] L. Han, Ph.D. thesis, University of York, 2012.
[7] G. Bianconi, Europhys. Lett. 111, 56001 (2015).
[8] M. A. Nielsen and I. L. Chuang, Quantum Computation and

Quantum Information (Cambridge University Press, Cambridge,
2010).

[9] G. Berkolaiko and P. Kuchment, Introduction to Quantum
Graphs 186, Mathematical Surveys and Monographs (American
Mathematical Society, Providence, 2013).

[10] G. Berkolaiko, in Quantum Graphs and Their Applications:
Proceedings of an AMS-IMS-SIAM Joint Summer Research
Conference on Quantum Graphs and Their Applications, edited
by G. Berkolaiko, R. Carlson, S. A. Fulling, and P. Kuchment
(American Mathematical Society, Providence, 2006), Vol. 415.

[11] M. Hein, J. Eisert, and H. J. Briegel, Phys. Rev. A 69, 062311
(2004).

[12] S. Anders and H. J. Briegel, Phys. Rev. A 73, 022334
(2006).

[13] S. C. Benjamin, D. E. Browne, J. Fitzsimons, and J. J. Morton,
New J. Phys. 8, 141 (2006).

[14] S. K. Singh, S. P. Pal, S. Kumar, and R. Srikanth, J. Math. Phys.
46, 122105 (2005).

[15] S. P. Pal, S. Kumar, and R. Srikanth, in Quantum Computing:
Back Action, edited by D. Goswami, AIP Conf Proc. No. 864
(AIP, New York, 2006), pp. 156–170.

[16] S. L. Braunstein, S. Ghosh, and S. Severini, Ann. Comb. 10, 291
(2006).

[17] B. Adhikari, S. Adhikari, S. Banerjee, and A. Kumar
(unpublished).

[18] R. Ionicioiu and T. P. Spiller, Phys. Rev. A 85, 062313 (2012).

[19] S. Dutta, B. Adhikari, and S. Banerjee, Quantum Inf. Process.
15, 2193 (2016).

[20] W. Du, X. Li, Y. Li, and S. Severini, Linear Algebra Appl. 433,
1722 (2010).

[21] F. Passerini and S. Severini, available at http://papers.ssrn.com/
sol3/papers.cfm?abstract_id=1382662.

[22] K. Zhao, A. Halu, S. Severini, and G. Bianconi, Phys. Rev. E
84, 066113 (2011).

[23] K. Anand and G. Bianconi, Phys. Rev. E 80, 045102 (2009).
[24] K. Anand, G. Bianconi, and S. Severini, Phys. Rev. E 83, 036109

(2011).
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