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Nondestructive verification of continuous-variable entanglement
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An optical procedure in the context of continuous variables to verify bipartite entanglement without destroying
both systems and their entanglement is proposed. To perform the nondestructive verification of entanglement,
the method relies on beam-splitter and quantum nondemolition (QND) interactions of the signal modes with two
ancillary probe modes. The probe modes are measured by homodyne detections, and the obtained information
is used to feed forward modulation of signal modes, concluding the procedure. Characterizing the method by
figures of merit used in QND processes, we can establish the conditions for an effectively quantum scheme.
Based on such conditions, it is shown that the classical information acquired from the homodyne detections of
probe modes is sufficient to verify the entanglement of the output signal modes. The processing impact due to
added noise on the output entanglement is assessed in the case of Gaussian modes.

DOI: 10.1103/PhysRevA.94.012301

I. INTRODUCTION

Entanglement is one of the most fundamental resources for
performing processes in quantum information and computa-
tion. Besides the technological possibilities, the entanglement
challenges our understanding of the quantum world and
its connection with classical physics [1–3]. Recently, many
experiments have accomplished quantum communication pro-
tocols sending light signals over distances of hundreds of
kilometers [4–6]. In these experiments, the entanglement was
an essential part. It has also been studied as the use of entangled
signals over long distances may increase the applicability of
quantum cryptography protocols [7]. Thus it is very natural to
devise stages along the transmission of entangled signals that
verify if such signals are really entangled, without destroying
or excessively disturbing them during the verification pro-
cesses. In other words, for future quantum communications,
nondestructive certification protocols of entanglement will be
required, ensuring the use of entanglement for subsequent
processes of quantum information. Studies of nondestructive
entanglement verification or analysis have been done in
the framework of discrete variable systems, such as single
photons [8–10].

Differently from the previously cited studies, quantum com-
munications using entangled signals may also be carried out in
the context of continuous-variable systems, e.g., bright beams.
The light beams may be regarded as oscillation modes, such
that the states are vectors of an infinite-dimensional Hilbert
space and observables are continuous spectrum operators,
analogously to the position and momentum operators of the
quantum harmonic oscillator [11]. For light beams, we con-
sider amplitude and phase operators, also called quadratures.
The research field of continuous-variable systems is very active
and has extensive literature. Examples of quantum information
protocols performed with continuous-variable light modes are
quantum teleportation [12–15], cloning [16–18], and tele-
cloning [19–21]. In such cases, the entanglement is an essential
ingredient, therefore its conservation and its verification are
primordial to further more complex applications.
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Thus a minimally invasive measurement method to ob-
serve the entanglement is desirable. Although all quantum
measurement entails a back-action effect, we can measure
the signal, in order to preserve some of the properties of
its original state. In particular, a quantum nondemolition
(QND) measurement is able to measure an observable without
disturbing it, at the expense of a back-action disturbance
on the conjugate observable [22–25]. In quantum optics, the
QND measurements were initially performed by coupling the
signal and probe modes in nonlinear optical media, such as
Kerr media, optical fibers (third-order nonlinearity) [26–28],
and in optical parametric amplifiers (second-order nonlinear-
ity) [29,30]. Other proposals relied on feedforward modulation
of signal modes and off-line squeezed probe modes [31–34], in
which it is not necessary to strongly pump a nonlinear medium
in line to the signal modes. The combination of off-line
squeezed probe modes, linear optics, homodyne detection, and
feedforward loop has inspired many other optical operations,
such as squeezing [33,35–37], implementation of the one-
way computation [38,39], realization of third-order nonlinear
operation [40], and other varieties of QND interactions [41,42].

In this paper we propose a nondestructive method to verify
continuous-variable bipartite entanglement, which uses QND
and beam-splitter interactions between the signal modes and
two other probe modes. After the interactions, the probe
modes are measured by homodyne detections, so that the ob-
tained photocurrents serve both to calculate the entanglement
condition, so as to modulate the signal modes by electro-
optic feedforward modulation, as has been implemented in
noiseless optical amplifiers [43–45]. The proposed scheme
has the benefit of not mixing up the output signal modes
to each other, which would change the global properties
of entanglement [46,47]. Another relevant result is that the
obtained entanglement condition is valid to the output signals,
ensuring the quantum correlation properties resulting from the
process. The cost of the procedure, manageable by the scheme
parameters, is the addition of excess uncorrelated noise in both
signal modes.

This paper is organized as follows. In Sec. II, we describe
the entanglement verification procedure, in which is shown
the quadrature transformations of the signal and probe modes,
in each stage of the scheme. In Sec. III, we characterize the
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procedure by the well-known QND measurement criteria. In
Sec. IV, based on the results of the previous section, we present
how we compute a sufficient entanglement condition to the
two output signal modes, by detecting both probe modes. The
effects of the noise addition on the signal entanglement are
assessed in Sec. V, where the entanglement degradation is
obtained in the case of Gaussian systems. Finally, we discuss
the results and possibilities of this scheme in Sec. VI.

II. ENTANGLEMENT VERIFICATION

The goal of the process is to verify if a pair of signal modes
are entangled without destroying them. Since we consider the
signal modes as continuous-variable systems, we write their
input quadrature operators as x̂1 and p̂1 for mode 1 and x̂2

and p̂2 for mode 2. In order to carry out the entanglement
verification, two independent auxiliary beams must be intro-
duced, characterized with input quadrature operators x̂A and
p̂A for mode A, and x̂B and p̂B for mode B. All operators
obey the usual commutation relations, [x̂i ,p̂j ] = iδij , for
{i; j} = {1; 2; A; B} [11]. The auxiliary beams are used as
probe modes, interacting with the signal modes and after
measured by homodyne detections. Thus, the states of these
probe modes A and B must be previously known. Following
the theoretical proposals of previous articles [31–33], the probe
modes must be prepared in strongly squeezed vacuum states.
In what follows, the squeezed quadratures of the probe modes
are related to the operators p̂A and x̂B . First, each signal mode
is coupled to each probe mode by ideal QND interactions.
Interactions such as these have been performed by coupling
beams in nonlinear optical media (see [24], and citations
therein). However, QND interactions were also performed us-
ing only linear optics, an auxiliary squeezed beam, homodyne
detection, and feedforward modulation [33,34]. As illustrated
in Fig. 1, the beam pairs (1, A) and (2, B) are coupled by QND
interactions, such that for modes 1 and A, with gain G1:

x̂ ′
1 = x̂1, (1)

p̂′
1 = p̂1 − G1p̂A, (2)

x̂ ′
A = x̂A + G1x̂1, (3)

p̂′
A = p̂A, (4)

and for modes 2 and B, with gain G2:

x̂ ′
2 = x̂2 + G2x̂B, (5)

p̂′
2 = p̂2, (6)

x̂ ′
B = x̂B, (7)

p̂′
B = p̂B − G2p̂2. (8)

After these first two QND interactions, the modes interact
again, crossing probe modes with signal modes. Both interac-
tions operate as beam splitters with transmittance T1 for modes
1 and B and transmittance T2 for modes 2 and A. Thus from

FIG. 1. Schematic setup for the entanglement verification of
modes 1 and 2. The probe modes are modes A and B. HD:
homodyne detection for quadrature operators x̂A and p̂B ; BS: beam-
splitter coupling with transmittances T1 and T2; QND: quantum
nondemolition coupling with gains Q1 and Q2; AM-PM: feedforward
modulators. mxA

and mpB
are the photocurrents obtained in detectors.

These signals are used in both the feedforward process and to compute
the entanglement condition.

Eqs. (1)–(8), we have to modes 1 and B:

x̂ ′′
1 =

√
T1x̂1 −

√
1 − T1x̂B, (9)

p̂′′
1 =

√
T1(p̂1 − G1p̂A) −

√
1 − T1(p̂B − G2p̂2), (10)

x̂ ′′
B =

√
T1x̂B +

√
1 − T1x̂1, (11)

p̂′′
B =

√
T1(p̂B − G2p̂2) +

√
1 − T1(p̂1 − G1p̂A), (12)

and to modes 2 and A:

x̂ ′′
2 =

√
T2(x̂2 + G2x̂B) −

√
1 − T2(x̂A + G1x̂1), (13)

p̂′′
2 =

√
T2p̂2 −

√
1 − T2p̂A, (14)

x̂ ′′
A =

√
T2(x̂A + G1x̂1) +

√
1 − T2(x̂2 + G2x̂B), (15)

p̂′′
A =

√
T2p̂A +

√
1 − T2p̂2. (16)

These first two steps are necessary for the probe modes
to obtain sufficient information from the signal modes. Then
the probe modes are measured by homodyne detection pro-
cesses, providing classical signals (photocurrents) sufficient
to compute and verify if the signal modes are entangled.
However, as we see in Eqs. (9), (10), (13), and (14), the
signal modes are affected by interactions. These perturbations
can be corrected a posteriori with feedforward modulations,
using phase and amplitude electro-optic modulators. Setting
up the local oscillators of the homodyne detections, we select
the quadratures x̂ ′′

A and p̂′′
B to measure. With this choice, we

obtain access to all signal quadrature operators, found in linear
combinations in Eqs. (12) and (15). In Sec. IV, we show such
measures are sufficient for the entanglement verification.
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As the currently available detectors can achieve efficiencies
above 99% [34], we will discard the noise from the detection
process, so that we will focus only on the inherent aspects of
the procedure. However, the noise from detector imperfections
can be calculated, which would add vacuum fluctuation terms
in our derivations.

The photocurrents generated in the detectors, mpB
and mxA

,
are amplified with gains k1 and k2 for electro-optic modulators,
so that the following signal quadratures are transformed as

p̂′′′
1 = p̂′′

1 + k1mpB
(17)

and

x̂ ′′′
2 = x̂ ′′

2 + k2mxA
. (18)

The respective conjugate quadratures remain unchanged. The
gains k1 and k2 must be tuned in a way that the crossed terms
between modes 1 and 2 are canceled.

In conclusion, we can implement squeezing operations with
gains T1 and T2 onto signal modes 1 and 2 (not shown in Fig. 1),
so that we obtain the output modes

x̂out
1 = x̂1 − g1x̂B, (19)

p̂out
1 = p̂1 − G1p̂A, (20)

x̂out
2 = x̂2 + G2x̂B, (21)

p̂out
2 = p̂2 − g2p̂A, (22)

where g1 = √
(1 − T1)/T1 and g2 = √

(1 − T2)/T2. The last
squeezing operations onto modes 1 and 2 are not critical,
because the entanglement is invariant under local linear unitary
Bogoliubov operations [46,47]. In Eqs. (19)–(22), we maintain
the terms with strongly squeezed quadratures, p̂A and x̂B ,
although their variances tend to vanishing. At this point, it is
interesting to present every possible resulting noise inherent to
the scheme, reminding one that losses due to the efficiencies
of the detectors are not being considered. In fact, the variances
of p̂A and x̂B are smaller the larger the squeezing in the probe
modes. Nevertheless, we need to know the scales of gi and
Gi , i = {1,2}, before ruling out negligible terms. In the next
section, the conditions to a genuine QND process will be
studied, in which it is shown that the parameters gi and Gi

can be tuned to optimize the scheme, so that some terms are
eventually negligible.

III. QND CHARACTERIZATION

As we are studying a procedure that must conserve some
property of the signal modes, we must check it regarding
the features of a QND process. In early articles on QND
measurement in optical systems, quantities were settled to
characterize a device if it works as a noiseless amplifier and as
a quantum state preparation (QSP) [24,48–52]. To assess these
features, we must consider quantities connecting statistical
properties of the input and output modes, to both signal and
probe pairs. The noise inserted in the system can be quantified
by signal-to-noise ratios of the input signal, Rin

s , output signal,
Rout

s , and output probe, Rout
p . The transfer coefficients from the

input signal to the output signal are given by

Ts = Rout
s

Rin
s

= V in
s

V in
s + Ns

, (23)

and from the input signal to the output probe by

Tp = Rout
p

Rin
s

= V in
s

V in
s + Np

, (24)

where V in
s is the input signal quadrature variance, and Ns

and Np are the equivalent input noises related to signal and
probe inputs, respectively. Another quantity of interest is
the conditional variance of the output signal related to the
measured output probe, given by

WQSP = V out
s −

∣∣Cout
s,p

∣∣2

V out
p

, (25)

where V out
s and V out

p are the signal and probe output quadrature
variances, respectively, and Cout

s,p is the symmetrized covariance
between former quadratures. According to early articles
[48–52], a fully QND process must simultaneously meet the
following conditions:

Ts + Tp > 1, (26)

indicating the noiseless amplifier property (quantum optical
tapping), and

WQSP < 1, (27)

indicating the quantum state preparation property.
In the case of the entanglement verification, there are

two output signals, each one with two quadratures, and
two output probe quadratures. So we must calculate transfer
coefficients (23) and (24) and conditional variances (25) to
a bipartite signal and a bipartite probe. That entails more
combinations among the quadrature operators, implying more
transfer coefficients and conditional variances to be consid-
ered. At first, we can seek for all combinations of quadrature
operators between signal and probe systems. On the other
hand, transfer coefficients crossing quadratures do not exist
(for example, there is no NpB

related to x̂1). Moreover, a direct
verification unveils that conditions (26) and (27) cannot be
satisfied in all existing combinations of quadrature operators.
However, to meet a quantum regime, it is sufficient to comply
only with conditions (26) and (27) related with the signal
quadratures preserved in the QND procedure. Therefore, all
these considerations restrict the relevant transfer coefficients
and conditional variances. For example, we can choose the
signal quadrature operators x̂1 and p̂2 to be preserved. Thus
the equivalent noises, introduced in systems, are

Nx1 = g2
1〈(�x̂B)2〉, (28)

Np2 = g2
2〈(�p̂A)2〉, (29)

N (p2)
pB

= 1

G2
2

〈(�p̂B)2〉 +
(

g1

G2

)2

〈(�p̂1)2〉

− g1

G2

〈
1

2
{�p̂1,�p̂2}

〉
+

(
g1G1

G2

)2

〈(�p̂A)2〉, (30)
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N (x1)
xA

= 1

G2
1

〈(�x̂A)2〉 +
(

g2

G1

)2

〈(�x̂2)2〉

+ g2

G1

〈
1

2
{�x̂1,�x̂2}

〉
+

(
g2G2

G1

)2

〈(�x̂B)2〉, (31)

where �Ôi = Ôi − 〈Ôi〉 and 〈Ôi〉 = Tr(Ôi ρ̂), such that Ôi is
some operator distinguished by index i, and ρ̂ is the density
matrix of the whole system. With expressions (28)–(31), we
can find the respective conditions (26). After simple algebra,
such conditions are rewritten as

Nx1N
(x1)
xA

< 〈(�x̂1)2〉2 (32)

and

Np2N
(p2)
pB

< 〈(�p̂2)2〉2. (33)

So it is clear that sufficiently small values of g1 and g2 and
sufficiently large values of G1 and G2 will achieve a quantum
optical tapping regime. The ideal situation is obtained when
g1; g2 → 0 and G1; G2 → ∞, in which perfectly noiseless
amplifiers are achieved.

Conditional variance (25) applied to output modes unfolds
in two other quantities:

WQSP(x̂1,x̂A) = 〈(
�x̂out

1

)2〉 −
∣∣〈 1

2

{
�x̂out

1 ,�x̂out
A

}〉∣∣2

〈(
�x̂out

A

)2〉 (34)

and

WQSP(p̂2,p̂B) = 〈(
�p̂out

2

)2〉 −
∣∣〈 1

2

{
�p̂out

2 ,�p̂out
B

}〉∣∣2

〈(
�p̂out

B

)2〉 . (35)

It is possible to find conditions to the quantum state preparation
regime with both expressions (34) and (35) simultaneously.
A limit case can be obtained, considering strongly squeezed
input probe modes, such that 〈(�x̂B)2〉; 〈(�p̂A)2〉 → 0, and
based on previous considerations, taking g1; g2 → 0, we notice
that the quantum state preparation is attainable if, from
expression (34),

G2
1 >

(
1 − 1

〈(�x̂1)2〉
)

〈(�x̂A)2〉. (36)

As (1 − 1/〈(�x̂1)2〉) < 1, to any physical value of 〈(�x̂1)2〉, a
stricter inequality is more interesting,

G2
1 � 〈(�x̂A)2〉. (37)

Similarly, from expression (35), we can obtain another
inequality,

G2
2 � 〈(�p̂B)2〉. (38)

Both inequalities (37) and (38) can be fulfilled simultaneously,
therefore quantum state preparation regimes are feasible for
reasonable values of the parameters of the optical device,
independently of the input beam properties.

Considering other combinations of signal quadrature op-
erators to be preserved in the QND procedure, we can seek
other conditions to g1, g2, G1, and G2, analogously to
previous analysis. Such cases are very similar and do not
add new information. For the example studied, we can safely

approximate the output modes to

x̂out
1 = x̂1, (39)

p̂out
1 = p̂1 − G1p̂A, (40)

x̂out
2 = x̂2 + G2x̂B, (41)

p̂out
2 = p̂2. (42)

We can notice in the output signals that each mode has
a preserved quadrature, featuring a QND process. On the
other hand, each mode has a conjugate quadrature added
by terms from probe modes. As the input probe modes are
independent, these terms produce phase-sensitive uncorrelated
noise, inevitably disturbing the signal modes.

IV. CALCULATING THE ENTANGLEMENT CONDITION

Besides feedforward modulation, the photocurrents are also
used to calculate the entanglement condition of the signal
modes. Duan et al. [47] have found a sufficient entanglement
condition in continuous-variable systems, based on EPR-like
operators. Later, other works have extended this condition
for more general operators [53,54]. Following these authors,
consider operator combinations such as

û = a1x̂1 + a2x̂2, (43)

v̂ = b1p̂1 + b2p̂2, (44)

where [x̂i ,p̂j ] = iδij (i; j = 1; 2), and a1, a2, b1, and b2 are
arbitrary constants. It is possible to show that a sufficient
condition of continuous-variable bipartite entanglement is

〈(�û)2〉 + 〈(�v̂)2〉 < |a1b1| + |a2b2|, (45)

valid to Gaussian or non-Gaussian systems.
On the other hand, the variances of the photocurrents

generated in the homodyne detection can be written as

〈(�mXA
)2〉 = KAT2[〈(�ûout)2〉 + 〈(�x̂A)2〉], (46)

〈(�mPB
)2〉 = KBT1[〈(�v̂out)2〉 + 〈(�p̂B)2〉], (47)

where ûout = G1x̂
out
1 + g2x̂

out
2 and v̂out = g1p̂

out
1 − G2p̂

out
2 are

defined from Eqs. (39) to (42). KA and KB are factors that
depend on the overall detector efficiencies and the conversion
circuitry of the photocurrents, such that these factors can
be related by KA = (g2/k2)2 and KB = (g1/k1)2. Except for
〈(�ûout)2〉 and 〈(�v̂out)2〉, all other terms of Eqs. (46) and (47)
are measured or previously known. So both 〈(�ûout)2〉 and
〈(�v̂out)2〉 can be calculated and compared with Eq. (45),
identifying the arbitrary constants with the parameters of the
apparatus, i.e., a1 = G1, a2 = g2, b1 = g1, and b2 = −G2.
Therefore the entanglement condition (45) can be calculated
from the detected probe modes and from parameters of the
scheme. We can also notice that, to sufficiently squeezed
probe modes, the photocurrent variances are directly propor-
tional to the EPR-like operator variances, i.e., 〈(�mXA

)2〉 �
KAT2〈(�ûout)2〉 and 〈(�mPB

)2〉 � KBT1〈(�v̂out)2〉, so that the
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photocurrent measurements provide a direct way to verify the
entanglement.

An important result of this method is that the condition of
entanglement (45), calculated with expressions (46) and (47),
is exactly valid for the output signal modes, namely, we can
certify that the signals resulting from the scheme are entangled,
regardless of limitations or scheme losses. From a practical
point of view, we are receiving two signal modes to verify
the quantum properties of their correlations, so that we can
nondestructively maintain them for use in other processes, and
still be able to repeat it. Inevitably the scheme has a cost, which
is the addition of phase-sensible noise, degrading the signal
modes. The effects of this degradation on the entanglement
are discussed in the next section. In an idealized situation,
the probe modes would have a squeezing parameter tending
to infinity, so the signal modes could have their entanglement
checked without any degradation, perfectly preserving each
quadrature of the signals as well.

V. ENTANGLEMENT DEGRADATION

To assess the effects that the presented scheme cause on
the signal mode entanglement, we will restrict this analysis
to the case of Gaussian beams [55]. The continuous-variable
systems restricted to Gaussian states are fully described by
the first statistical moments of the dynamical operators, i.e.,
Ōi ≡ 〈Ôi〉, and by the second statistical moments, that can be
arranged in a covariance matrix, M , whose entries are Mij ≡
1
2 〈{�Ôi ,�Ôj }〉. With a suitable choice of quadrature basis,
we can write the input covariance matrix as

M in =

⎛
⎜⎝

n1 0 c 0
0 n1 0 k

c 0 n2 0
0 k 0 n2

⎞
⎟⎠. (48)

After all procedures, the covariance matrix of the signal modes
becomes

Mout =

⎛
⎜⎝

n1 0 c 0
0 n1 + d1 0 k

c 0 n2 + d2 0
0 k 0 n2

⎞
⎟⎠, (49)

in which we can observe the presence of uncorrelated excess
noises d1 = G2

1〈(�p̂A)2)〉 and d2 = G2
2〈(�x̂B)2)〉, generated

from probe operators in Eqs. (40) and (41). These noises spoil
the input entanglement. This can be seen by calculating the
logarithmic negativity [56–58]:

EN (ρ) = max[0, − Lnν̃−], (50)

where ν̃− is the smallest symplectic eigenvalue of the partially
transposed bipartite state. This quantity can be calculated from
symplectic invariants of the partially transposed system:

ν̃− =
√

�̃ −
√

�̃2 − 4 det M

2
, (51)

where �̃ = n1(n1 + d1) + n2(n2 + d2) − 2ck and det M =
[n1(n2 + d2) − c2][n2(n1 + d1) − k2], if we use matrix (49).
Hence we find the expression very complex. To simplify
the problem, we consider input signal modes as two-mode

FIG. 2. Plot of logarithmic negativity to a two-mode Gaussian
state characterized by matrix (49) as the function of excess noises
d1 and d2. The input modes are two-mode squeezed pure states, with
squeezing parameter r = 1.

squeezed vacuum, so n1 = n2 = cosh(2r) and c = −k =
sinh(2r). With these substitutions, we plot Fig. 2.

One can see in Fig. 2 that, for any nonzero values of d1

and d2, the logarithmic negativity is monotonically decreasing.
Such effect is the verification process cost. The optimization is
reached minimizing the variances of p̂A and x̂B , i.e., increasing
the squeezing of the probe modes. In addition, the gains G1

and G2 must be limited, obeying conditions (32), (33), (37),
and (38).

VI. DISCUSSION

In this paper, a nondestructive scheme for bipartite entan-
glement verification in the framework of continuous-variable
systems was shown. To such task, a suitable choice of QND and
beam-splitter interactions between the pair of signal modes and
a pair of probe modes is necessary, followed by measurements
of the probe modes and feedforward modulations of the
signal modes. All of these processes are feasible with current
technologies, therefore it can be performed in experimental
demonstrations or implemented as a built-in step in a larger
communication protocol, in which it is necessary to certify
that two signals are entangled, while they are used in another
further step. Some studies have already been done with similar
purposes in the context of discrete variable systems [8–10]. So
this paper fills a gap for continuous-variable systems.

This method is based on a sufficient entanglement con-
dition, therefore some entangled states cannot be detected.
However, entangled states that do not satisfy inequality (45)
are fragile when subjected to Gaussian attenuation, as already
shown in the articles by Barbosa et al. [59,60]. So these fragile
states would not be interesting for long-distance implementa-
tions. Moreover, maximally entangled states or near them are
required for many quantum information protocols. Such states
are addressed by the scheme.

According to the criteria of QND measurement charac-
terization [48–52], we assess the quantum properties of the
entanglement verification scheme. One notices that there
are many possibilities to calculate the transfer coefficients
and the conditional variances, using different quadratures of
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the bipartite modes. In this paper, we calculate all relevant
quantities to certify the QND properties, although we do not
present a systematic method for finding them. Therefore a
QND multipartite device characterization would be a relevant
theoretical development for further research.

The entanglement of the signal modes can be checked
by the presented method, but it cannot quantify the entan-
glement. Such limitation exists because the photocurrents,
measured by homodyne detectors, provide information only
about the variances of the EPR-like operators, a1x̂1 + a2x̂2

and b1p̂1 + b2p̂2. That is insufficient to have a measure
of entanglement, e.g., logarithmic negativity, although it is
sufficient to detect entanglement. However, new strategies
may lead to quantifying the entanglement. We can expect
that more complex signal-probe interaction configurations
reach these goals. Unlike squeezed vacuum modes, using
non-Gaussian modes as probe modes could also lead to more
promising results, as already noted in articles concerned with
the trade-off between information and disturbance caused
by measurements in continuous-variable systems [61,62].
All these considerations show many future research
possibilities.

We can notice that the entanglement verification is deeply
connected with the eavesdropping in quantum cryptogra-
phy [63]. While an eavesdropper wants to make a necessarily
imperfect copy of the signal sent between two communication
stations, in the proposed entanglement verification, it looks
to observe the correlation between the two signal modes,
without necessarily copying and measuring the physical
states. The similarity between the two processes is that both
are extracting information from the signal, and both are
adding unavoidable perturbation—in the case of this paper,
adding uncorrelated phase-sensible noise. In both processes,
the minimization of the perturbation is the condition to its
optimal accomplishment. Further studies may be devoted to
the details and explanations of the relationship between the
QND verification of multipartite correlations and cloning and
eavesdropping.
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