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Non-Hermitian dynamics in the quantum Zeno limit
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We show that weak measurement leads to unconventional quantum Zeno dynamics with Raman-like transitions
via virtual states outside the Zeno subspace. We extend this concept into the realm of non-Hermitian dynamics
by showing that the stochastic competition between measurement and a system’s own dynamics can be described
by a non-Hermitian Hamiltonian. We obtain a solution for ultracold bosons in a lattice and show that a dark
state of tunneling is achieved as a steady state in which the observable’s fluctuations are zero and tunneling is
suppressed by destructive matter-wave interference.
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I. INTRODUCTION

Frequent measurements can slow the evolution of a
quantum system leading to the quantum Zeno effect [1,2],
which has been successfully observed in a variety of
systems [3–9]. One can also devise measurements with
multidimensional projections that lead to quantum Zeno
dynamics where unitary evolution is uninhibited within this
degenerate subspace, i.e., the Zeno subspace [2,10–12]. In this
paper we go beyond conventional quantum Zeno dynamics.
By considering the case of measurement near, but not in,
the projective limit the system is still confined to a Zeno
subspace, but intermediate transitions are allowed via virtual
Raman-like processes. We show that this can be approximated
by a non-Hermitian Hamiltonian, thus extending the notion
of quantum Zeno dynamics into the realm of non-Hermitian
quantum mechanics joining the two paradigms.

Non-Hermitian systems exhibit a variety of rich behavior,
such as localization [13,14], PT symmetry [15–17], spatial
order [18], or novel phase transitions [19,20]. Recent ex-
perimental results further motivate the study of these novel
phenomena [21–25]. Non-Hermitian Hamiltonians commonly
arise in systems with decay or loss [26,27], limited by possi-
bilities of controlling dissipation. Additionally, the nonunitary
time evolution is subject to discontinuous jumps applied
whenever decay events are detected requiring the postselection
of trajectories [18–20]. Here we consider systems where the
non-Hermitian term arises from measurement and uncover
a general mechanism that is independent of the nature of the
original Hamiltonian. It does not rely on losses or postselection
of exotic trajectories, thus conceptually simplifying experi-
mental realizability of such intriguing effects. Furthermore, we
show that the physics can be much more complicated and lead
to dynamics beyond the conventional Hermitian and quantum
Zeno dynamics paradigms.

As an example, we demonstrate the effects of non-
Hermitian evolution by investigating a gas of ultracold bosons
in a lattice inside an optical cavity, which are subjects of inten-
sive interdisciplinary research [28–31]. This field is extremely
flexible when it comes to engineering measurement [31–48].
Furthermore, it is a realistic experimental proposal for our
theoretical model given the rapid progress in merging quantum
optics with ultracold gases [49–54] including the most recent
realizations of an optical lattice in a high-Q cavity [55,56].
We go beyond quantum nondemolition approaches where

the measurement backaction or many-body dynamics were
neglected [57–65]. We will show that, counterintuitively,
non-Hermitian dynamics causes two competing processes,
tunneling and measurement, to cooperate to form a dark state
of the atomic dynamics with zero fluctuations in the observed
quantity without the need for an effective cavity potential,
which is typically considered in self-organization [66–72].

II. THEORETICAL MODEL: MEASUREMENT-INDUCED
NON-HERMITIAN DYNAMICS

A. Suppression of coherences in the density matrix
by strong measurement

We consider a state described by the density matrix ρ̂ whose
isolated behavior is described by the Hamiltonian Ĥ0 and when
measured the jump operator ĉ is applied to the state at each de-
tection [73]. The master equation describing its time evolution
when we ignore the measurement outcomes is given by

˙̂ρ = −i[Ĥ0,ρ̂] + ĉρ̂ĉ† − 1
2 (ĉ†ĉρ̂ + ρ̂ĉ†ĉ). (1)

We also define ĉ = λô and Ĥ0 = Kĥ. The exact definitions of
λ and K are not so important as long as these coefficients can
be considered to be some measure of the relative size of these
operators. They would have to be determined on a case-by-case
basis, because the operators ĉ and Ĥ0 may be unbounded. If
these operators are bounded, one can simply define them such
that ||ô|| ∼ O(1) and ||ĥ|| ∼ O(1). If they are unbounded,
one possible approach would be to identify the relevant
subspace in whose dynamics we are interested in and scale the
operators such that the eigenvalues of ô and ĥ in this subspace
are ∼O(1).

We will use projectors Pm that have no effect on states
within a degenerate subspace of ĉ (ô) with eigenvalue cm

(om), but annihilate everything else. For convenience we will
also use the definition ρ̂mn = Pmρ̂Pn (these are submatrices
of the density matrix, which in general are not single matrix
elements). Therefore, we can write the master equation that
describes this open system as a set of equations

˙̂ρmn = −iKPm

[
ĥ

∑
r

ρ̂rn −
∑

r

ρ̂mr ĥ

]
Pn

+ λ2

[
omo∗

n − 1

2
(|om|2 + |on|2)

]
ρ̂mn, (2)
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where the first term describes coherent evolution whereas the
second term causes dissipation.

First, note that for the density submatrices for which
m = n, ρ̂mm, the dissipative term vanishes and they are thus
decoherence-free subspaces and will form the Zeno subspaces.
Interestingly, any state that consists only of these decoherence-
free subspaces, i.e., ρ̂ = ∑

m ρ̂mm, and that commutes with
the Hamiltonian, [ρ̂,Ĥ0] = 0, will be a steady state. This
can be seen by substituting this ansatz into Eq. (2), which
yields ˙̂ρmn = 0 for all m and n. These states can be prepared
dissipatively using known techniques [74], but it is not required
that the state be a dark state of the dissipative operator as is
usually the case.

Second, we consider a large detection rate λ2 � K for
which the coherences, i.e., the density submatrices ρ̂mn for
which m �= n, will be heavily suppressed by dissipation.
Therefore, we can adiabatically eliminate these cross terms
by setting ˙̂ρmn = 0, to get

ρ̂mn = K

λ2

iPm

[
ĥ

∑
r ρ̂rn − ∑

r ρ̂mr ĥ
]
Pn

omo∗
n − 1

2 (|om|2 + |on|2)
, (3)

which tells us that they are of order K/λ2 � 1. One can
easily recover the projective Zeno limit by considering λ → ∞
when all the subspaces completely decouple. However, it is
crucial that we only consider λ2 � K , but not infinite. If the
subspaces do not decouple completely, then transitions within
a single subspace can occur via other subspaces in a manner
similar to Raman transitions. In Raman transitions population
is transferred between two states via a third, virtual, state
that remains empty throughout the process. By avoiding the
infinitely projective Zeno limit we open the option for such
processes to happen in our system where transitions within
a single Zeno subspace occur via a second, different, Zeno
subspace even though the occupation of the intermediate states
will remain negligible at all times.

In general, a density matrix can have all of its m = n

submatrices ρ̂mm be nonzero and non-negligible even when
the coherences are small. However, for a pure state this
would not be possible. To understand this, consider the state
|�〉 and take it to span exactly two distinct subspaces Pa

and Pb (a �= b). This wave function can also be written as
|�〉 = Pa|�〉 + Pb|�〉. The corresponding density matrix is
thus given by

ρ̂� = Pa|�〉〈�|Pa + Pa|�〉〈�|Pb

+ Pb|�〉〈�|Pa + Pb|�〉〈�|Pb. (4)

If the wave function has significant components in both
subspaces then in general the density matrix will not have
negligible coherences ρ̂ab = Pa|�〉〈�|Pb. Therefore, a den-
sity matrix with small cross terms between different Zeno
subspaces can only be composed of pure states that each lie
predominantly within a single subspace.

Therefore, in order for the coherences to be of order K/λ2

we would require the wave-function components to satisfy
Pa|�〉 ≈ O(1) and Pb|�〉 ≈ O(K/λ2). This in turn implies
that the population of the states outside of the dominant
subspace (and thus the submatrix ρ̂bb) will be of order
〈�|P 2

b |�〉 ≈ O(K2/λ4). Therefore, these pure states cannot
exist in a meaningful coherent superposition in this limit.

This means that a density matrix that spans multiple Zeno
subspaces has only classical uncertainty about which subspace
is currently occupied as opposed to the uncertainty due to a
quantum superposition.

B. Quantum measurement vs dissipation

This is where quantum measurement deviates from dissipa-
tion. If we have access to a measurement record we can infer
which Zeno subspace is occupied, because we know that only
one of them can be occupied at any time. The time needed to
determine the correct state is (see the Appendix)

t � 1

λ2

|on|2
(|om|2 − |on|2)2

∀m,n; m �= n, (5)

which is faster than the system’s internal dynamics as long as
the eigenvalues are distinguishable enough. Due to measure-
ment we can make another approximation. If we observe a
number of detections consistent with the subspace Pm = P0

we can set ρ̂mn ≈ 0 for all cases when both m �= 0 and n �= 0,
leaving our density matrix in the form

ρ̂ = ρ̂00 +
∑
r �=0

(ρ̂0r + ρ̂r0). (6)

We can do this, because the other states are inconsistent with
the measurement record. We know from the previous section
that the system must lie predominantly in only one of the Zeno
subspaces and when that is the case, ρ̂0r ≈ O(K/λ2) and
for m �= 0 and n �= 0 we have ρ̂mn ≈ O(K2/λ4). Therefore,
this amounts to keeping first-order terms in K/λ2 in our
approximation.

This is a crucial step as all ρ̂mm matrices are decoherence-
free subspaces and thus they can all coexist in a mixed state
decreasing the purity of the system without measurement.
Physically, this means we exclude trajectories in which
the Zeno subspace has changed (measurement is not fully
projective). By substituting Eq. (3) into Eq. (2) we see that
this happens at a rate of K2/λ2. However, since the two
measurement outcomes cannot coexist, any transition between
them happens in discrete transitions (which we know about
from the change in the detection rate as each Zeno subspace
will correspond to a different rate) and not as continuous
coherent evolution. Therefore, we can postselect in a manner
similar to Refs. [18–20], but our requirements are significantly
more relaxed; we do not require a specific single trajectory,
only that it remains within a Zeno subspace. Furthermore, upon
reaching a steady state, these transitions become impossible
as the coherences vanish. This approximation is analogous
to optical Raman transitions where the population of the
excited state is neglected. Here we can make a similar
approximation and neglect all but one Zeno subspace due to the
additional knowledge we gain from knowing the measurement
outcomes.

C. Non-Hermitian Hamiltonian

Rewriting the master equation using ĉ = c0 + δĉ, where c0

is the eigenvalue corresponding to the eigenspace defined by
the projector P0, which we used to obtain the density matrix
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in Eq. (6), we get

˙̂ρ = −i(Ĥeff ρ̂ − ρ̂Ĥ
†
eff) + δĉρ̂δĉ†, (7)

Ĥeff = Ĥ0 + i

(
c∗

0 ĉ − |c0|2
2

− ĉ†ĉ

2

)
. (8)

The first term in Eq. (7) describes coherent evolution due to
the non-Hermitian Hamiltonian Ĥeff and the second term is
decoherence due to our ignorance of measurement outcomes.
When we substitute our approximation of the density matrix
ρ̂ = ρ̂00 + ∑

r �=0(ρ̂0r + ρ̂r0) into Eq. (7), the last term van-
ishes, δĉρ̂δĉ† = 0. This happens because δĉP0ρ̂ = ρ̂P0δĉ

† =
0. The projector annihilates all states except for those with
eigenvalue c0 and so the operator δĉ = ĉ − c0 will always
evaluate to c0 − c0 = 0. Recall that we defined ρ̂mn = Pmρ̂Pn,
which means that every term in our approximate density matrix
contains the projector P0. However, it is important to note that
this argument does not apply to other second-order terms in the
master equation, because some terms only have the projector
P0 applied from one side, e.g., ρ̂0m. The term δĉρ̂δĉ† applies
the fluctuation operator from both sides, so it does not matter
in this case, but it becomes relevant for terms such as δĉ†δĉρ̂.

It is important to note that this term does not automatically
vanish, but when the explicit form of our approximate density
matrix is inserted, it is in fact zero. Therefore, we can omit
this term using the information we gained from measurement,
but keep other second-order terms, such as δĉ†δĉρ in the
Hamiltonian, which are the origin of other second-order
dynamics. This could not be the case in a dissipative system.

Ultimately, we find that a system under continuous mea-
surement for which λ2 � K in the Zeno subspace P0 is
described by the deterministic non-Hermitian Hamiltonian
Ĥeff in Eq. (8) and thus obeys the Schrödinger equation

i
d|�〉
dt

=
[
Ĥ0 + i

(
c∗

0 ĉ − |c0|2
2

− ĉ†ĉ

2

)]
|�〉. (9)

Of the three terms in the parentheses the first two represent
the effects of quantum jumps due to detections (which one can
think of as reference frame shifts between different degenerate
eigenspaces) and the last term is the non-Hermitian decay
due to information gain from no detections. It is important
to emphasize that even though we obtained a deterministic
equation, we have not neglected the stochastic nature of
the detection events. The detection trajectory seen in an
experiment will have fluctuations around the mean determined
by the Zeno subspace, but there simply are many possible
measurement records with the same outcome. This is just
like the fully projective Zeno limit where the system remains
perfectly pure in one of the possible projections, but the
detections remain randomly distributed in time.

One might then be concerned that purity is preserved
since we might be averaging over many trajectories within
this Zeno subspace. We have neglected the small terms ρ̂m,n

(m,n �= 0), which are O(K2/λ4) and thus they are not correctly
accounted for by the approximation. This means that we
have an O(K2/λ4) error in our density matrix and the purity

given by

Tr(ρ̂2) = Tr

⎛
⎝ρ̂2

00 +
∑
m�=0

ρ̂0mρ̂m0

⎞
⎠ + Tr

⎛
⎝ ∑

m,n�=0

ρ̂mnρ̂nm

⎞
⎠,

(10)

where the second term contains the terms not accounted for
by our approximation and thus introduces an O(K4/λ8) error.
Therefore, this discrepancy is negligible in our approximation.
The pure state predicted by Ĥeff is only an approximation,
albeit a good one, and the real state will be mixed to a small
extent. While perfect purity within the Zeno subspace ρ̂00 is
expected due to the measurement’s strong decoupling effect,
the nearly perfect purity when transitions outside the Zeno
subspace are included is a nontrivial result. Similarly, in Raman
transitions the population of the neglected excited state is also
nonzero, but negligible. Furthermore, this equation does not
actually require the adiabatic elimination used in Eq. (3) (note
that we only used it to convince ourselves that the coherences
are small) and such situations may be considered provided all
approximations remain valid. In a similar way the limit of lin-
ear optics is derived from the physics of a two-level nonlinear
medium, when the population of the upper state is neglected
and the adiabatic elimination of coherences is not required.

III. NON-HERMITIAN DYNAMICS IN
ULTRACOLD GASES

A. Theoretical model

We now focus on ultracold bosons in a lattice inside a
cavity that selects and enhances light scattered at a particular
angle [75–77], as shown in Fig. 1. One of its key advantages
is the flexibility of engineering the measurement ĉ and the
possibility of coupling to both density and intersite interfer-
ence [40–42,78,79]. The global nature of such measurement is
also in contrast to spontaneous emission [80,81], local [82–86],
and fixed-range addressing [87,88], which are typically con-
sidered in dissipative systems. Furthermore, it provides the
opportunity to extend quantum measurement and quantum

FIG. 1. Atoms in an optical lattice are probed by a coherent
light beam and the light scattered at a particular angle is enhanced
and collected by a leaky cavity. The photons escaping the cavity
are detected, perturbing the atomic evolution via measurement
backaction.
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Zeno dynamics beyond single atoms into strongly correlated
many-body systems. However, our result can be applied to a
variety of other setups such as trapped ions [19,20], Rydberg-
dressed Bose-Einstein condensates [18], circuit QED [89], or
other systems under continuous observation.

The isolated system is described by the Bose-Hubbard
model (BHM)

Ĥ0 = −J
∑
〈i,j〉

b
†
i bj + U

2

∑
i

n̂i(n̂i − 1), (11)

where bi (b†i ) are the bosonic annihilation (creation) operators
at site i, n̂i is the atom number operator at site i, U is the on-site
interaction, and J is the tunneling coefficient. The optical
Hamiltonian is adiabatically eliminated and if the cavity field
backaction can be neglected (cavity detuning must be small
compared to its decay rate) then its only effect on the system is
via measurement backaction [31]. The quantum jump operator
is given by ĉ = √

2κâ, where κ is the cavity relaxation
rate, â = CD̂ is the annihilation operator of a photon in
the cavity mode, C is the coefficient of Rayleigh scattering
into the cavity, D̂ = ∑

i Ain̂i , with the coefficients given by
Ai = u∗

out(ri)uin(ri), and uin,out(ri) are the mode functions of
the incoming and scattered light [31]. Additionally, we have
the necessary condition to be in the quantum Zeno regime
γ /J � 1, where γ = κ|C|2.

We will now consider the simplest case of global multisite
measurement of the form D̂ = N̂K = ∑K

i n̂i , where the
sum is over K illuminated sites. Physically, this can be
realized by collecting the light scattered into a diffraction
maximum [57,58]. The effective Hamiltonian becomes

Ĥeff = Ĥ0 − iγ (δN̂K )2, (12)

where δN̂K = N̂K − N0
K and N0

K is a subspace eigenvalue.
It is now obvious that continuous measurement squeezes the
fluctuations in the measured quantity, as expected, and that the
only competing process is the system’s own dynamics.

In this case, if we adiabatically eliminate the density-matrix
cross terms and substitute Eq. (3) into Eq. (2) for this system
we obtain an effective Hamiltonian within the Zeno subspace
defined by NK

Ĥϕ = Pϕ

⎡
⎢⎢⎢⎣Ĥ0 − i

J 2

γ

∑
〈i ∈ ϕ,j ∈ ϕ′〉
〈k ∈ ϕ′,l ∈ ϕ〉

b
†
i bj b

†
kbl

⎤
⎥⎥⎥⎦Pϕ, (13)

where ϕ = {NK} denotes the set of states with NK atoms
in the illuminated area, ϕ′ = {NK ± 1} denotes the set of
intermediate states, and Pϕ is the projector onto ϕ. We focus
on the case when the second term is not only significant,
but also leads to dynamics within ϕ that are not allowed by
conventional quantum Zeno dynamics accounted for by the
first term. The second term represents second-order transitions
via other subspaces that act as intermediate states much like
virtual states in optical Raman transitions. This is in contrast
to the conventional understanding of the Zeno dynamics for
infinitely frequent projective measurements (corresponding to
γ → ∞) where such processes are forbidden [2]. Thus, it is

the weak quantum measurement that effectively couples the
states.

B. Small-system example

To get clear physical insight, we initially consider three
atoms in three sites and choose our measurement operator
such that D̂ = n̂2, i.e., only the middle site is subject to
measurement, and the Zeno subspace defined by n2 = 1. Such
an illumination pattern can be achieved with global addressing
by crossing two beams and placing the nodes at the odd sites
and the antinodes at even sites. This means that PϕĤ0Pϕ = 0.
However, the first and third sites are connected via the second
term. Diagonalizing the Hamiltonian reveals that out of its ten
eigenvalues all but three have a significant negative imaginary
component of the order γ , which means that the corresponding
eigenstates decay on a time scale of a single quantum jump
and thus quickly become negligible. The three remaining
eigenvectors are dominated by the linear superpositions of
the three Fock states |2,1,0〉, |1,1,1〉, and |0,1,2〉. While it is
not surprising that these components are the only ones that
remain as they are the only ones that actually lie in the Zeno
subspace n2 = 1, it is impossible to solve the full dynamics by
just considering these Fock states alone as they are not coupled
to each other in Ĥ0. The components lying outside of the Zeno
subspace have to be included to allow intermediate steps to
occur via states that do not belong in this subspace, much like
virtual states in optical Raman transitions.

An approximate solution for U = 0 can be written for
the {|2,1,0〉,|1,1,1〉,|0,1,2〉} subspace by multiplying each
eigenvector with its corresponding time evolution

|�(t)〉 ∝
⎛
⎝z1 + √

2z2e
−6J 2t/γ + z3e

−12J 2t/γ

−√
2(z1 − z3e

−12J 2t/γ )
z1 − √

2z2e
−6J 2t/γ + z3e

−12J 2t/γ

⎞
⎠,

where zi denote the overlap between the eigenvectors and
the initial state, zi = 〈vi |�(0)〉, with |v1〉 = (1, − √

2,1)/2,
|v2〉 = (1,0, − 1)/

√
2, and |v3〉 = (1,

√
2,1)/2. The steady

state as t → ∞ is given by |v1〉 = (1, − √
2,1)/2. This

solution is illustrated in Fig. 2, which clearly demonstrates
dynamics beyond the canonical understanding of quantum

� 0,1,2 � 2
� 1,1,1 � 2
� 2,1,0 � 2

0 25 50 75 100
Jt

0.00

0.25

0.50

0.75

1.00

�n
1
,n

2
,n

3
�

2

FIG. 2. Populations of the Fock states in the Zeno subspace for
γ /J = 100 and initial state |2,1,0〉. It is clear that quantum Zeno
dynamics occurs via Raman-like processes even though none of
these states are connected in Ĥ0. The dynamics occurs via virtual
intermediate states outside the Zeno subspace. The system also tends
to a steady state, which minimizes tunneling, effectively suppressing
fluctuations. The lines are solutions to the non-Hermitian Hamiltonian
and the dots are points from a stochastic trajectory calculation.
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Zeno dynamics as tunneling occurs between states coupled
via a different Zeno subspace.

C. Steady state of non-Hermitian dynamics

A distinctive difference between BHM ground states and
the final steady state, [|2,1,0〉 − √

2|1,1,1〉 + |0,1,2〉], is that
its components are not in phase. Squeezing due to measure-
ment naturally competes with intersite tunneling, which tends
to spread the atoms. However, from Eq. (12) we see the
final state will always be the eigenvector with the smallest
fluctuations as it will have an eigenvalue with the largest
imaginary component. This naturally corresponds to the state
where tunneling between Zeno subspaces (here between every
site) is minimized by destructive matter-wave interference,
i.e., the tunneling dark state defined by T̂ |�〉 = 0, where
T̂ = ∑

〈i,j〉 b
†
i bj . This is simply the physical interpretation of

the steady states we predicted for Eq. (2). Crucially, this state
can only be reached if the dynamics are not fully suppressed
by measurement and thus, counterintuitively, the atomic
dynamics cooperate with measurement to suppress itself by
destructive interference. Therefore, this effect is beyond the
scope of traditional quantum Zeno dynamics and presents
another perspective on the competition between a system’s
short-range dynamics and global measurement backaction.

We now consider a one-dimensional lattice with M sites so
we extend the measurement to D̂ = N̂even, where every even
site is illuminated (obtained by crossing two beams such that
the nodes coincide with odd sites and antinodes with even
sites [42,58]). The wave function in a Zeno subspace must be
an eigenstate of ĉ and we combine this with the requirement for
it to be in the dark state of the tunneling operator (eigenstate of
Ĥ0 for U = 0) to derive the steady state. These two conditions
in momentum space are

T̂ |�〉 =
∑
RBZ

[b†kbk − b†qbq] cos(ka)|�〉 = 0,

	N̂ |�〉 =
∑
RBZ

[b†kb−q + b
†
−qbk]|�〉 = 	N |�〉,

where bk = 1√
M

∑
j eikjabj , 	N̂ = D̂ − N/2, q = π/a − k,

a is the lattice spacing, N is the total atom number, and we
perform summations over the reduced Brillouin zone (RBZ)
−π/2a < k � π/2a as the symmetries of the system are
clearer this way. Now we define

α̂
†
k = b

†
kb

†
q − b

†
−kb

†
−q, (14)

β̂†
ϕ = b

†
π/2a + ϕb

†
−π/2a, (15)

where ϕ = 	N/|	N |, which create the smallest possible
states that satisfy the two equations for 	N = 0 and 	N �= 0,
respectively. Therefore, by noting that [T̂ ,α̂

†
k] = [	N̂,α̂

†
k] =

[T̂ ,β̂†
ϕ] = 0 and [	N̂,β̂†

ϕ] = ϕβ̂†
ϕ we can now write the

equation for the N -particle steady state

|�〉 ∝
[

(N−|	N |)/2∏
i=1

(
π/2a∑
k=0

φi,kα̂
†
k

)]
(β̂†

ϕ)|	N ||0〉,

where φi,k are coefficients that depend on the trajectory taken
to reach this state and |0〉 is the vacuum state defined by
bk|0〉 = 0. Since this is a dark state (an eigenstate of Ĥ0) of
the atomic dynamics, this state will remain stationary even
with measurement switched off. Interestingly, this state is
very different from the ground states of the BHM; it is even
orthogonal to the superfluid state and thus it cannot be obtained
by cooling or projecting from an initial ground state. The
combination of tunneling with measurement is necessary.

In order to prepare the steady state one has to run the
experiment and wait until the photocount rate remains constant
for a sufficiently long time. Such a trajectory is illustrated in
Fig. 3 and compared to a deterministic trajectory calculated
using the non-Hermitian Hamiltonian. It is easy to see from
Fig. 3(a) how the stochastic fluctuations around the mean value
of the observable have no effect on the general behavior of
the system in the strong measurement regime. By discarding
these fluctuations we no longer describe a pure state, but we
showed how this only leads to a negligible error. Figure 3(b)
shows the local density variance in the lattice. Not only does it
grow, showing evidence of tunneling between illuminated and
non-illuminated sites, but it grows to significant values. This is
in contrast to conventional quantum Zeno dynamics where no
tunneling would be allowed at all. Finally, Fig. 3(c) shows the
momentum distribution of the trajectory. We can clearly see
that it deviates significantly from the initial flat distribution of
the Fock state. Furthermore, the steady state does not have any
atoms in the k = 0 state and thus is orthogonal to the superfluid
state as discussed.

To obtain a state with a specific value of 	N postselection
may be necessary, but otherwise it is not needed. The process
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FIG. 3. Trajectory simulation for eight atoms in eight sites,
initially in |1,1,1,1,1,1,1,1〉, with periodic boundary conditions and
γ /J = 100. (a) Fluctuations in ĉ where the stochastic nature of the
process is clearly visible on a single trajectory level. However, the
general trend is captured by the non-Hermitian Hamiltonian. (b) Local
density variance. While the fluctuations in the global measurement
operator decrease, the fluctuations in local density increase due
to tunneling via states outside the Zeno subspace. (c) Momentum
distribution. The initial Fock state has a flat distribution that with
time approaches the steady-state distribution of two identical and
symmetric distributions centered at k = π/2a and k = −π/2a.
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can be optimized by feedback control since the state is
monitored at all times [90]. Furthermore, the form of the
measurement operator is very flexible and it can easily be
engineered by the geometry of the optical setup [40,42], which
can be used to design a state with desired properties.

IV. SUMMARY

We have presented a perspective on quantum Zeno dy-
namics when the measurement is not fully projective. By
using the fact that the system is strongly confined to a
specific measurement eigenspace, we have derived an effective
non-Hermitian Hamiltonian. In contrast to previous works,
it is independent of the underlying system and there is no
need to postselect for a particular exotic trajectory [19,20].
Using the BHM as an example, we have shown that while
the system remains in its Zeno subspace, it will exhibit
Raman-like transitions within this subspace, which would
be forbidden in the canonical fully projective limit. Finally,
we have shown that the system will always tend towards the
eigenstate of the Hamiltonian with the best squeezing in the
measured quantity and the atomic dynamics, which normally
tend to spread the distribution, cooperates with measurement
to produce a state in which tunneling is suppressed by
destructive matter-wave interference. A dark state of the
tunneling operator will have zero fluctuations and we provided
an expression for the steady state that is significantly different
from the ground state of the Hamiltonian. This is in contrast
to previous works on dissipative state preparation where the
steady state had to be a dark state of the measurement operator
instead [74].
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APPENDIX: DETERMINING THE ZENO SUBSPACE

Following the main text, we now consider how to estimate
the Zeno subspace. Since the density-matrix cross terms are
small we know a priori that the individual wave functions
comprising the density-matrix mixture will not be coherent
superpositions of different Zeno subspaces. Therefore, each
individual experiment will at any time be predominantly in a
single Zeno subspace with small cross terms and negligible
occupations in the other subspaces. With no measurement
record our density matrix would be a mixture of all these
possibilities. However, we can try and determine the Zeno
subspace around which the state evolves in a single experiment
from the number of detections m in time t .

The detection distribution on time scales shorter than
dissipation (so we can approximate as if we were in a fully
Zeno regime) can be obtained by integrating over the detection
times [62] to get

P (m,t) =
∑

n

[|cn|2t]m
m!

e−|cn|2tTr(ρnn). (A1)

For a state that is predominantly in one Zeno subspace,
the distribution will be approximately Poissonian [up to

O(K2/λ4), the population of the other subspaces]. Therefore,
in a single experiment we will measure m = |c0|2t ±

√
|c0|2t

detections. (Note that we have assumed that |c0|2t is large
enough to approximate the distribution as normal. This is not
necessary; we simply use it here to not have to worry about
the asymmetry in the deviation around the mean value.) The
uncertainty does not come from the fact that λ is not infinite.
The jumps are random events with a Poisson distribution.
Therefore, even in the full projective limit we will not
observe the same detection trajectory in each experiment even
though the system evolves in exactly the same way and remains
in a perfectly pure state.

If the basis of ĉ is continuous (e.g., free particle position
or momentum) then the deviation around the mean will be our
upper bound on the deviation of the system from a pure state
evolving around a single Zeno subspace. However, continuous
systems are beyond the scope of this work and we will
confine ourselves to discrete systems. Though it is important
to remember that continuous systems can be treated this way,
the error estimate (and thus the mixedness of the state) will be
different.

For a discrete system it is easier to exclude all possibilities
except for one. The error in our estimate of |c0|2 in a single
experiment decreases as 1/

√
t and thus it can take a long time

to confidently determine |c0|2 to a sufficient precision this
way. However, since we know that it can only take one of the
possible values from the set {|cn|2} it is much easier to exclude
all the other values.

In an experiment we can use Bayes’ theorem to infer the
state of our system as follows:

p(cn = c0|m) = p(m|cn = c0)p(cn = c0)

p(m)
, (A2)

where p(x) denotes the probability of the discrete event x

and p(x|y) the conditional probability of x given y. We know
that p(m|cn = c0) is simply given by a Poisson distribution
with mean |c0|2t . Here p(m) is just a normalizing factor and
p(cn = c0) is our a priori knowledge of the state. Therefore,
one can get the probability of being in the right Zeno subspace
from

p(cn = c0|m) = p0(cn = c0) (|c0|2t)2m

m! e−|c0|2t∑
n p0(cn) (|cn|2t)2m

m! e−|cn|2t

= p0(cn = c0)

[∑
n

p0(cn)

( |cn|2
|c0|2

)2m

e(|c0|2−|cn|2)t

]−1

,

(A3)

where p0 denotes probabilities at t = 0. In a real experiment
one could prepare the initial state to be close to the Zeno
subspace of interest and thus it would be easier to deduce the
state. Furthermore, in the middle of an experiment if we have
already established the Zeno subspace this will be reflected in
these a priori probabilities again, making it easier to infer the
correct subspace. However, we will consider the worst case
scenario that might be useful if we do not know the initial
state or if the Zeno subspace changes during the experiment,
a uniform p0(cn).
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This probability is a rather complicated function as m is a
stochastic quantity that also increases with t . We want it to
be as close to 1 as possible. In order to devise an appropriate
condition for this we note that in the first line all terms in
the denominator are Poisson distributions of m. Therefore, if
the mean values |cn|2t are sufficiently spaced out, only one
of the terms in the sum will be significant for a given m and
if this happens to be the one that corresponds to c0 we get
a probability close to unity. Therefore, we set the condition
such that it is highly unlikely that our measured m could be
produced by two different distributions

√
|c0|2t � ||c0|2 − |cn|2||t ∀n �= 0, (A4)√
|cn|2t � ||c0|2 − |cn|2||t ∀n �= 0. (A5)

The left-hand side is the standard deviation of m if the system
was in subspace P0 or Pn. The right-hand side is the difference
in the mean detections between the subspace n and the one
we are interested in. The condition becomes more strict if the
subspaces become less distinguishable as it becomes harder

to confidently determine the correct state. Once again, using
ĉ = λô where ô ∼ O(1) we get

t � 1

λ2

|o0,n|2
(|o0|2 − |on|2|)2

. (A6)

Since detections happen on average at an average rate of
order λ2 we only need to wait for a few detections to satisfy
this condition. Therefore, we see that even in the worst case
scenario of complete ignorance of the state of the system we
can very easily determine the correct subspace. Once it is
established for the first time, the a priori information can be
updated and it will become even easier to monitor the system.

However, it is important to note that physically once the
quantum jumps deviate too much from the mean value the
system is more likely to change the Zeno subspace (due to
measurement backaction) and the detection rate will visibly
change. Therefore, if we observe a consistent detection rate it
is extremely unlikely that it can be produced by two different
Zeno subspaces, so in fact it is even easier to determine the
correct state, but the above estimate serves as a good lower
bound on the necessary detection time.
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