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We compute the informational power for the Hoggar symmetric informationally complete positive operator-
valued measure (SIC-POVM) in dimension eight, i.e., the classical capacity of a quantum-classical channel
generated by this measurement. We show that the states constituting a maximally informative ensemble form a
twin Hoggar SIC-POVM being the image of the original one under a conjugation.
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I. INTRODUCTION

Among positive operator-valued measures (POVMs) repre-
senting general quantum measurements, symmetric informa-
tionally complete (SIC) POVMs, called “mysterious entities”
by Fuchs [1], play a special role. On the one hand, they are
crucial ingredients of the quantum Bayesianism (or QBism)
approach to the foundations of quantum physics proposed
15 years ago by Caves, Fuchs, and Schack [2–4]; on the
other hand, they are widely used in various areas of quantum
information theory like quantum cryptography [5], quantum
state tomography [6–9], quantum communication [10], and en-
tanglement detection [11] (see [12,13] for more applications).

However, despite many efforts as well as positive re-
sults obtained for lower dimensions (see, e.g., [12,14] and
[15, Appendix B]), these important objects remain elusive,
as the problem of their existence in arbitrary dimension is
still open. Recently, this question has been reformulated in
the language of various algebraic structures (Lie groups, Lie
algebras, and Jordan algebras) [16], but it has also a simple in-
terpretation in terms of metric spaces. Namely, the existence
of SIC-POVMs in dimension d is equivalent to the fact that the
equilateral dimension (i.e., the maximum number of equidis-
tant points) [17,18] of the d-dimensional complex projective
space endowed with the Fubini-Study metric equals d2.

The eight-dimensional Hoggar lines [19] provide one of
the first examples of SIC-POVMs found in dimension larger
than two. It seems that this set exhibits a higher level of
symmetry than most known SIC-POVMs and, at the same
time, its symmetry has a slightly different character than in the
case of all other known SIC-POVMs. This—using Blakean
language—“fearful symmetry” of Hoggar lines makes it an
especially interesting object of study.

The informational power of a quantum measurement, that
is, the maximum amount of classical information that it can
extract from any ensemble of quantum states [20], being
equal to the classical capacity of a quantum-classical channel
generated by this measurement, has received much attention
in recent years [10,21–27]. However, this quantity is in
general not easy to compute analytically, especially in higher
dimensions. In this paper we show that the informational power
of the Hoggar SIC-POVM is equal to 2 ln(4/3). To this aim
we use the construction of Hoggar lines newly discovered
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by Jedwab and Wiebe [28]. As a corollary we get that the
bound for the informational power of 2-designs (including
SIC-POVMs) obtained recently by Dall’Arno [26] is saturated
in dimension eight. Moreover, we show that a maximally
informative ensemble for a Hoggar SIC-POVM forms another
“twin” Hoggar SIC-POVM that is the image of the original one
under a (complex) conjugation, i.e., an antiunitary involutive
map, and sharing the same symmetries as the original one.

II. SIC-POVMs

With any finite-dimensional quantum system one can
associate a complex Hilbert space Cd . Then the pure states
P(Cd ) of the system are described by one-dimensional
orthogonal projections, i.e., P(Cd ) := {ρ ∈ L(Cd )|ρ � 0,

ρ2 = ρ, tr(ρ) = 1}, and the mixed states S(Cd ) are convex
combinations of pure states, that is, density operators on Cd .

A general quantum measurement is described by a positive
operator valued measure (POVM). In this paper we consider
the discrete version of it; i.e., by POVM we mean a set � :=
{�j }kj=1 of nonzero positive semidefinite operators on Cd

satisfying the identity decomposition
∑k

j=1 �j = Id . In this
framework the probability of obtaining the j th (j = 1, . . . ,k)
outcome, given that the initial (premeasurement) state of the
system was ρ ∈ S(Cd ), is equal to pj (ρ,�) := tr(ρ�j ).

Among quantum measurements we can distinguish
symmetric informationally complete (SIC) POVMs, i.e.,
POVMs consisting of d2 subnormalized rank-one projec-
tors �j := |φj 〉〈φj |/d (j = 1, . . . ,k) with equal pairwise
Hilbert-Schmidt inner products: tr(�i�j ) = |〈φi |φj 〉|2/d2 =
1/[d2(d + 1)] for i �= j, i,j = 1, . . . ,k, where φj are elements
of the unit sphere in Cd determined up to a phase factor. Note
that this condition implies that SIC-POVMs are indeed infor-
mationally complete (IC); i.e., the statistics of measurement
uniquely determine the initial state [29]. Since any IC-POVM
must contain at least d2 elements, SIC-POVMs are special
examples of minimal IC-POVMs. If the premeasurement pure
state is given by |ψ〉〈ψ |, where ψ is an element of the unit
sphere in Cd , then pj (|ψ〉〈ψ |,�) = |〈ψ |φj 〉|2/d.

Furthermore, let us recall that a complex projective t-design
(t ∈ N) is a set {ρj }kj=1 of pure states such that

1

k2

k∑
j,m=1

f (tr(ρjρm)) =
∫∫

P(Cd )×P(Cd )

f (tr(ρσ )) dμ(ρ) dμ(σ )
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for every real-valued polynomial f of degree t or less, where
μ stands for the unique unitarily invariant (Fubini-Study)
probabilistic measure on P(Cd ) [6]. The SIC-POVMs can
be equivalently described as complex projective 2-designs
(called also spherical quantum 2-designs) with d2 elements;
see, e.g., [29].

III. INFORMATIONAL POWER

The indeterminacy of quantum measurement � :=
{�j }kj=1 can be quantized by a number that characterizes
the randomness of the distribution of measurements outcomes
(pj (ρ,�))kj=1 depending on the premeasurement state of the
system, ρ ∈ S(Cd ). The most natural choice for such a tool is
the Shannon entropy. Thus, by the entropy of the measurement
� we mean a function H (·,�) : S(Cd ) → R defined by

H (ρ,�) :=
k∑

j=1

η(pj (ρ,�)),

where the Shannon entropy function η : [0,1] → R is given
by η(t) := −t ln t for t > 0 and η(0) := 0; see [27] for the
history and interpretation of this notion. It follows from the
concavity of H that this function attains minima in the set of
pure states; finding the minimizers, however, is not a trivial
task in general, even for SIC-POVMs, where only the results
for dimensions two [10,27] and three [25] are known. In
fact, the latter result was proven under the assumption that
a SIC-POVM is covariant, but it follows from [18] that all
SIC-POVMs in dimension three share this property. On the
other hand, for an arbitrary SIC-POVM, the maximum value
of H for pure premeasurement states is equal to [(d − 1)/d]
ln(d + 1) [30].

Let us now consider an ensemble E = (τi,pi)mi=1, where
pi � 0 are a priori probabilities of density matrices τi ∈
S(Cd ), for i = 1, . . . ,m, and

∑m
i=1 pi = 1. The mutual in-

formation between E and � is given by

I (E,�) :=
m∑

i=1

η

⎛
⎝ k∑

j=1

Pij

⎞
⎠ +

k∑
j=1

η

(
m∑

i=1

Pij

)

−
m∑

i=1

k∑
j=1

η(Pij ),

where Pij := pi tr(τi�j ) for i = 1, . . . ,m and j = 1, . . . ,k.
This quantity can be considered as a measure of how much
information can be extracted from ensembleE by measurement
�. Thus the following two questions arise: what is the maxi-
mum amount of information one can get from the given ensem-
ble (i.e., max� I (E,�), studied, e.g., in [31–33]) and what is
the capability of extracting information by given measurement
(i.e., maxE I (E,�), examined in [10,20,21,23,27])? The latter
quantity, denoted by W (�), is called the informational power
of �.

Both the minimum entropy and the informational
power of � can also be interpreted in terms of the
quantum-classical channel 	 : S(Cd ) → S(Ck) generated
by � and given by 	(ρ) := ∑k

j=1 tr(ρ�j )|ej 〉〈ej | for
some orthonormal basis (|ej 〉)kj=1 in Ck . The former

quantity is equal to the minimum output entropy of 	,
minρ S(	(ρ)), where S is the von Neumann entropy defined
by S(τ ) := − tr(τ ln τ ) for τ ∈ S(Cd ) [34]. The latter one is
just the classical capacity χ (	) of the channel 	, given by
χ (	) := maxE=(τi ,pi )mi=1

{S(
∑m

i=1 pi	(τi))−
∑m

i=1 piS(	(τi))}
[10,22].

The minimal entropy of � and its informational power are
related by

W (�) � ln k − min
ρ∈S(Cd )

H (ρ,�) (1)

and the equality holds if and only if there exists an en-
semble E = (pi,τi)mi=1 such that the states τi (i = 1, . . . ,m)
are minimizers of H (·,�) and tr[(

∑m
i=1 piτi)�j ] = 1/k for

j = 1, . . . ,k (Proposition 6 of [27]). This condition is in
particular fulfilled if we assume that � is covariant with
respect to an irreducible representation, a fact already observed
by Holevo [35]. To see this, it is enough to consider
the ensemble consisting of equiprobable elements of the
orbit of any minimizer of H under the action of this
representation.

So far the informational power has been computed analyt-
ically in few cases only: for all highly symmetric POVMs in
dimension two, namely seven sporadic measurements, includ-
ing the “tetrahedral” SIC-POVM, and one infinite series [27]
(though for some of them the result was known earlier;
see [10,21,36–38]), the SIC-POVMs in dimension three [25],
and the POVMs consisting of four mutually unbiased bases
(MUBs), again in dimension three [24]. The first two results
have been obtained with the method developed in [27] based
on the Hermite interpolation of the Shannon entropy function.
In this paper we enlarge this collection, computing the
informational power for the Hoggar SIC-POVM.

Let us recall that for SIC-POVMs in dimension d the
sum of squared probabilities of the measurement outcomes
(the so-called index of coincidence, known under various
names in the literature; see Sec. 8 of [39]) is the same for
each initial pure state and equal to r := 2/[d(d + 1)]. The
problem of finding the minimum of the Shannon entropy
under the assumption that the index of coincidence is equal
to r was analyzed by Harremoës and Topsøe (Theorem
2.5 in [40]; see [41] for further discussion). From their
result one can deduce that if 1/r ∈ N, then this minimum
is attained for the probability distribution (r, . . . ,r,0, . . . ,0)
with 1/r probabilities equal to r , and the rest equal to zero.
Hence, the minimum entropy of a SIC-POVM is bounded
from below by ln(d(d + 1)/2), and using inequality (1) with
k = d2, we get that its informational power is bounded from
above by ln(2d/(d + 1)) (see also Corollary 2 of [26]). The
achievability of this bound in dimension d is equivalent to the
existence of a vector (representing a pure state) orthogonal
to (d − 1)d/2 elements of a SIC-POVM, and making equal
angles with d(d + 1)/2 others, the problem already analyzed
in [3]. Consequently, this bound is achieved for SIC-POVMs
in dimensions two and three, but numerical results suggest that
this is not the case for known SIC-POVMs in dimensions four
and five [3,26]. We shall see that this bound is achieved again
in dimension eight for the Hoggar SIC-POVM.
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IV. HOGGAR LINES AND THEIR SYMMETRIES

The Hoggar (lines) SIC-POVM (HL) was constructed
with the help of computer by Hoggar in [19] as the
complexification of 64 lines through the origin in the four-
dimensional quaternionic space or, more precisely, as the set of
diameters of a quaternionic polytope with 128 vertices. In fact,
he had announced this result as early as in [42], and in [43] gave
a computer-independent proof that these lines are equiangular.
One year later, Zauner showed in his thesis [44] that this
SIC-POVM is covariant with respect to P3, the quotient of
the three-qubit Pauli group (called also the Galoisian variant
of the discrete Weyl-Heisenberg group in dimension eight)
by its center. This group can be obtained as the projective
unitary representation of Z3

2 ⊗ Z3
2 given by the operators

Zα1Xβ1 ⊗ Zα2Xβ2 ⊗ Zα3Xβ3 , α,β ∈ Z3
2, with X|ej 〉 := |ej⊕1〉

and Z|ej 〉 := (−1)j |ej 〉 for j = 0,1, where {e0,e1} is an
orthonormal basis in C2. Quite recently, Zhu (Sec. 12 in [12])
proved the long-expected result that the Hoggar lines are
not projectively equivalent to any SIC-POVM covariant with
respect to the group Z8 ⊗ Z8 isomorphic to the quotient of the
usual discrete Weyl-Heisenberg group in dimension eight by its
center. As the Hoggar SIC-POVM is currently the only known
such example in any dimension, this property makes this object
exceptional among SIC-POVMs [15]. In the present paper, by
a Hoggar SIC-POVM we mean any SIC-POVM projectively
equivalent to the original Hoggar construction.

In his thesis (Sec. 10.4 in [12]), Zhu analyzed the extended
symmetry group of the Hoggar lines, Sym (HL), i.e., the
subgroup of the projective unitary-antiunitary group PUA (C8)
leaving this set invariant, and showed that it has 774 144
elements. Zhu proved also that Sym (HL) is a subgroup of the
extended multiqubit Clifford collineation group EC(8) of the
three-qubit Pauli group, i.e., its normalizer within PUA (C8),
having 240 × 774 144 elements. Analogously, the unitary
symmetry group of the Hoggar lines SymU (HL) is a subgroup
of order 387 072 of the multiqubit Clifford collineation group
C(8) with 240 × 387 072 elements. Thus, the orbit of any state
from HL under the action of the (extended) Clifford group
is the union of 240 copies of HL. It was proved recently
in [45,46] that this set constitutes a 3-design in P(C8).

It is well known that C(8) is a (unique) nonsplit extension
of the symplectic group Sp(6,2) by P3 [47–50]. It means that
C(8) acts on P3 by conjugation as Sp(6,2), but Sp(6,2) is not
embeddable in C(8). In yet other words, though the elements
of C(8) can be labeled by the elements of the set P3 × Sp(6,2),
this group is not a semidirect product of P3 by Sp(6,2), and, in
particular, the product of two elements from C(8) labeled by
(0,M1) and (0,M2) for M1,M2 ∈ Sp(6,2) may have a nonzero
first coordinate (see Theorem 2 of [51]).

Let ψ be a fiducial vector for HL, i.e., one of the
vectors from P(C8) generating HL = (P3)ψ . Then, it is
easy to show that SymU (HL) = P3 � (SymU (HL))ψ , where
(SymU (HL))ψ is the stabilizer of ψ in SymU (HL). In con-
sequence, (SymU (HL))ψ 	 SymU (HL)/P3 is a subgroup of

C(8)/P3 	 Sp(6,2). Moreover, we know from Sec. 10.4 of [12]
that (SymU (HL))ψ has 6 048 elements. However, there is only
one (up to isomorphism) subgroup of Sp(6,2) of order 6 048,
namely the derived Chevalley group G′

2(2) [52]. Consequently,
(SymU (HL))ψ 	 G′

2(2), and so SymU (HL) 	 P3 � G′
2(2).

However, in spite of the fact that (SymU (HL))ψ � Z2 	
(Sym (HL))ψ and G′

2(2) � Z2 	 G2(2), where G2(2) is the
Chevalley group of order 12 096, it is not clear whether
(Sym (HL))ψ 	 G2(2).

It is natural to consider normalized rank-1 POVMs as
subsets of the complex projective space. It seems that the
Hoggar lines are exceptional also in this context. Clearly,
they form a symmetric set, as every SIC-POVM known so
far does, but in fact they exhibit a higher level of symmetry.
Together with the “tetrahedral” SIC-POVM in dimension two
and the Hesse SIC-POVM in dimension three, they are the
only SIC-POVMs that are supersymmetric, which means that
Sym (HL) acts doubly transitively on HL (see Theorem 1
in [53]). As a consequence, one can deduce (see Corollary 1
in [27]) that they form a highly symmetric subset of CP 7 in
the sense of [27], which was observed by Zhu [53].

There exist other constructions of HL that were proposed
by Grassl (Sec. 4.2.2 in [54]; the fact that his construction
does indeed lead to the set of Hoggar lines was later noticed
by Zhu [12]), Godsil and Roy [55], Jiangwei [8], and Jedwab
and Wiebe [28,56,57]. We use the last of these in the present
paper.

V. MAIN RESULTS

Let us recall that a complex Hadamard matrix H =
(hij )d−1

i,j=0 is a d × d matrix such that |hij |2 = 1 for i,j =
0, . . . ,d − 1, and

HH † = d Id .

In particular, if all its entries lie in {−1,1}, then H is called a
real Hadamard matrix. In this case

d−1∑
l=0

h2
j l = d, for j = 0, . . . ,d − 1, (2)

and

d−1∑
l=0

hjlhml = 0, for j,m = 0, . . . ,d − 1, j �= m. (3)

Two Hadamard matrices H and H ′ are called equivalent if
there exist permutation matrices P , P ′ and diagonal unitary
matrices D, D′ such that H ′ = DPHP ′D′.

Jedwab and Wiebe [28,56,57] recently proposed a simple
method of constructing SIC-POVMs in certain dimensions,
which employs complex Hadamard matrices. We recall it
briefly below.

Let H be a complex Hadamard d × d matrix and let v ∈ C.
Consider the set H (v) := {Hjk(v)}d−1

j,k=0 of d2 vectors in Cd

such that Hjk(v) is the j th row of H with the kth coordinate
multiplied by v. Denoting the canonical orthonormal basis in
Cd by (el)

d−1
l=0 we can write Hjk(v) as Hjk(v) = ∑d−1

l=0 hjlel +
(v − 1)hjkek . Jedwab and Wiebe proved in Theorem 1 of [28]
that H (v) generates a set of d2 equiangular lines in Cd if and
only if

(i) d = 2 and v ∈ {±(1 ± √
3)(1 ± i)/2}, or

(ii) d = 3 and v ∈ {0, − 2,1 ± √
3i}, or

(iii) d = 8, H is equivalent to a (unique up to equivalence)
real Hadamard matrix and v ∈ {−1 ± 2i}.
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Moreover, for d = 8 the obtained sets of equiangular lines
are the Hoggar lines. On the other hand, for d = 2 every
complex Hadamard matrix is necessarily equivalent to a real
Hadamard matrix, and all the SIC-POVMs are isomorphic to
the “tetrahedral” one.

From now on, we denote the SIC-POVM corresponding to
H (v) by the same letter if no confusion arises. Now we can
formulate the main results of the present paper:

Theorem 1. Let a complex Hadamard matrix H in dimen-
sion d ∈ {2,8} and v ∈ C be such that H (v) := {Hjk(v)}d−1

j,k=0
forms a set of equiangular vectors. Then the entropy of H (v) is
minimized by d2 states in H (v̄). Moreover, the minimal value
of entropy is ln(d(d + 1)/2).

Proof. Set m,n = 0, . . . ,d − 1. First, we show that the
sequence Tmn := (|Hjk(v) · Hmn(v̄)|2)d−1

j,k=0 consists of only
two elements, one of which is zero. We know that there exist a
real Hadamard matrix H ′ and diagonal unitary matrices D =
diag(c1, . . . ,cd ) and D′ = diag(c′

1, . . . ,c
′
d ) such that H =

DH ′D′. Clearly, (e′
l)

d−1
l=0 , where e′

l := c′
lel (l = 0, . . . ,d − 1)

is also an orthonormal basis of Cd . Then

Hjk(v) = cj

(
d−1∑
l=0

h′
j le

′
l + (v − 1)h′

jke
′
k

)

for j,k = 0, . . . ,d − 1, and so

|Hjk(v) · Hmn(v̄)| = |H ′
jk(v) · H ′

mn(v̄)|
for j,k,m,n = 0, . . . ,d − 1. This identity reduces calculations
to the real case, and so from now on we assume that H is a
real Hadamard matrix.

Now, using Eqs. (2) and (3), we get

|Hjk(v) · Hmn(v̄)|2

=
∣∣∣∣∣

d−1∑
l,r=0

hjlhmrel · er +
d−1∑
l=0

(v − 1)(hjlhmnel · en

+hjkhmlek · el) + (v − 1)2hjkhmnek · en

∣∣∣∣∣
2

= |dδjm + (v − 1)(hjnhmn + hjkhmk)

+ (v − 1)2hjkhmnδkn|2.
In particular, for j �= m and k �= n we have

|Hjk(v) · Hmn(v̄)|2 = |(v − 1)(hjnhmn + hjkhmk)|2. (4)

It follows from Eq. (3) and from the fact that the entries
of H are ±1 that for all m,n,j = 0, . . . ,d − 1 and j �= m

there exist exactly d/2 such k = 0, . . . ,d − 1 that the above
expression is equal to zero. Otherwise, it is |2v − 2|2.

For j �= m and k = n we get

|Hjk(v) · Hmk(v̄)|2 = |v2 − 1|2;

on the other hand, for j = m and k �= n we obtain

|Hjk(v) · Hjn(v̄)|2 = |d + 2v − 2|2,
and finally, for j = m and k = n we have

|Hjk(v) · Hjk(v̄)|2 = |d + v2 − 1|2.

Now, straightforward calculations show that for the values
of v obtained by Jedwab and Wiebe [28] all the d(d + 1)/2
nonzero members of the sequence Tmn are equal and depend
only on d and v. This, in turn, implies that Tmn attains value
zero with multiplicity (d − 1)d/2.

Let us now consider the premeasurement state generated
by Hmn(v̄) for m,n = 0, . . . ,d − 1, and the SIC-POVM H (v).
In this case, as has just been shown, the distribution of mea-
surement outcomes provides us with d(d + 1)/2 probabilities
equal to 2/[d(d + 1)] and (d − 1)d/2 equal to zero. According
to the result discussed in Sec. III, the state generated by Hmn(v̄)
must be a minimizer for the entropy of H (v) and the minimal
value is equal to ln(d(d + 1)/2). �

Theorem 2. Under the assumptions of Theorem 1, the
informational power of H (v) is equal to ln (2d/(d + 1)), and
the states generated by the vectors in H (v̄) constitute an
equiprobable maximally informative ensemble. In particular,
the informational power of Hoggar lines is 2 ln(4/3).

Proof. Since Sym(H (v)) acts irreducibly on P(Cd ), the
equality in Eq. (1) holds for � = H (v). Hence, applying
Eq. (1) and Theorem 1, we get

W (�) = ln(d2) − ln (d(d + 1)/2) = ln (2d/(d + 1)).

Then d2 equiprobable states corresponding to the vectors from
H (v̄) form a maximally informative ensemble. �

VI. MUCH ADO ABOUT ZEROS

In the above reasoning the zeros of the probability distribu-
tion of measurement outcomes play a key role. For the Hoggar
lines we already know that for the premeasurement state of the
system being the entropy minimizer, their number equals 28,
which is the maximum possible number of zero probabilities;
see [3]. Let us now have a closer look at the localization of
these 28 zeros for 64 minimizers described by Theorem 1.

From now on we label the elements of the Hoggar lines
SIC-POVM H (v) by the elements of � := Z3

2 ⊗ Z3
2, the

translation group of the six-dimensional affine space over
GF(2), isomorphic to P3 acting regularly on H (v). Moreover,
we assume for definiteness that H is the (real) Sylvester-
Hadamard matrix H3 considered, e.g., in [28], writing the
indices in the binary expansion as elements of Z3

2. In this
case we have hικ = (−1)ι1κ1+ι2κ2+ι3κ3 for ι,κ ∈ Z3

2. Moreover,
the standard representation of the three-qubit Pauli group,
constructed from the Pauli matrices σX and σZ , acts (up to
a phase) on vectors in H (v) and H (v̄) in the following way:(

σ
α1
Z σ

β1
X ⊗ σ

α2
Z σ

β2
X ⊗ σ

α3
Z σ

β3
X

)
Hικ (w) = Hι+α,κ+β (w)

for ι,κ,α,β ∈ Z3
2,w = v,v̄. Consider now the blocks

Bμν := {
(ι,κ) : Hικ (v) · Hμν(v̄) = 0,ι,κ ∈ Z3

2

}
,

of zeros of Tμν for μ,ν ∈ Z3
2, where Tμν is as in the proof

of Theorem 1. It follows from Eq. (4) that (ι,κ) ∈ Bμν if and
only if ι �= μ, κ �= ν, and hμνhιν + hμκhικ = 0, or equivalently
hμ+ι,ν+κ = −1, for ι,κ ∈ Z3

2. Hence B00 = {(ι,κ) : hικ =
−1,ι,κ ∈ Z3

2} and Bμν = B00 + (μ,ν) for μ,ν ∈ Z3
2. It is easy

to show that B8 := {Bμν}μ,ν∈Z3
2
⊂ � constitutes a symmetric

(Menon) (64,28,12)-design; see [58] for terminology from
design theory. Moreover, this design is the development of
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the respective difference set in �. More precisely, one can
show that B8 is the so-called symplectic design S −1(6)
analyzed by Kantor in [59]. He proved that Aut [S −1(6)],
the automorphism group of S −1(6), is a semidirect product
of � by the symplectic group Sp(6,2), i.e., the group of
linear transformations of the vector space Z6

2 	 � over GF (2)
preserving the natural symplectic form. More precisely, for all
(ι,κ) ∈ � and M ∈ Sp(6,2) the respective affine transforma-
tion sends Bμν onto BM(μ,ν)+(ι,κ) for all μ,ν ∈ Z3

2. Moreover,
Aut (S −1(6)) acts 2-transitively on blocks [59].

VII. TWIN SETS OF HOGGAR LINES

Now, let us have a closer look at the set H (v̄), all of whose
elements are minimizers for the entropy of H (v), and form
a maximally informative ensemble for this measurement. It
follows from Theorem 1 (this paper) and Theorem 1 in [28]
that H (v̄) is also the “tetrahedral” POVM for d = 2, and the set
of Hoggar lines for d = 8. The question arises of how these two
subsets of P(Cd ), H (v) and H (v̄), are related to one another.
Let C : Cd → Cd be a (complex) conjugation with respect to
the basis (e′

l)
d−1
l=0 from the proof of Theorem 1, i.e., an antiu-

nitary involutive map keeping the basis invariant [60], given
by C(

∑d−1
l=0 xle

′
l) := ∑d−1

l=0 x̄le
′
l for (xl)

d−1
l=0 ∈ Cd . Then H (v̄)

is the image of H (v) under the collineation generated by C;
more precisely, Hjk(v̄) = C(Hjk(v)) for j,k = 0, . . . ,d − 1.

To express the relationship between H (v) and H (v̄) more
geometrically, we can use the generalized Bloch representa-
tion. For d = 2, these SIC-POVMs are represented on the
Bloch sphere as two dual regular tetrahedra that together
form a stellated octahedron, also known as stella octangula.
For d = 8 we get in the generalized Bloch representation
two regular 63-dimensional simplices inscribed in the unit
sphere in a 63-dimensional real vector space, where one is the
image of the other under a reflection through a 35-dimensional
linear subspace. It is so, because in the generalized Bloch
representation of quantum states as elements of the unit sphere
of the real (d2 − 1)-dimensional vector space of traceless
Hermitian d × d matrices, a conjugation map acting on Cd

is transformed into a transpose operation (both defined in the
same basis); see, e.g., p. 4 of [61]. Under this operation only
traceless symmetric real matrices are invariant, and they form
a [(d + 2)(d − 1)/2]-dimensional vector subspace.

Moreover, it turns out that for d = 8 the sets H (v) and
H (v̄) correspond to “twin” sets of Hoggar lines considered in
Sec. 2.3 of [53]. Let ψ be a fiducial vector for some HL. Zhu
showed that there is an order-seven unitary U7 in (Sym (HL))ψ

with six one- and one two-dimensional eigenspaces, such that
the latter contains both ψ and its twin vector, ψ ′, which
also generates (another) set of Hoggar lines HL′, lying
on the same orbit under action of the Clifford group. To
be more specific, assume again that H = H3. Let us con-
sider a fiducial vector ψ := 1√

6
(−i,−1,0,0,−1 + i,0,1,1)T

and its twin ψ ′ := 1√
6
(1 + i,0,−1,1,−i,−1,0,0)T given by

Eqs. (14) and (3) in [53]. Then, all four sets of Hoggar lines,
H (v), H (v̄), and those generated by ψ and ψ ′, are covariant
with respect to the standard representation of the three-qubit
Pauli group. Let U denote a Clifford unitary for this group
given by (p. 28 of [28])

U := 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 i −1 0 0 1 i

0 0 −1 i 0 0 i 1
−1 i 0 0 −i −1 0 0
−i 1 0 0 1 i 0 0
0 0 −i 1 0 0 1 i

0 0 1 −i 0 0 i 1
1 −i 0 0 −i −1 0 0
i −1 0 0 1 i 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Now, observe that, up to a normalization factor, Uψ =
H(0,0,0)(0,1,1)(v) and Uψ ′ = H(1,0,1)(0,0,0)(v̄), and they are in-
deed fiducial vectors, respectively, for H (v) and H (v̄), lying
in the same two-dimensional eigenspace of an order-seven
unitary UU7U

†.
Finally, note that the symmetry groups of both Hoggar

SIC-POVMs, H (v) and H (v̄), are identical. It follows from
the fact that the symmetry groups of the “twin” sets of Hoggar
lines HL and HL′ described above are the same. Indeed, these
symmetry groups are generated by the same representation of
the three-qubit Pauli group and, respectively, the stabilizers
of ψ and ψ ′. Thus, it suffices to show that the stabilizer of
ψ ′ is contained in the symmetry group of HL. The stabilizer
has two generators: U7, which stabilizes both fiducials, and
U12, an order-12 unitary defined in Sec. 10.4 of [12]. By
straightforward calculation, we get that U12 permutes the
elements of HL and so belongs to its symmetry group. The
situation is similar for two dual “tetrahedral” POVMs in d = 2
sharing also the same symmetry group.
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[27] W. Słomczyński and A. Szymusiak, Quantum Inf. Process. 15,

565 (2016).
[28] J. Jedwab and A. Wiebe, in Algebraic Design Theory and

Hadamard Matrices, edited by C. Colbourn (Springer-Verlag,
New York, 2015), pp. 159–169.

[29] J. M. Renes, R. Blume-Kohout, A. J. Scott, and C. M. Caves,
J. Math. Phys. 45, 2171 (2004).

[30] A. Szymusiak (unpublished).
[31] A. S. Holevo, Probl. Inf. Transm. 9, 177 (1973).
[32] E. B. Davies, IEEE Trans. Inf. Theory 24, 596 (1978).

[33] M. Sasaki, S. M. Barnett, R. Jozsa, M. Osaki, and O. Hirota,
Phys. Rev. A 59, 3325 (1999).

[34] P. W. Shor, J. Math. Phys. 43, 4334 (2002).
[35] A. S. Holevo, Int. J. Quantum Inf. 3, 41 (2005).
[36] F. E. Schroeck, Jr., J. Math. Phys. 30, 2078 (1989).
[37] J. Sánchez-Ruiz, Phys. Lett. A 201, 125 (1995).
[38] G. C. Ghirardi, L. Marinatto, and R. Romano, Phys. Lett. A 317,

32 (2003).
[39] D. Ellerman, Int. J. Semant. Comput. 11, 121 (2013).
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