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Pinning of fermionic occupation numbers: Higher spatial dimensions and spin
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The role of the generalized Pauli constraints (GPCs) in higher spatial dimensions and by incorporating spin
degrees of freedom is systematically explored for a system of interacting fermions confined by a harmonic trap.
Physical relevance of the GPCs is confirmed by analytical means for the ground state in the regime of weak
couplings by finding its vector of natural occupation numbers close to the boundary of the allowed region. Such
quasipinning is found to become weaker in the intermediate- and strong-coupling regime. The study of crossovers
between different spatial dimensions by detuning the harmonic trap frequencies suggests that quasipinning is
essentially an effect for systems with reduced spatial dimensionality. In addition, we find that quasipinning
becomes stronger by increasing the degree of spin polarization. Consequently, the number of states available
around the Fermi level plays a key role for the occurrence of quasipinning. This suggests that quasipinning
emerges from the conflict between energy minimization and fermionic exchange symmetry.
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I. INTRODUCTION

Pauli’s exclusion principle (PEP) has been a strong guiding
tool for the understanding and description of numerous many-
fermion systems. It however does not entirely resemble the
exchange antisymmetry of the N -fermion wave function.
In a number of works [1–5] that property was found to
impose greater restrictions on the one-particle reduced density
operator (1-RDO): The vector �λ ≡ (λi)di=1 of its decreasingly
ordered eigenvalues λi , the so-called natural occupation
numbers (NONs), is confined to a polytope within the “Pauli
simplex” � defined by Pauli’s exclusion principle 1 � λ1 �
· · · � λd � 0 (see Fig. 1). The corresponding constraints take
the form of linear inequalities:

Dj (�λ) ≡ κ
(0)
j + �κj · �λ � 0 , j = 1,2, . . . ,rN,d , (1)

and are commonly referred to as generalized Pauli constraints
(GPCs).

Exploring the physical significance of the GPCs remains
to be a challenge that has recently seen a growing interest
among physicists and quantum chemists [6–22]. Especially
the phenomenon where the λ vector lies close to or on the
boundary [23] of the polytope, also known as quasipinning
[7,11,13] and pinning [6], respectively, has stimulated much
research since it implies a number of remarkable properties for
the corresponding N -fermion quantum system [24]. The most
striking implication is the resulting structural simplification
of the N -fermion quantum state. Therefore, studying and
understanding (quasi)pinning may provide further insights
into concepts such as entanglement [25–29] and correlations
[30–33] in few-fermion quantum systems as being recently
explored from a quite conceptual and often particularly
quantum information theoretical viewpoint.

This paper aims to explore in great detail the scope
of (quasi)pinning and to recognize and describe its origin.
In Ref. [21], tools and methods required for a sound and
conclusive (quasi)pinning analysis have been introduced and
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applied to the instructive model system of Harmonium in one
spatial dimension. In the present paper, we are going to extend
these investigations to systems of higher spatial dimensions
and to spinful particles. Furthermore, dimensional crossovers
will be studied by considering detunings of the external
trapping frequencies. Alongside the results in Ref. [21], this
will suggest that the structure of the active space around the
Fermi level plays a key role in the occurrence of quasipinning
and will particularly show that quasipinning is becoming
stronger by reducing the spatial dimensionality.

The paper is organized as follows: In Sec. II the model of
Harmonium in multiple spatial dimensions will be introduced
and its ground state will be determined. The definition, form,
and properties of the one-particle reduced density operator
and related NONs will be discussed in Sec. III. This is
followed by Sec. IV where quasipinning is explored for
a quasi-one-dimensional system. The extension to proper
two- and three-dimensional systems will be provided in
Sec. V by a thorough analysis. Results of (quasi)pinning
analyses of different dimensional crossovers will be shown
as well. In the sixth section, spin degrees of freedom will be
incorporated by considering non-fully-polarized fermions and
magnetic crossovers between different spin states. Section VII
summarizes and discusses our findings.

II. MODEL AND ITS GROUND STATE

In this section we generalize the model of Ref. [21] to
higher spatial dimensions. We discuss in detail the structure of
its ground state and define the relevant coupling parameters.

The system we are considering consists of N identical
(yet spinless) particles of mass m that are confined in an
n-dimensional (not necessarily isotropic) harmonic trapping
potential characterized by its trapping frequencies {ω(α)}nα=1.
In addition to the external potential, a harmonic particle-
particle interaction of strength K will be taken into account.
Consequently, the Hamiltonian reads

HN =
N∑

i=1

( �p 2
i

2m
+ m

2
�x t
i ��xi

)
+ K

2

∑
1�i<j�N

(�xi − �xj )2, (2)
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FIG. 1. Illustration of the mapping of N -fermion quantum states
(left) onto their vectors �λ (right) of decreasingly ordered natural
occupation numbers, giving rise to a polytope P (dark grey). P is
a proper subset of the Pauli simplex � (grey) defined by 1 � λ1 �
· · · � λd � 0.

where �pi = (p(α)
i )nα=1 and �xi = (x(α)

i )nα=1 represent the mo-
mentum and position operators of the ith particle, respectively,
and � ≡ diag(ω2

1, . . . ,ω
2
n). In the present paper, the N-fermion

system associated with this Hamiltonian is referred to as
Harmonium.

The Harmonium model arises as an effective model in
the harmonic approximation applied to systems of harmon-
ically confined interacting particles [34]. For instance, this
approximation works fairly well in the description of quantum
dots since the Coulomb interaction between the electrons is
screened (see Ref. [35]). Furthermore, Harmonium was used
to explore the emergence of shell structures in atoms (see,
e.g., Ref. [36]) and nuclei (see, e.g., Ref. [37]). Also for
ultracold gases in a trap it plays a role since there the two-body
interactions can be tuned [38–40]. In particular, it is possible
to change the interactions from repulsive to attractive [41].

Harmonium encompasses an important advantage. In order
to analytically investigate the occurrence of quasipinning, a
system must permit the analytical execution of all of the
following steps:

(i) computation of the many-body eigenstates in a system
of interacting fermions (see, e.g., Refs. [7,42–44]);

(ii) tracing out N − 1 particles [i.e., calculating analytically
(N − 1)n integrals];

(iii) diagonalizing the 1-RDO, either analytically in the
regime of weak couplings or exact numerically for medium
and strong couplings.

While all three steps are possible for Harmonium, none of
them is feasible for most continuous physical models.

A priori, the Hamiltonian (2) acts as an operator on the N -
particle Hilbert space H(N) =⊗N

i=1 H, where the one-particle
Hilbert space H is given by H = L2(Rn). When incorporating
spin degrees of freedom in Sec. VI, this will be modified to
H = L2(Rn) ⊗ C2. Any permutation of particles leaves HN

invariant. In particular, this allows us to treat the N particles as
indistinguishable fermions and thus restrict the Hamiltonian
(2) to the subspace

H(f )
N ≡ ∧N [H] = ANHN � HN ≡ H⊗N

(3)

of antisymmetric states. Here, AN represents the antisym-
metrizing operator. In order to derive the set of fermionic
eigenstates of the Hamiltonian (2) we therefore initially may
derive the set of all N -particle eigenstates followed by a
projection onto ANHN .

In the following we present and describe the fermionic
ground state and provide a concise derivation in Appendix A.
It turns out to be instructive to first discuss the case of zero
interaction, K = 0. Clearly, in that case the corresponding
time-independent Schödinger equation for the Hamiltonian (2)
effectively simplifies to a one-fermion eigenvalue problem,

( �p 2

2m
+ 1

2
m�xt��x

)
χ = ε χ . (4)

The solutions of Eq. (4) are given by the n-dimensional

Hermite functions denoted by φ
(l)
μ (�x) ≡∏n

α=1 ϕ
(l(α))
μ(α) (x(α)) with

corresponding energy εμ =∑n
α=1(μ(α) + 1

2 )�ω(α). Here, ϕ(l(α))
m

denotes the mth Hermite function in one dimension with
natural length scale l(α) ≡

√
�

mω(α) , μ ≡ (μ(α))nα=1, and l ≡
(l(α))nα=1. The fermionic eigenstates of the Hamiltonian (2)
for zero interaction are then given by the “configuration
states,” i.e., by Slater determinants obtained by distributing
the N particles in N different states φ

(l)
μ . In particular, the

corresponding ground state is then given by filling the N one-
particle states with lowest one-particle energies εμ according
to Pauli’s exclusion principle.

In general, for interacting fermions one cannot expect
that the structure of the energy eigenstates can be elegantly
described by exploiting the elementary and convenient one-
fermion picture. Yet, a bit surprisingly, this is still possible at
least for the ground state of Harmonium [45]:

Theorem II.1. The N -fermion ground state �(f ) of the
Harmonium model (2) is given by

�(f )(�x1, . . . ,�xN )

= N

∣∣∣∣∣∣∣∣
φ

(l̃)
μ1

(�x1) · · · φ
(l̃)
μ1

(�xN )
...

...

φ
(l̃)
μN

(�x1) · · · φ
(l̃)
μN

(�xN )

∣∣∣∣∣∣∣∣× e
�Xt B �X , (5)

with �X ≡ 1
N

(�x1 + · · · �xN ) the center-of-mass vector, B ≡
diag(B(1), . . . ,B(n)), B(α)≡N

2 ( 1
(l̃(α))2 − 1

(l(α))2 ), ω̃(α) ≡√
(ω(α))2 + NK

m
, l̃(α) ≡

√
�

mω̃(α) , and N is a normalization
constant. The quantum number vectors μ1, . . . ,μN in (5) are
chosen such that the energy function

Eμ1,...,μN
≡

N∑
i=1

ε̃μi
(6)

is minimal, yet respecting Pauli’s exclusion principle [46] (i.e.,
all μi are different) and ε̃μi

≡∑n
α=1(μ(α) + 1

2 ) �ω̃(α).
Since the proof of Theorem II.1 is less trivial we present it

in Appendix A. As a caveat, we would like to stress that the
excited states are not given by filling “boxes” of higher energy
and then multiplying the corresponding Slater determinant by
the exponential factor as in Eq. (5). Indeed, their structure is
more complicated and the single Slater determinant in Eq. (5)
would need to be replaced by a linear combination of several
Slater determinants, expressing the additional correlations in
the system.
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FIG. 2. Graphical illustration of the fermionic ground state |� (f )〉
for the exemplary case of n = 2 spatial dimension and N = 5
fermions. In general, |� (f )〉 is given by a single Slater determinant,
obtained by filling the N boxes with lowest energy respecting
Pauli’s exclusion principle (left), multiplied by a correlation term
e

�Xt B �X (right) for the center of mass �X ≡ 1
N

( �x1 + · · · �xN ). Each box,
labeled by �μ = (μ1, . . . ,μn) describes a one-particle orbital given
by a harmonic oscillator state in n dimensions with corresponding
frequencies ω̃(α), α = 1, . . . ,n.

The ground state as stated in Theorem II.1 is graphically
illustrated in Fig. 2. It is given by a Slater determinant,
obtained by successively distributing fermions in the boxes

(energy levels) φ
(l̃)
μ with lowest energy ε̃μ, respecting Pauli’s

exclusion principle, multiplied by the term e
�Xt B �X. This

latter term contains the physical correlations, in contrast
to the Slater determinant which contains only exchange
correlations. For the example in Fig. 2 of N = 5 and n =
2 the occupied boxes are given by the configuration C =
{{0,0},{1,0},{0,1},{2,0},{1,1}}.

Consequently, the ground state for finite interaction has
some similarity to the ground state for zero interaction. They
differ by the correlation term e

�Xt B �X and a change of the natural

length scales l̃(α) of the Hermite functions 
(l̃)
μ . Furthermore, if

the coupling constant K (or some ω(α)) changes, the structure
of the ground state can change at some “critical” values:
For this, notice that the energy ratios ε̃μ/ε̃μ′ , i.e., the ratios
of the distances between the boxes in different directions
α = 1, . . . ,n in Fig. 2, depend on the coupling strength. By
changing these ratios, the N th lowest and (N + 1)th lowest
energies ε̃μ may cross and the N fermions change their
configuration {μ1, . . . ,μN } to minimize the total energy (6).
Such crossings particularly occur when one of the harmonic
trap frequencies ω(α) is increased to very large values implying
that all degrees of freedom in the corresponding α dimension
are frozen. For instance, in the example presented in Fig. 2
increasing ω(2) will initially change the ground-state configu-
ration to {{0,0},{1,0},{2,0},{0,1},{3,0}} and eventually to the
quasi-one-dimensional case {{0,0},{1,0},{2,0},{3,0},{4,0}}.

As it was illustrated in Ref. [21] it is instructive to compare
the fermionic ground state �(f ) to the bosonic ground state
�(b) of the Hamiltonian (2). The bosonic ground state can
be described by the “box picture” as well: �(b) is given by
distributing all N bosons in the lowest energy “box” [defined
by μ ≡ (0, . . . ,0) ≡ 0] and multiplying the corresponding
product state by the same exponential e

�Xt B �X as for fermions

[cf. Eq. (5)]. Consequently, we get (see also Appendix A)

�(b)(�x1, . . . ,�xN ) ∼
(

N∏
i=1

φ
(l̃)
0 (�xi)

)
× e

�Xt B �X

∼
(

N∏
i=1

e−�xi A �xi

)
× e

�Xt B �X, (7)

where A ≡ diag(A(1), . . . ,A(n)) and A(α) ≡ 1
2(l̃(α))2 .

It is also worth discussing the symmetries of the N -
Harmonium ground state (5). For all parameters K , {ω(α)}nα=1
the Hamiltonian (2) is invariant under simultaneous spatial
reflections P (α) : x

(α)
i → −x

(α)
i , i = 1, . . . ,N , of the α coor-

dinate of various fermions, i.e.,

[Ĥ ,U (P (α))⊗
N

] = 0, (8)

where U is its unitary representation on the one-particle
Hilbert space H. Consequently, in particular the ground state
(5) inherits the corresponding symmetry, U (P (α))⊗

N

�(f ) =
±�(f ).

Furthermore, if two trap frequencies are equal, ω(α) = ω(α′)

the Hamiltonian is in addition also invariant under simulta-
neous spatial rotation R(α,α′) : (x(α)

i ,x
(α′)
i )t → R (x(α)

i ,x
(α′)
i )t ,

R ∈ SO(2), of the α and α′ coordinates of all N fermions.
This extends in an elementary way to the case of more than
two identical trap frequencies. For the case of isotropic traps,
shell structures similar to those in atoms emerge [36].

III. ONE-PARTICLE REDUCED DENSITY OPERATOR
AND NATURAL OCCUPATION NUMBERS

In this section, we discuss symmetries of 1-RDOs in
general and present specific properties of the 1-RDO of the
N -Harmonium ground state in particular.

A. General considerations

For pure N -fermion quantum states |�(f )〉 the 1-RDO is
defined by

ρ(f ) = N trN−1[|�(f )〉〈�(f )|] (9)

and is consequently normalized to the particle number N , i.e.,
tr[ρ(f )] = N . Due to the fermionic exchange symmetry the
choice of the N − 1 fermions to be traced out does not matter.

It is worth noting that 1-RDOs inherit one-particle symme-
tries of the corresponding N -fermion state [47]. To explain
this, consider a one-particle symmetry of the N -fermion
quantum state |�(f )〉 generated by the unitary operator G =
g⊗N

with g acting on the one-particle Hilbert space H,

G|�(f )〉 = eiζ |�(f )〉, (10)

with ζ ∈ R. Then, due to elementary properties of partial
traces, the 1-RDO ρ(f ) of |�(f )〉 inherits this symmetry and it
follows

[g,ρ(f )] = 0. (11)

Equation (11) particularly implies that the 1-RDO expressed
as a matrix with respect to the g-symmetry-adapted states
(eigenstates of g) is block diagonal. For instance, for transla-
tionally invariant N -electron states for one-band lattice models
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this implies that the natural orbitals, the eigenstates of ρ(f ), are
given by the Bloch states multiplied by a spin state. In that case,
the NONs gain a lot of physical significance [18] since they are
not just the eigenvalues of the 1-RDO but the occupancies with
respect to physically distinguished one-particle states (Bloch
states).

B. One-particle reduced density operator for the
Harmonium ground state

Applying the considerations of Sec. III A to the parity
symmetries of N -Harmonium we can conclude that the 1-
RDOs of various eigenstates are block diagonal with respect
to each parity symmetry U (P (α)), α = 1,2, . . . ,n. For instance,
for the 1-RDO ρ(f ) of the N -Harmonium ground state |�(f )〉
in two spatial dimensions we find

ρ(f ) = ρ(f )
ee ⊕ ρ(f )

eo ⊕ ρ(f )
oe ⊕ ρ(f )

oo , (12)

where the indices e and o denote underlying even and odd
parities for the respective dimensions α = 1,2. Decomposition
structures such as (12) will help us to significantly simplify the
calculation of the eigenvalues of the 1-RDO ρ(f ).

Similar to the computations in Ref. [21] for the ground
state of Harmonium in one spatial dimension we determine
the 1-RDO of the ground state in higher spatial dimensions by
using the Hubbard-Stratonovitch relation (see Appendix B for
more details). Again, it is instructive to relate the fermionic
1-RDO ρ(f ) to the 1-RDO ρ(b) of the bosonic ground state (7).
By comparing Eqs. (5) and (7) one immediately finds

ρ(f )(�x,�y) = F (�x,�y) · ρ(b)(�x,�y), (13)

where F (�x,�y) is a multivariate polynomial and ρ(b)(�x,�y) is a
Gaussian.

Since ρ(b) is a Gaussian state it can be analytically
diagonalized (see for instance Ref. [43]). In contrast to ρ(b),
this is not possible for the fermionic 1-RDO ρ(f ). Yet, similar to
Ref. [21], we can diagonalize ρ(f ) by numerical means for fixed
couplings. We introduce dimensionless coupling strengths for
the spatial dimensions α = 1,2, . . . ,n,

κ (α) ≡ NK

m(ω(α))2
=
(

l(α)

l̃(α)

)4

− 1. (14)

Recall that the structure of the Hamiltonian (2) implies that
the NONs of any of its eigenstates do not depend on m(ω(α))2

and K separately, but just on their ratios.
In addition, we use again as in Refs. [7,21] a perturbational

approach for the regime of weak couplings. This perturbation
theoretical approach can be simplified by exploiting a duality
of NONs proven in Ref. [48]: By employing the alternative
coupling parameters

δ(α) := ln

(
l(α)

l̃(α)

)
= 1

4
ln(1 + κ (α))

= 1

4
κ (α) + O((κ (α))2), (15)

with α = 1,2, . . . ,n, this duality reads

�λ(. . . ,δ(α), . . .) = �λ(. . . , − δ(α), . . .), (16)

for each α = 1,2, . . . ,n. As a consequence, the series expan-
sions of various NONs simplifies since it contains even orders
of each δ(α), only.

We conclude this section by briefly recalling that the
exponential factor ρ(b) in the expression (13) implies an
exponential decaying behavior of the NONs (for more details
we refer the reader to Sec. IV B in Ref. [21]). This allows
us to simplify the investigations of possible (quasi)pinning by
exploiting the concept of truncation described in Ref. [21]:
The infinite spectrum of NONs can be truncated by skipping
various NONs which are very close to 1 or 0, respectively,
and the (quasi)pinning analysis can be performed within the
remaining smaller setting. Any result on possible quasipinning
found in the truncated setting translates to quasipinning of the
same strength in the infinite setting up to a small truncation
error (for more details see Ref. [21]).

In the following sections we explore the occurrence of
(quasi)pinning in great detail for various spatial dimensions,
different particle numbers, and last but not least by incorpo-
rating spin degrees of freedom.

IV. QUASI-ONE-DIMENSIONAL HARMONIUM

Before investigating truly higher-dimensional systems in
later sections, we are going to explore the quasipinning be-
havior in quasi-one-dimensional systems. This will especially
allow us to link outcomes of subsequent analyses to the results
from Refs. [7,21] for the strictly one-dimensional Harmonium.
By quasi-one-dimensional systems we mean systems in which
all but one trapping frequencies have been highly detuned. In
addition, we assume those detuned frequencies ω(2), . . . ,ω(n)

to be identical yielding a hypercylindric trapping potential. In
graphical representations of the Harmonium ground state as
shown in Fig. 2 this relates to a situation in which the interbox
spacings �ω̃(α) have severely been increased in all but one
dimension, ω̃(α)/ω̃(1)  1 for α = 2, . . . ,N . Consequently,
only energy levels along the one-axis will be occupied. This
resembles the physical situation in which harmonic oscillators
in the directions α � 2 carry no excitations.

Generally, the notion of effective lower dimensionality
can be captured more formally as follows. If a configuration
has quantum number vectors {μi}Ni=1 with μ

(α)
i = 0 for all

α > n′ and i = 1 . . . N , the fermionic ground-state function
decomposes into a product of the fermionic ground-state
function in the first n′ dimensions and the bosonic ground-state
function in the remaining (n′ − n) dimensions,

�(f )
n = �

(f )
n′ ⊗ �

(b)
n−n′ . (17)

Such effective lower dimensionality has structural implications
on the fermionic 1-RDO as well: The polynomial F in Eq. (13)
will not depend on x

(β)
i ,y

(β)
i with i = 1 . . . N and β > n′.

Hence, the 1-RDO becomes a product of a fermionic 1-RDO
in the first n′ dimensions and the bosonic 1-RDO in remaining
n − n′ dimensions,

ρ(f )
n = 1

N
ρ

(f )
n′ ⊗ ρ

(b)
n−n′ . (18)

The factor N originates from the specific normalization of
1-RDOs, tr[ρ] = N .
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As a consequence of Eq. (18), the spectrum of ρ
(f )
n becomes

the product of the spectrum of the lower-dimensional fermionic
1-RDO and the spectrum of the bosonic 1-RDO,

�λ(f )
n = 1

N

(�λ(f )
n′ × �λ(b)

n−n′
)↓

, (19)

where “↓” denotes decreasing ordering.
These considerations can now be applied to quasi-one-

dimensional Harmonium which is achieved for sufficiently
large trapping frequency detunings, namely ω̃(α) > (N −
1) ω̃(1) for α � 2. The corresponding vector of ground state
NONs is then given by the product of the spectrum �λ(f )

1 of the
one-dimensional fermionic 1-RDO and (n − 1) spectra �λ(b)

1
of the (n − 1) decoupled one-dimensional bosonic 1-RDOs.
According to Ref. [21], the spectrum of the one-dimensional
bosonic 1-RDO with coupling κ is given by the NONs

λ
(b)
k (κ) = N (1 − q(κ)) q(κ)k, k ∈ N+

0 , (20)

where

q(κ) = 1 − 2N

N +
√

N2 − (N − 1)[2 − (1 +κ)2 − 1/(1 + κ)2]
.

(21)

The corresponding coupling strengths κ (2) = · · · = κ (n) ≡ κ

for those bosonic spectra can be expressed as a function of
δ ≡ δ(1) and the trapping frequency ratios χ ≡ ω(α)/ω(1), α �
2. It is also worth noticing that with increasing detunings χ ,
the bosonic spectra approach more and more (N,0,0, . . .).

We apply these general ideas to the exemplary case N = 3
and n = 2. The spectrum �λ(f )

1 was determined in Ref. [7] and
is also listed in Appendix C. Then, we determine the NONs of
the corresponding three-Harmonium ground state via Eq. (19).
The corresponding quasipinning analysis is slightly involved.
The main reason for this is that by varying the parameters δ

and χ the hierarchy of NONs in Eq. (19) does change, which
changes the quasipinning behavior as well [18]. Even within
regimes of noncrossing NONs, providing a closed analytical
expression for the minimal distance Dmin of �λ to the polytope
boundary is often not possible since the GPC which is most
saturated may change while changing δ and χ .

This then requires us to split the parameter space into
separate regimes where the most relevant NONs do not cross.
We consider in the following only the regime which includes
particularly the limit χ → ∞. This regime turns out to be
defined by

χ > χcrit(δ) ≡ 4

√
243

40

1

δ3/2
, (22)

where δ � 1. A thorough and quite lengthy quasipinning
analysis is performed by exploiting the concept of truncation
(cf. Ref. [21]). Conclusive results on the occurrence of
quasipinning can be found in the truncated setting ∧3[H(10)

1 ]
and the minimal distance to the polytope boundary follows as

Dmin(δ,χ ) = 4

9χ4
δ2 + 20

2187
δ8 + O(δ10). (23)

Note that due to the condition (22) we have δ8 � δ2/χ4. The
truncation error, given by

∑∞
k=11 λk(δ,χ ), is of the order O(δ10)

which is negligible indeed.

Furthermore, taking the limit χ → ∞ as a consistency
check reveals that

lim
χ→∞ Dmin(δ,χ ) = 20

2187δ8 + O(δ10), (24)

which coincides with the quasipinning found for the strictly
one-dimensional three-Harmonium [see Eq. (16) in Ref. [7]].

The result (23) indicates that the strength of quasipinning
in one-dimensional systems is only slightly reducing when
adding a second spatial dimension. This is not surprising since
in general adding additional spatial dimensions, whose degrees
of freedom, however, are frozen, should not change physical
quantities.

V. FULLY SPIN-POLARIZED HARMONIUM IN HIGHER
SPATIAL DIMENSIONS

After having presented an analysis on quasipinning of the
Harmonium in quasi-one-dimensional setups in the previous
section, we are now going to consider the extension to higher
dimensions. Still, we assume a complete alignment of all spins,
i.e., freezing out the spin degree of freedom.

A. Two spatial dimensions and corresponding
dimensional crossovers

Let us start by considering the weak-coupling regime. In
addition we restrict this analysis to the case of an isotropic
external trap, i.e., ω(2) = ω(1). According to the definitions
(14) and (15), we have κ ≡ κ (1) = κ (2) and δ ≡ δ(1) = δ(2),
respectively. Due to the simplifications following from the
duality of NONs (16) we determine Taylor series of various
NONs in the mathematically more convenient parameter δ.
First, we discuss in more detail the case of three fermions. The
corresponding unique ground state is given by Theorem II.1
and its configuration follows as C = {{0,0},{1,0},{0,1}}. The
perturbational expansion of its NONs leads to the following
results up to corrections of the order O(δ(8)):

λ1(δ) = 1 − 32δ4

81
+ 224δ6

729
+ O(δ8),

λ2(δ) = λ3(δ) = 1 − 4δ2

9
+ 4δ4

27
− 152δ6

3645
+ O(δ8),

λ4(δ) = λ5(δ) = 4δ2

9
− 8δ4

27
+ 16δ6

135
+ O(δ8),

λ6(δ) = λ7(δ) = 4δ4

27
− 88δ6

729
+ O(δ8), (25)

λ8(δ) = λ9(δ) = 4δ4

27
− 40δ6

243
+ O(δ8),

λ10(δ) = 8δ4

81
− 16δ6

243
+ O(δ8),

λi�11(δ) = O(δ6).

Note that some NONs are degenerate in pairs. This is a direct
consequence of the substructure of the 1-RDO as given by
Eq. (12) since spec[ρ(f )

1,oe] = spec[ρ(f )
1,eo] in the case of an

isotropic trap. It should be also stressed that the extension
of the perturbation series to deformed anisotropic traps is a bit
more tedious but can be carried out in a similar fashion.
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TABLE I. For the N -Harmonium ground states in n = 2 spatial
dimensions we present the ‘active space structures’ by considering
NONs with corrections to the values 1 or 0 up to the orders δ2,
δ4, and δ6, respectively. The results on quasipinning are presented
(Dmin) as well as its ‘nontriviality,’ quantified by the Q parameter
(see text).

(N,n) δ2 δ4 δ6 Dmin 10−Q

(3,2) ∧2[H(4)
1 ] ∧3[H(10)

1 ] ∧3[H(14)
1 ] ∝ δ4 ∝ δ0

(4,2) ∧3[H(7)
1 ] ∧4[H(13)

1 ] ∧4[H(20)
1 ] ∝ δ4 ∝ δ2

(5,2) ∧3[H(7)
1 ] ∧5[H(14)

1 ] ∧5[H(20)
1 ] ∝ δ4 ∝ δ0

(6,2) ∧3[H(7)
1 ] ∧5[H(14)

1 ] ∧5[H(21)
1 ] ∝ δ6 ∝ δ0

(7,2) ∧4[H(9)
1 ] ∧6[H(17)

1 ] ∧7[H(24)
1 ] ∝ δ6 ∝ δ0

Since the spectrum �λ(δ) is infinite we exploit again the
concept of truncation. By considering the truncated setting
∧3[H(10)

1 ] we find a minimal distance Dmin(δ) of [λk(δ)]10
k=1 to

the boundary of the corresponding polytope P3,10, given by

Dmin(δ) = 8
27δ4 + O(δ6). (26)

Since the neglected NONs are of smaller order, O(δ6), this
truncated (quasi)pinning analysis is conclusive: For weak cou-
pling the ground-state NONs �λ(δ) in the infinite-dimensional
setting (N,d) = (3,∞) are not exactly on, but very close to the
boundary of the allowed region P3,∞. This distance is indeed
smaller by two orders in δ than the distance DHF of �λ(δ) to
the Hartree-Fock point �λHF ≡ (1,1,1,0, . . .),

DHF (δ) = 8
9δ2 + 8

81δ4 + O(δ6). (27)

On the other hand, comparing these results on quasipinning of
the three-Harmonium ground state in two dimensions to the
remarkable result of δ8 quasipinning (Dmin ∼ δ8) found in one
dimension [7] indicates that reduced spatial dimensionality
seems to be essential for the occurrence of strong quasipinning.

In the same way as for N = 3 particles we study ground
states of the Harmonium model for N > 3 and determine
Taylor series for the corresponding NONs. We present the
results in Table I for the cases of N = 4,5,6,7. There, in the
second, third, and fourth columns we present the active space
structures by taking into account different orders in δ. An
active space structure ∧N ′

[H(d ′)
1 ] on the scale O(δr ) means

that exactly N ′ NONs, λN−N ′+1, . . . ,λN , and d ′ − N ′ NONs,
λN+1, . . . ,λN+d ′−N ′ , have corrections on the scales δs,s � r to
the maximal value 1 and the minimal value 0, respectively. It is
particularly remarkable that such well-pronounced hierarchies
of actives spaces exist for the Harmonium model and can even
be proven analytically. In addition, it should be stressed that
such hierarchies are very convenient for the (quasi)pinning
analysis. For any scale of interest, we can choose the coupling
such that the higher orders are sufficiently small and the corre-
sponding truncation error becomes negligible. In the second-
to-last column we present the strength of the quasipinning by
stating the minimal distance Dmin of �λ(δ) to the boundary of
PN,∞, determined by exploiting the concept of truncation. For
the cases N = 4,5 we find again quasipinning of the strength δ4

which increases for N = 6,7 to δ6 quasipinning. This increase

of the quasipinning strength by adding more fermions to the
trap suggests the existence of a “Pauli pressure,” created by
the additional particles, pressing �λ closer to the polytope
boundary. For the case of the corresponding one-dimensional
system discussed in Ref. [21] the active space hierarchy was
even more well pronounced due to missing degenerate angular
degrees of freedom (which typically reduce the Pauli pressure)
in agreement with the much stronger quasipinning of the order
δ2N for N � 4 particles found there.

As can be inferred from the inclusion relation P ⊂ �,
illustrated in Fig. 1, and as has been carefully explored
in Ref. [19], quasipinning by GPCs can in some cases be
just a consequences of quasipinning by PEP constraints.
For instance, the distance of �λ to the polytope boundary
is bounded from above by 1 − λ1, the distance of �λ to the
corresponding facet λ1 = 1 of the Pauli simplex �. Hence,
it is not only important to explore and quantify quasipinning
by GPCs on an absolute scale but also relative to possible
quasipinning by PEP constraints. In Ref. [19] a measure for
such nontriviality of quasipinning by GPCs was constructed,
the so-called Q-parameter: �λ is 10Q(�λ) times closer to the
polytope boundary than one may expect from a possibly small
distance of �λ to the boundary of the Pauli simplex �. The
results for the Q parameter are shown in the last column of
Table I. The quasipinning found for various particle numbers
is in all cases, except N = 4, “trivial.” It follows already
from the approximate saturation of PEP constraints, typically
1 − λ1 � 0. Only in the case of four fermions the quasipinning
by GPCs is nontrivial, by two orders in δ. Comparing this
to the results for N fermions in one spatial dimension [21],
namely 10−Q(�λ(δ)) ∼ δ2 for all N , suggests that the GPCs
are particularly relevant in lower spatial dimensions (one
dimension). In the following we find further evidence for this
by comparing dimensional crossovers by ramping up one of the
two trap frequencies to approach more and more the effectively
one-dimensional regime.

We parametrize the coupling regime by κ ≡ κ1 � 0 [recall
Eq. (14)] and the detuning χ = ω2/ω1 � 1 of the trap
frequencies. We consider the case of three fermions. For
smaller detunings, the ground state takes the configuration μ =
{{0,0},{1,0},{0,1}}. For larger detunings, the ground state be-
comes effectively one dimensional, μ′ = {{0,0},{1,0},{2,0}}
(see remarks at the end of Sec. II). Variation of χ while keeping
κ fixed therefore allows one to study the crossover from two
to one spatial dimension. In the κ-χ parameter plane, the
transition line between the two ground-state configurations is
given by κcrit = − 4

3 + 1
3χ2. Following Sec. III, the truncated

1-RDO has been analytically computed. For a logarithmically
distributed set of data points in the κ-χ parameter plane,
the NONs of truncated 1-RDOs have then been numerically
evaluated and used to determine Dmin(κ,χ ) and Q(κ,χ ). The
results are displayed in Fig. 3. For all coupling parameters
considered there, as well as in the figures of subsequent
sections, the concept of truncation was used and the truncation
errors turned out to be negligible. The transition line between
the two state configurations μ and μ′ is marked by a solid
line. In addition, there are shown two dashed lines indicating
crossings of some specific (nonordered) NONs [49]. In
principle, there are many more crossings but according to the
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FIG. 3. Quasipinning results for the three-Harmonium ground
state in two spatial dimensions with external trap frequencies ω1,ω2

and coupling strength κ . Minimal distance Dmin of �λ to polytope
boundary is shown on the left and its nontriviality is quantified on
the right. The solid line represents the boundary κcrit(χ ) in between
the two different ground-state configurations with the effectively one-
dimensional one on the right. Dashed lines mark relevant crossing of
NONs (see text for more details).

concept of truncation only the crossings of the largest few
NONs can change the quasipinning behavior considerably.

As a first qualitative result we observe that Dmin monoton-
ically decreases under the reduction of the fermion-fermion
coupling strength κ . This is not surprising since this reduces the
correlations in the system and �λ approaches the Hartree-Fock
point. For the case ω1 = ω2 the numerical results for the
whole κ regime [0,10] are well described by the analytic
perturbation-theoretical result (26) since δ = 1 corresponds
to κ ≈ 55. We further learn that by narrowing the trap, i.e.,
by increasing ω2/ω1, Dmin decreases as well. This provides
further evidence for the existence of a Pauli pressure, supposed
to increase whenever the number of available states around
the Fermi level reduces. It should be stressed (not shown here)
that even the state with configuration μ = {{0,0},{1,0},{0,1}},
being an excited state for too large detunings, begins to
exhibit stronger and stronger quasipinning by increasing the
detuning.

The relevance of the quasipinning beyond the Pauli ex-
clusion principle as measured by the Q parameter, however,
shows a more complex and a different behavior than Dmin.
For κ � 1 fixed, the system undergoes multiple changes from
trivial quasipinning (green) to highly nontrivial quasipinning
(red). Between different regimesRi within the effectively one-
dimensional state configuration, we observe sharp gradients in
both the Q parameter as well as the minimal distance Dmin. To
explore those transitions further we present fixed κ sections in
Fig. 4. While the change of the ground-state configuration does
not have a tremendous influence on the absolute quasipinning
this is different for the first dashed line (in Fig. 3), where λ4

and λ5 are coming together: Within a short ω2/ω1 interval, the
quasipinning increases by several orders for the two exemplary
cases κ = 1/10, 1/50. In addition this quasipinning changes
from trivial to highly nontrivial. Also crossings of smaller
eigenvalues lead to nonanalytic behavior of Dmin and Q

(see, e.g., the black circles) which, however, according to
the concept of truncation does not change the quasipinning
behavior significantly. Finally, we conclude that for the small
coupling κ = 1/50 (red curve) detunings even larger than
ω2/ω1 = 1000 are required to reproduce the quasipinning
results for the one-dimensional system.

FIG. 4. Top: Minimal distance Dmin of �λ to the polytope boundary
as a function of the trap frequency detuning χ ≡ ω2/ω1 for fixed
particle-particle interaction strengths κ . Bottom: Relevance of the
quasipinning by GPCs beyond Pauli’s exclusion principle as mea-
sured by the Q parameter.

The case of four particles in two spatial dimensions is con-
tained in the next section, analyzing dimensional crossovers
for N = 4 in three spatial dimensions.

B. Three spatial dimensions and corresponding
dimensional crossovers

The analytic results for an isotropic harmonic trap in three
spatial dimensions for the regime of weak couplings δ and
N = 3,4,5,6 are presented in Table II. In the second, third,
and fourth columns we present the active space structures
by taking into account the orders O(δ2), O(δ4), and O(δ6),

TABLE II. For the N -Harmonium ground states in n = 3 spatial
dimensions we present the ‘active space structures’ by considering
NONs with corrections to the values 1 or 0 up to the orders δ2, δ4, and
δ6, respectively. The results on quasipinning are presented (Dmin) as
well as its ‘nontriviality,’ quantified by the Q parameter. A question
mark indicates that no analysis was possible due to too large active
spaces.

(N,n) δ2 δ4 δ6 Dmin 10−Q

(3,3) ∧3[H(8)
1 ] ∧3[H(18)

1 ] ∧3[H(32)
1 ] O(δ4) O(δ2)

(4,3) ∧3[H(8)
1 ] ∧4[H(20)

1 ] ∧4[H(34)
1 ] ∝ δ4 ∝ δ0

(5,3) ∧4[H(12)
1 ] ∧5[H(26)

1 ] ∧5[H(45)
1 ] O(δ4) ?

(6,3) ∧5[H(14)
1 ] ∧6[H(29)

1 ] ∧5[H(49)
1 ] O(δ4) ?
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Dmin

Q

FIG. 5. Quasipinning results for the four-Harmonium ground
state in three dimensions with external trap frequencies ω1,ω2,ω3

and coupling strength κ . Minimal distance Dmin of �λ to polytope
boundary is shown in the upper diagram and its nontriviality Q is
quantified in the lower diagram (see text for details). The left and
right solid curves indicate a change of the ground-state configuration.

respectively. Comparing those active spaces with those for
two spatial dimensions, shown in Table I, confirms that the
additional angular degrees of freedom in n = 3 dimensions
increase significantly the dimensions of the active spaces
and therefore reduce the Pauli pressure. This increase of the
dimension reduces the chances for a conclusive (quasi)pinning
analysis. Indeed, as we can infer from the last two columns
this is only possible for N = 4. A conclusive (quasi)pinning
analysis for the larger particle numbers N = 5,6 would
require the knowledge of the GPCs at least for the settings
(N,d) = (4,12) and (5,14), respectively. For the cases
N = 3,4 we find quasipinning of the strength δ4 which might
be even stronger for N = 3 since the truncation error is of
the same order, O(δ4). For N = 3, as quantified by the Q

parameter, this quasipinning by GPCs is nontrivial by at least
two orders in δ. For N = 4, however, it follows already from
quasipinning by PEP constrains, 1 − λ1(δ) ∼ δ4. For N = 5,6
we can determine only lower bounds on the strength of the
quasipinning (upper bounds on Dmin): Since 1 − λ1 ∼ δ4 we
can conclude quasipinning by GPCs of order 4 or larger in δ.

To further explore the role of the spatial dimension
for quasipinning we study dimensional crossovers for
the exemplary case of four fermions. The results are
shown in Fig. 5. We first start with the isotropic trap,
ω1 = ω2 = ω3 and ramp up continuously ω3 to the value
ω3 = 1000 ω1 while fixing ω2 = ω1. In particular, this
induces a change of the ground-state configuration (first
solid line) from μ = {{0,0,0},{1,0,0},{0,1,0},{0,0,1}} to
{{0,0,0},{1,0,0},{0,1,0},{2,0,0}}. Then, we approach the
effectively one-dimensional regime by also ramping up
ω2 relative to ω1, inducing in particular another change
of the ground-state configuration (last solid line) to
{{0,0,0},{1,0,0},{2,0,0},{3,0,0}}. To keep the error of the
truncated (quasi)pinning analysis [performed in the largest
known setting (N,d) = (4,10)] sufficiently small we need
to restrict ourselves to the coupling regime κ ∈ [0,1]. Recall

that in two spatial dimensions we could conclusively explore
quasipinning up to couplings κ = 10. This was due to the fact
that the active spaces in two spatial dimensions are smaller
and that the GPCs for N = 3 (as analyzed in Fig. 3) are
already known for d = 11.

In Fig. 5 we observe that the minimal distance Dmin of �λ to
the polytope boundary monotonically decreases with decreas-
ing κ , essentially reflecting the fact of reducing correlations.
For every fixed state configuration μ, increasing the anisotropy
of the trap increases the strength of the quasipinning as well.
Intriguingly, however, at the boundaries of these regimes, the
quasipinning strength drops by several orders of magnitude,
which has not been the case for N = 3 particles in two spatial
dimensions (see Fig. 3).

The most striking aspect of the (quasi)pinning analysis
of this system, however, is revealed by a comparison of
Dmin and Q in the effectively one-dimensional configuration.
While Dmin decreases with smaller κ and larger ω2/ω1, the
Q parameter shows that the quasipinning becomes trivial in
parameter regions with small Dmin (cf. lower-right corner
of the diagram and that it becomes highly nontrivial in
parameter regions with large Dmin (cf. upper-right corner of
the diagram). This irrefutably demonstrates the importance to
quantify quasipinning by GPCs beyond quasipinning by PEP
constraints.

Let us add a closing remark on degeneracies of the
eigenspaces of Harmonium in higher dimensions. The
box picture (see Fig. 2) reveals the occurrence of shell
structures in Harmonium systems where an additional
rotational symmetry is given whenever two or more
trapping frequencies will be equal. For example N = 4
particles in two-dimensional Harmonium with ω1 = ω2

will have a threefold degenerate ground-state space. The
obvious question whether superpositions of these states may
experience a different quasipinning has been addressed by
considering various superpositions, including the rotational
symmetry adapted eigenstates. The quasipinning behavior
of these states was found to show the same scaling as the
one for nonsymmetry adapted states. They therefore have not
separately been displayed in the Tables I and II.

VI. SPIN

In the previous sections and in Refs. [7,21] the Harmonium
model was studied for spinless or fully polarized fermions,
only, due to a good reason: By considering spinful particles
with spin S, each spatial orbital gets a multiplicity of factor
2S + 1. This significantly reduces the Pauli pressure which
is expected to reduces the relevance of the GPCs as well.
In addition, the spin degeneracies make an interpretation of
possible quasipinning more challenging. In this section we
eventually consider non-fully-polarized systems. This will also
allow us to induce changes of the quantum state and thus
of quasipinning by ramping up an external magnetic field.
In that sense, we provide conceptual ideas for experimental
realizations of the quasipinning phenomenon.

Besides taking spin degrees into account, by extending
the N -fermion Hilbert space to ∧N [L2[Rn] ⊗ C2] by as-
suming S = 1/2, we couple the spins to an external homo-
geneous magnetic field �B, described by the Zeeman term
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−c/�
∑N

i=1 �si · �B, added to the Hamiltonian (2), where c is
a coupling constant [50].

Since the Zeeman term commutes with the remaining part
of the Hamiltonian, Theorem II.1 and the box picture can

easily be extended to the spinful case: Each orbital φ
(l̃)
μj

(�xj ) in
the Slater determinant in Eq. (5) is multiplied by a spin state
|σj 〉 = |↑〉,|↓〉, defined with respect to the quantization axis
�B/B. The box picture is modified by considering two “box
arrays,” one for |↑〉 and one for |↓〉. These two box arrays
are energetically displaced by the energy difference g|B|
between |↑〉 and |↓〉 due to the external magnetic field B. Then,
the ground-state configuration μ = (μ↑,μ↓) follows again by
distributing the N fermions into the N energetically lowest
boxes and the ground state is given by the modified Eq. (5).
For instance, the ground state of N = 4 particles in an isotropic
two-dimensional trap with frequencies ω1 = ω2 ≡ ω with an
external magnetic field �ω

√
1 + κ/c < |B| < 2�ω

√
1 + κ/c

is described by μ↓ = {{0,0},{1,0},{0,1}} and μ↑ = {{0,0}}.
We first investigate quasipinning for the one-dimensional

case. For the regime of weak coupling δ we determine for N =
3,4 and for each spin sector the corresponding ground state.
For N = 3, depending on the field strength B of the magnetic
field and the coupling parameter δ, the ground state can have
the magnetic quantum number M = ± 3

2 , ± 1
2 and for N = 4

the magnetic quantum number M = ±2, ± 1,0, respectively.
A thorough and conclusive (quasi)pinning analysis by using
the concept of truncation shows the following universal
quasipinning behavior:

Dmin(δ) ∼ δ4+2|M|. (28)

This remarkable result for N = 3,4 strongly supports the
relevance of the proposed Pauli pressure for the occurrence
of quasipinning: The larger the degree of polarization, |M|,
the stronger the conflict between energy minimization and
fermionic exchange symmetry and the stronger the quasipin-
ning according to Eq. (28).

We briefly comment on the nontriviality of the quasipinning
(28) by comparing it to quasipinning by PEP constraints. For
N = 3 and both values |M| = 3

2 , 1
2 the quasipinning by GPCs is

nontrivial by two orders in δ. The same holds of course for N =
4 in case of full polarization [21]. Yet, for not-fully-polarized
fermions, |M| = 0,1, quasipinning by GPCs turns out to be
trivial. In contrast to the case M = ±1, this is obvious for the
case M = 0 [51]: It is well known [52] that for spin-singlet
states the only constraints on the NONs are the PEP constraints.
In other words, by restricting the N -fermion Hilbert space to
spin-singlet states the corresponding GPCs coincide with the
PEP constraints and therefore do not facilitate any nontrivial
quasipinning by GPCs.

As an example for higher spatial dimension we consider
the case of three fermions in two dimensions. We exploit the
physically more relevant coupling parameter κ ≡ κ1 [recall
Eq. (14)] and the detuning χ ≡ ω2/ω1 � 1. We start with
χ = 1 and choose the magnetic field such that �ω

√
1 + κ <

c|B| < 2�ω
√

1 + κ . This leads to a ground state with index
sets μ↑ = {{0,0},{1,0},{0,1}} and μ↓ = ∅. Increasing ω2

while keeping ω1 constant induces a dimensional crossover
to an effectively one-dimensional configuration with index
sets μ↑ = {{0,0},{0,1}} and μ↓ = {{0,0}}. The results of a

D Q

FIG. 6. Quasipinning results for the non-fully-spin-polarized
three-Harmonium ground state in two spatial dimensions with
external trap frequencies ω1,ω2, coupling strength κ , and some
fixed homogeneous magnetic field B fulfilling �ω

√
1 + κ < c|B| <

2�ω
√

1 + κ . Minimal distance Dmin of �λ to polytope boundary is
shown in the left diagram and its nontriviality is quantified in the
right diagram by the Q parameter. The solid line marks the boundary
between the effectively two- and one-dimensional ground-states
configuration.

(quasi)pinning analysis are shown in Fig. 6. Whereas the
minimal distance Dmin of �λ to the polytope boundary becomes
smaller when reducing κ and increasing χ = ω2/ω1, the
behavior of the Q parameter is more complex and shows
similarities to the fully spin-polarized case in Sec. V. Again,
the crossing of NONs induces different regimes leading to a
high-low-high transition of the Q values when increasing χ

for a fixed interaction strength κ . This once more proves the
significance of the Q parameter as it unveils the importance of
GPCs beyond the Pauli exclusion principle in parameter ranges
with attributed moderate minimal distances Dmin. In the regime
of the two-dimensional ground-state configuration, i.e., left to
the solid black line, the quasipinning is trivial (green).

VII. SUMMARY AND CONCLUSION

By studying the Harmonium system, we have thoroughly
explored how the spatial dimension, the particle number,
the total spin, and the coupling strength affect the physical
relevance of the generalized Pauli constraints (GPCs). First, in
the form of Theorem II.1, we succeeded in finding a compact
analytical form for the ground state of this interacting N

fermion system. This then allowed us to determine the natural
occupation numbers analytically by perturbation theory for the
regime of small coupling strengths δ and by an exact numerical
approach for medium- and strong-coupling strengths.

Given the set �λ ≡ (λk)∞k=1 of NONs for the ground state
of some Harmonium system and a fixed coupling we have
explored whether �λ (approximately) saturates some of the
GPCs. Since such (quasi)pinning, as quantified by the minimal
distance Dmin of �λ to the boundary of the allowed region
(polytope P), has remarkable physical consequences, this
would then confirm the physical relevance of the GPCs. Since
the GPCs are known so far only for one-particle Hilbert
spaces of dimension d < 11 we exploited the concept of
truncation: All occupation numbers sufficiently close to 1
or 0 can be neglected and possible (quasi)pinning is then
explored in the truncated setting. It turned out that for
most Harmonium systems and not too strong couplings the
corresponding active spaces are sufficiently low dimensional to
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facilitate a conclusive analysis of (quasi)pinning. In addition,
since the GPCs imply the Pauli exclusion principle (PEP)
constraints (whose relevance is already well known) we
quantify the quasipinning by GPCs beyond quasipinning by
PEP constraints by using the Q parameter [19].

In general, for the regime of small coupling strengths
δ � 1 we found that the active spaces in two and three
spatial dimensions are significantly larger than for the one-
dimensional case studied in Ref. [21]. This is due to the
additional degenerate orbital degrees of freedom. Moreover,
similar to the one-dimensional case, there are well-pronounced
hierarchies of active spaces defined by considering corrections
of different orders O(δr ) of the NONs to 1 and 0, respectively.
These specific shell structures make the concept of truncation
even more powerful for the Harmonium systems.

For the case of n = 2 spatial dimensions and spinless
fermions we found for N = 3,4,5 fermions quasipinning of
strength Dmin ∼ δ4 which increased to δ6 quasipinning for
N = 6,7. Comparing this quasipinning by GPCs to quasip-
inning of the less-restrictive PEP constraints shows that our
findings are only nontrivial for N = 4, namely by two orders
in δ. For the case of three spatial dimensions the active space
dimensions increase even further which does not allow us
anymore to perform a conclusive quasipinning analysis for
several N . For N = 3,4 we find again δ4 quasipinning which
might, at least in principle, be even stronger for N = 3 since
the corresponding truncation error is of the same order, O(δ4).
The quasipinning turns out to be trivial for N = 4 but nontrivial
by at least two orders in δ for N = 3.

It is also instructive to compare those findings for two
and three spatial dimensions to those in one dimension,
showing quasipinning described by Dmin ∼ δ8 for N = 3 [7]
and Dmin ∼ δ2N for N � 4 [21]. The increase of quasipinning
by reducing the spatial dimension or by adding more fermions
to the trap suggests that quasipinning emerges from a Pauli
pressure. Such Pauli pressure, which still needs to be formally
defined and carefully worked out, describes for ground states
the conflict of energy minimization and fermionic exchange
symmetry (antisymmetry) from the one-particle picture’s
viewpoint. Indeed, this conflict reduces by increasing the spa-
tial dimension (leading to additional degenerate orbital degrees
of freedom) and increases by adding more fermions to the trap.

By detuning the trap frequencies we explored crossovers
between Harmonium systems of different effective spatial
dimensions allowing us to also analyze quasipinning for
“intermediate” dimensions. From a qualitative viewpoint, we
found further evidence for the Pauli pressure being the origin
of quasipinning: The stronger the detuning between the trap
frequencies and the smaller the fermion-fermion coupling, the
stronger the quasipinning. While the absolute quasipinning,
as measured by the minimal distance Dmin of �λ to the
polytope boundary, behaves mainly monotonically as function
of the detunings and the coupling strength, the Q parameter
shows a much more complex behavior: While keeping the
coupling strength constant, ramping up the detuning can
lead to multiple crossovers between nontrivial and trivial
quasipinning. Although such less monotone behavior seems to
be more difficult to understand it clearly shows the importance
of the Q parameter for a genuine quantification of the relevance
of GPCs in concrete systems.

In the final section, Sec. VI, we eventually included the
spin degree of freedom as well. By varying an external
magnetic-field coupling to the spins of the uncharged fermions
we can induce transitions between states of different spin
polarization. The main result, for not to strong couplings δ

and N = 3,4 states Dmin ∼ δ4+2|M| [Eq. (28)]: The larger the
total magnetization (M) the stronger the quasipinning. This
remarkable universal relation confirms again the role of the
Pauli pressure for quasipinning since increasing the degree of
polarization reduces the effective number of available states
around the Fermi level.

The findings on the spinful fermions provide a general
idea for an experimental realization and verification of
(quasi)pinning. In a first step, a Harmonium-like system
of spinful fermions shall be prepared in its ground state
exhibiting quasipinning. Then, by coupling this system to an
external oscillating magnetic field the system’s ground state
and its corresponding vector �λ of NONs are perturbed. Due
to the strong quasipinning of �λ to the polytope boundary
this perturbation ��λ can be directed for any choice of
the perturbation (here, e.g., the field polarization) only parallel
but not perpendicular to the polytope boundary (see also
Ref. [18]). Without the knowledge of the GPCs and the
corresponding polytope P such behavior of �λ restricted to a
hyperplane looks magical. This is conceptually very similar
to the prohibited decay of valence electrons to lower-lying
energy shells in atoms due to the more elementary Pauli
exclusion principle.
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APPENDIX A: DERIVATION OF THE HARMONIUM
GROUND STATE

In this appendix we provide an elegant proof of Theo-
rem II.1, i.e., we derive the explicit form of the ground state(s)
of Harmonium (2).

First, we consider the Hamiltonian (2) on the N -particle
Hilbert space HN ≡ L2[Rn]⊗

N

, i.e., without any exchange
symmetry. On that space, it can easily be diagonalized by
decoupling the harmonic oscillators by introducing center of
mass (y(α)

1 ) and “relative” coordinates (y(α)
k ,k = 2, . . . ,N) for

all n spatial dimensions α = 1, . . . ,n (see, e.g., Ref. [43] for
the case n = 1). The corresponding eigenstates follow as

(ω,K )
ν (�x1, . . . ,�xN )

= N (ω,K )
ν

[
n∏

α=1

ϕ
(l(α))

ν
(α)
1

(
y

(α)
1

(
x

(α)
1 , . . . ,x

(α)
N

))]

×
[

n∏
α=1

N∏
k=2

ϕ
(l̃(α))

ν
(α)
k

(
y

(α)
k

(
x

(α)
1 , . . . ,x

(α)
N

))]
, (A1)
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with ν ≡ (ν(α)
k ), ν

(α)
k ∈ N0, k = 1, . . . ,N , α = 1, . . . ,n, ω ≡

(ωα), K ≡ (K (α)), and N (ω,K )
ν a normalization constant. Since

the dependence of 
(ω,K )
ν on the couplings (ω,K ) becomes

relevant below we made it explicit. We also introduced for each

spatial dimension α the corresponding length l(α) =
√

�

mω(α) for

the center of mass and the lengths l̃(α) =
√

�

mω̃(α) for the relative
motion between the particles. The corresponding frequencies
are given by

ω̃(α) ≡
√

(ω(α))2 + NK (α)

m
. (A2)

For the following, it will be crucial that the center-of-mass
coordinates y

(α)
1 (x(α)

1 , . . . ,x
(α)
N ) are symmetric in the physical

coordinates x
(α)
1 , . . . ,x

(α)
N and the precise form of the relative

coordinate functions y
(α)
k ,k = 2, . . . ,N will not be relevant.

The corresponding energy of the eigenstates (A1) are given
(up to a constant energy shift) by

E(ω,K )
ν =

n∑
α=1

�ω(α)ν
(α)
1 +

n∑
α=1

�ω̃(α)
N∑

k=2

ν
(α)
k . (A3)

By introducing the corresponding coupling parameter space

� ≡ {(ω,K ) ∈ (R+)n × Rn | ∀α : NK (α) > −m(ω(α))2},
(A4)

we observe that most of the energy branches E
(ω,K )
ν are

degenerate on �. Accordingly, we introduce equivalence
classes [ν] by identifying the index sets ν and ν ′ of quantum
numbers whenever their energies values (A3) are identical on
�. Moreover, we introduce the corresponding eigenspace,

H(ω,K )
[ν] ≡ span

({


(ω,K )
ν ′ | ν ′ ∈ [ν]

})
, (A5)

which are all finite dimensional and depend analytically on
(ω,K ) ∈ �.

In order to find the fermionic ground state for arbitrary but
fixed (ω,K ) ∈ � one may consider the projection of the set of
N -particle eigenstates (A1) onto the fermionic subspace,

H(f )
N ≡ ∧N [L2[Rn]] � HN ≡ L2[Rn]⊗

N

. (A6)

More precisely, one needs to determine the index set ν

which minimizes the energy function (A3) while still having
nonvanishing support on H(f )

N , i.e., ANH(ω,K )
[ν] �= 0.

Due to the nontrivial dependency of the relative coordinates
y

(α)
i on the physical coordinates x

(α)
j it proves to be challenging

to simplify the resulting expression of the action of the
antisymmetrization operator AN on the N -particle eigenstates
of Eq. (A1). In the following we present an elegant, systematic
way for determining the fermionic ground state:

(1) Due to the specific structure (A1), separating symmetric
center-of-mass coordinates from relative coordinates, the
fermionic ground state lies in an eigenspace H(ω,K )

[(�ν1,...,�νN )] with

zero center-of-mass excitations, i.e., �ν1 = �0.
(2) The main idea is now to relate the fixed coupling (ω,K )

to another one with zero interaction (ω′,K ′) ≡ (ω′,0) such that

ω′(α) ≡
√

(ω(α))2 + NK (α)

m
, α = 1, . . . ,n. (A7)

The coupling parameters (ω′,0) are chosen in such a way that
they lead to the same frequencies for the relative motion as
(ω,K ). Indeed, since K ′(α) = 0 we find

ω̃′(α) =
√

(ω′α)2 + NK ′(α)

m
=
√

(ω(α))2 + NK (α)

m
= ω̃(α),

α = 1, . . . ,n. (A8)

This then implies for the energies

E
(ω,K )
(�0,�ν2,...,�νN )

= E
(ω′,0)
(�0,�ν2,...,�νN )

, ∀�ν2, . . . ,�νN . (A9)

Moreover, due to the specific structure of the eigenstates (A1)
we can relate the corresponding eigenspaces as well,

H(ω,K )
[(�0,�ν2,...,�νN )]

= G(ω,K )H(ω′,0)
[(�0,�ν2,...,�νN )]

, (A10)

where G(ω,K ) describes the multiplication by the Gaussian
factor exp [−N

2

∑n
α=1 ( 1

(l′(α))2 − 1
(l(α))2 )(X(α))2] (see Ref. [43])

and X(α) ≡ y
(α)
1 ≡ 1

N
(x(α)

1 + · · · + x
(α)
N ) is the center-of-mass

coordinate in the α direction.
(3) Since (ω′,K ′) = (ω̃,0) describes noninteracting

fermions we can easily determine the fermionic ground
state for this case. The corresponding Schrödinger equation
turns into an effectively one-fermion equation describing
a single harmonic oscillator in n-spatial dimensions with
frequencies ω̃(α) and with n-dimensional Hermite functions

φ
(l̃)
μ (�x) ≡∏n

α=1 ϕ
(l̃(α))
μ(α) (x(α)) as eigenstates with correspond-

ing energy εμ =∑n
α=1(μ(α) + 1

2 )�ω̃(α). The corresponding
fermionic ground state for (ω̃,0) is then given by the “con-
figuration state,” i.e., by the Slater determinant obtained by
distributing the N particles in N energetically lowest states

φ
(l̃)
μ . By denoting the corresponding sets of quantum numbers

by μ1 = 0, . . . ,μN , the ground state reads

�(ω̃,0)
gs = φ(l̃)

μ1
∧ · · · ∧ φ(l̃)

μN
. (A11)

It should be also stressed that for generic couplings (ω,K ) ∈ �

the ground state for (ω̃,0) is unique because the frequencies
ω̃(α) are generically incommensurate.

(4) Equation (A11) allows us to find the ground state for
(ω,K ) as well. This is based on the previous points, essentially
Eqs. (A9) and (A10), implying

�(ω̃,0)
gs ∈ H(ω̃,0)

[(�0,�ν2,...,�νN )]
⇔ �(ω,K )

gs ∈ H(ω,K )
[(�0,�ν2,...,�νN )]

. (A12)

Hence,

ANH(ω,K )
[(�0,�ν2,...,�νN )]

= ANG(ω,K )H(ω̃,0)
[(�0,�ν2,...,�νN )]

= G(ω,K )ANH(ω̃,0)
[(�0,�ν2,...,�νN )]

(A13)

and therefore

�(ω,K )
gs = G(ω,K )�(ω̃,0)

gs , (A14)

which is nothing else than Eq. (5) in Theorem II.1. It should
be also stressed that the same conclusions also hold in the
case of degenerate fermionic ground states. Notice also that
Theorem II.1 and Eq. (5) do not hold for the excited fermionic
states. The subtle difference between the ground state and
excited states is that in the case of ground states we can assume
zero center-of-mass excitations, �ν = 0, in contrast to excited
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states. In the latter case, by following the same derivation
the energy eigenspace for couplings (ω̃,0) has additional
degeneracies coming from center-of-mass excitations.

APPENDIX B: DERIVATION OF THE FERMIONIC 1-RDO
OF N HARMONIUM IN n SPATIAL DIMENSIONS

Starting with the general form of the ground-state wave
function of N Harmonium in n spatial dimensions, Eq. (5), the
partial trace over (N − 1) fermions of the N -particle density
operator ρN = �∗� will be computed by integrating over

the particle positions �xi ∈ Rn with labels i = 2, . . . ,N . Using
the Hubbard-Stratonovich relation for each spatial dimension
γ = 1, . . . ,n,

exp
[
a(γ )
(
x

(γ )
1 + · · · + x

(γ )
N

)2]
=
√

a(γ )

π

∫
dy(γ ) exp

[−a(γ )(y(γ ))2

+ 2a(γ )y(γ )(x(γ )
1 + · · · + x

(γ )
N

)]
, (B1)

yields (see Ref. [43])

ρ
(f )
1

(�x; �x ′) = |N |2 ·
d∏

γ=1

{
exp

[(
1

N2
B(γ ) + C(γ ) − A(γ )

)
[(x(γ ))2 + (x ′(γ ))2] + 2C

(γ )
N x(γ )x ′(γ )

]}
︸ ︷︷ ︸

ρ
(b)
1 (�x;�x ′)

×
N∑

i=1

⎛
⎝ d∏

γ=1

∫
duγ

{
e−u2

γ

H
μ

(γ )
i

(pγ uγ + rγ (x(γ ),x ′(γ )))H
μ

(γ )
i

(pγ uγ + rγ (x ′(γ ),x(γ )))

2μ
(γ )
i

(
μ

(γ )
i

)
!

}⎞⎠
︸ ︷︷ ︸

≡F (�x;�x ′)

. (B2)

In this expression, H
μ

(γ )
i

denotes the Hermite polynomial of degree μ
(γ )
i , where {μi}Ni=1 is the set of quantum number vectors

introduced in Sec. II. The quantities A(γ ),B(γ ),C(γ ), p, and r(·,·) are given by

A(γ ) = 1

2(l̃(γ ))2
, (B3)

B(γ ) = N

2

(
1

(l̃(γ ))2
− 1

(l(γ ))2

)
, (B4)

C(γ ) = (N − 1)(B(γ ))
2

2N2[N2A(γ ) − (N − 1)B(γ )]
, (B5)

pγ =
√

B(γ )

N2A(γ ) − B(γ )(N − 1)
, and (B6)

rγ (v,w) =
√

2A(γ )

(
v − B(γ )

2[N2A(γ ) − (N − 1)B(γ )]
(v + w)

)
, (B7)

where we suppressed the index N of A(γ ), B(γ ), and C(γ ). l(γ ) and l̃(γ ) denote again the length scale in the γ direction for the
center of mass and the relative motion, respectively.

The 1-RDO associated with the ground state of Harmonium for spinful fermions can be derived by tracing out spin and spatial
degrees of freedom by applying the same ideas to the spatial part as in the case of fully spin-polarized Harmonium Eq. (B2):

ρ
(f )
1 (�x,σ ; �x ′,σ ′) = |N |2 ·

d∏
γ=1

{
exp

[(
1

N2
B(γ ) + C(γ ) − A(γ )

)
[(x(γ ))2 + (x ′(γ ))2] + 2C(γ )x(γ )x ′(γ )

]}
︸ ︷︷ ︸

ρ
(b)
1 (�x;�x ′)

×

⎡
⎢⎢⎢⎢⎢⎣

N↑∑
i=1

⎛
⎝ d∏

γ=1

∫
duγ

⎧⎨
⎩e−u2

γ

H
μ

↑
i

(γ ) (pγ uγ + rγ (x(γ ),x ′(γ )))H
μ

↑
i

(γ ) (pγ uγ + rγ (x ′(γ ),x(γ )))

2μ
↑
i

(γ )

(μ↑
i

(γ )
)!

⎫⎬
⎭
⎞
⎠

︸ ︷︷ ︸
≡F ↑(�x;�x ′)

|↑〉〈↑|
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+
N↓∑
i=1

⎛
⎝ d∏

γ=1

∫
duγ

⎧⎨
⎩e−u2

γ

H
μ

↓
i

(γ ) (pγ uγ + rγ (x(γ ),x(γ )))H
μ

↓
i

(γ ) (pγ uγ + rγ (x ′(γ ),x(γ )))

2μ
↓
i

(γ )(
μ

↓
i

(γ ))
!

⎫⎬
⎭
⎞
⎠

︸ ︷︷ ︸
≡F ↓(�x;�x ′)

|↓〉〈↓|

⎤
⎥⎥⎥⎥⎥⎦. (B8)

In this expression, the μ
↑
i and μ

↓
j quantum number vectors

represent the set of particles with spins parallel and antiparallel
to the external magnetic field.

APPENDIX C: NATURAL OCCUPATION NUMBERS FOR
THE THREE-HARMONIUM GROUND STATE IN ONE

DIMENSION

For the sake of self-containedness of this work we recall the
natural occupation numbers for the three-Harmonium ground
state presented in Ref. [7]. They are given by the following
series up to corrections of the order O(δ10), where the coupling

parameter δ is defined in Eq. (15),

1 − λ1 = 40
729δ6 − 1390

59 049δ8 + O(δ10),

1 − λ2 = 2
9δ4 − 232

729δ6 + 3926
10 935δ8 + O(δ10),

1 − λ3 = 2
9δ4 − 64

243δ6 + 81 902
295 245δ8 + O(δ10),

λ4 = 2
9δ4 − 64

243δ6 + 73 802
295 245δ8 + O(δ10),

λ5 = 2
9δ4 − 232

729δ6 + 3976
10 935δ8 + O(δ10),

λ6 = 40
729δ6 − 2200

59 049δ8 + O(δ10),

λ7 = 80
2187δ8 + O(δ10),

λk = O(δ2k−6) , for k � 8. (C1)
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