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Quantum quasi-Zeno dynamics: Transitions mediated by frequent projective measurements near
the Zeno regime
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Frequent observation of a quantum system leads to quantum Zeno physics, where the system evolution is
constrained to states commensurate with the measurement outcome. We show that, more generally, the system
can evolve between such states through higher-order virtual processes that pass through states outside the
measurement subspace. We derive effective Hamiltonians to describe this evolution, and the dependence on the
time between measurements. We demonstrate application of this phenomena to prototypical quantum many-body
system examples, spin chains and atoms in optical lattices, where it facilitates correlated dynamical effects.
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I. INTRODUCTION

Reminiscent of the arrow paradox put forth by Zeno of
Elea, concerning the apparent discrepancy in the motion of
objects when they can at any and all instants be observed to
be stationary, the quantum Zeno effect (QZE) [1–3] argues
that the act of continuously observing a quantum state leads
to a zero probability of evolving away from the state, thus
freezing the system evolution. This effect has been extended
to encompass the case of degenerate measurement subspaces,
where multiple states of the system possess identical outcomes
of the measured observable, such that evolution within this
subspace is unhindered by the measurement, a phenomenon
called quantum Zeno dynamics (QZD) [4–6]. The QZE and
QZD have been observed in a range of experimental setups,
including ions [7], photons [8], nuclear magnetic resonance
spins [9], atoms in microwave cavities [10], Bose-Einstein
condensates [11,12], and Rydberg atoms [13]. There has also
been much theoretical interest in the field, particularly because
of the opportunities offered by measurement-based control of
a system [14–29].

It has been shown that even when consecutive measure-
ments are finitely spaced, the locking to a measurement sub-
space can still occur [30]. However, in this case, the description
of the system evolution solely in terms of this subspace
is incomplete [31]; the finite time between measurements
allows higher-order processes to occur, where the system
first transitions away from the measurement subspace, and
then subsequently back into it before the next measurement,
thus preserving the value of the measured observable. Similar
effects have been predicted for continuous measurement in the
quantum jump formalism [28,32].

In this article we demonstrate how these higher-order pro-
cesses, which we call quantum quasi-Zeno dynamics (QqZD),
arise from perturbative considerations of standard QZD. We
find effective Hamiltonians to describe the evolution of the
system, and suggest interpreting such processes as virtual
transitions, providing a simple illustrative example using a
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three-level system. We extend the formalism to encompass
time-dependent Hamiltonians, nonequally and stochastically
spaced measurements, and discuss how transitions to dif-
ferent measurement subspaces may be incorporated into the
treatment. We then apply this formalism to exhibit how this
phenomenon may manifest in two archetypal examples of
many-body systems, spin chains and atoms in optical lattices,
where we show that the higher-order processes correspond to
correlated dynamics in the system.

II. FUNDAMENTALS OF QUANTUM QUASI-ZENO
DYNAMICS

Consider a system evolving under Hamiltonian H . Between
measurements, the evolution of the quantum state ρ after
time t is described by the unitary operator U (t) = exp(−iH t),
through ρ → UρU † [33] (we use natural units � = 1). This
system is subject to measurement from an external source,
and we model the effect of a measurement of the observable
A = ∑

j AjPj with outcome Ak to modify the state according
to ρ → PkρPk , where Pk is the projector for the subspace
containing all states with measurement eigenvalue Ak (see
Appendix A).

In this formalism, we can describe the evolution of a
system subject to frequent measurement. For two consec-
utive measurements a time δt apart, a state ρ initially in
eigenspace P of the measurement operator evolves ρ →
P ′U (δt)ρU †(δt)P ′, where P ′ is the subspace of the mea-
surement outcome. In the limit where Hδt is small, we
can expand the exponential U (δt) ≈ 1 − iHδt − H 2δt2/2 +
O(δt3), to calculate the probability that the measurement
outcome changes. The probability that the measurement results
in a value corresponding to subspace Q �= P is hence given
by P (Q) = Tr(HρHQ)δt2 + O(δt3). Summing this over all
measurement subspaces different to P , we have the condition
that for the probability of a change in the measurement value
to occur to be negligible, we require

∑
Q P (Q) � 1, i.e., for

any state ρ in P,
∑

Q Tr(QHρH )δt2 � 1. This forms our
“Zeno-locking” requirement on time scales for the periods
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between measurements. From here, we assume this condition
is met.

After N � 1 such measurements in a time τ = Nδt , each
resulting in the same measurement value, with subspace P ,
the system evolution can be approximated by the effective
evolution operator Ueff(τ ) = exp(−iHeffτ ) (see Appendix A
for details), with the corresponding effective Hamiltonian

Heff =
∞∑

k=1

(−iδt)k−1

k!
H

(k)
Z , (1)

where we define the quasi-Zeno Hamiltonians H
(k)
Z =

PH ((I − P)H )k−1P . In the limit that δt → 0, i.e., the
standard QZD scenario, this evolution becomes exp(−iH

(1)
Z τ ),

with H
(1)
Z being the standard Zeno Hamiltonian [6], recovering

the QZD result. However, when δt is small but finite, we
have the more general QqZD scenario, where the quasi-Zeno
Hamiltonians H

(k)
Z mediate kth-order transitions where the

initial and final states are in the measurement subspace P ,
but intermediate states are not. Because of the dependence of
each quasi-Zeno Hamiltonian’s contribution to the effective
Hamiltonian on increasing powers of δt , each one is less
significant than that of the previous order, and the intimate
dependence of QqZD on the measurement time step is
evident. Indeed, as the probability of a measurement outcome
belonging to a different subspace scales as δt2, in practice it
is likely that the second-order quasi-Zeno Hamiltonian H

(2)
Z ,

also scaling as δt2 forms the only significant deviation from
standard QZD, with the higher-order H

(k)
Z forming corrections

on top of this.
Heuristically, we can see that since both the transition

probability and the second-order quasi-Zeno Hamiltonian have
similar magnitude ∼Tr(PHQHPρ)δt2, the QqZD correction
within a given subspace is of the same order as the probability
to transition out of the subspace Thus, provided we are in the
regime for which QqZD is valid (i.e., this quantity is much
less than unity), the relative magnitude of the correction to
the state at the time at which a transition ultimately occurs is
approximately independent of δt . The size of δt is still relevant,
however, as it governs the accuracy of the approximate
effective evolution operator (more accurate for smaller δt),
the size of the correction due to the higher-order quasi-Zeno
Hamiltonians (decreasing with δt), and the total time scales
over which the QqZD evolution takes place (longer for smaller
δt). Note that the standard Zeno dynamics takes place on time
scales independent of δt . Because the QqZD correction is of a
similar magnitude to the transition probability, the quasi-Zeno
deviation can become very non-negligible especially when
one considers long experimental runs, such as those where
the measurement subspace changes during the trajectory (see
Sec. IV).

In the standard QZD regime, the effective Hamiltonian is
simply the Zeno Hamiltonian H

(1)
Z , which, being Hermitian,

leads to unitary dynamics. Contrastingly, the quasi-Zeno
Hamiltonians are alternatively Hermitian and anti-Hermitian,
and thus due to the second-order quasi-Zeno Hamiltonian
H

(2)
Z being nonvanishing for any nontrivial Hamiltonian and

measurement operator when δt is finite, in the quasi-Zeno
regime the dynamics is nonunitary. Instead, the dynamics of

the system will tend towards the eigenstate(s) of H
(2)
Z with

lowest eigenvalue that can be accessed by the dynamics from
the (quasi-)Zeno Hamiltonians, and the decay in the norm of
the state corresponds to the survival probability of remaining
in the measurement subspace.

From the above, we have that the probability of a transition
out of the measurement subspace between times t and t + δt

is given by

P (P̄,t) = Tr(Hρ(t)H (I − P))δt2 + O(δt3)

≈ Tr
(
H

(2)
Z ρ(t)

)
δt2.

Thus the total survival probability of remaining in the initial
measurement subspace after N measurements is given by∏N

n=1 (1 − P (P̄,nδt)). For long times, the survival probability
will tend to zero, unless there is a state space which satisfies
Tr(H (2)

Z ρ) = 0. The second-order quasi-Zeno evolution causes
the system to tend towards this state, effecting a “natural
selection” of states, removing those for which the survival
probability is lower, tending towards a steady-state space.
More generally, the evolution tends towards effective steady
states which minimize the rate of higher-order processes the
system undergoes, and hence those with the largest survival
probability. Such effective steady states are fragile, as they
have a nonzero transition probability, and so for longer times
will eventually transition out of the measurement subspace.

III. INTERPRETATION AND EXAMPLE

Physically, the QqZD second-order terms involve a small-
but-finite occupation of an intermediate state between mea-
surements, which is then removed by the projection of the
subsequent measurement, provided the locking of the mea-
surement eigenvalue is maintained. While this intermediate
state is occupied, it can transition to other states as usual for
the nonmeasurement case. These transitions can either be to
states also outside of the measurement subspace (in which
case occupation of these states is also removed by the next
measurement), or back in to the measurement subspace, but not
necessarily into the original state. Higher-order terms involve
transitions with additional intermediate states. When the time
between measurements decreases, the maximum occupation
of the intermediate states will also be decreased, and hence the
rate of transitions out of these states will be lessened. This is
reflected in the form of the effective Hamiltonians and their
dependence on δt . In the infinitely frequent measurement limit
of QZD, there is no occupation of the intermediate states, and
thus there are no transitions beyond first order.

Because of the locking to the measurement subspace,
occupation of the intermediate states is never directly ob-
served. However, through the occurrence of transitions that
take place via these states, their temporary occupation may
be indirectly inferred. As a result of this, and because the
dynamics can be described by effective Hamiltonians acting
only on the measurement subspace, allowing a description
of the intermediate states to be omitted, these states outside
of the measurement subspace can be viewed as virtual states
and, consequently, that the transitions between states in the
measurement subspace that pass through these virtual states
can be seen as virtual processes. Similar transitions via such
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FIG. 1. Transitions via virtual processes. The quasi-Zeno Hamil-
tonians give rise to transitions that occur via states outside the
measurement subspace, which can be viewed as virtual processes.
These can be compared conceptually with Feynman diagrams, where
instead of interactions occurring via virtual particles, we instead
represent transitions occurring via occupation of virtual states. Single
vertex processes (a) are mediated by the standard Zeno Hamiltonian
H

(1)
Z , while higher-order processes (b) with n vertices and n − 1

virtual states are mediated by the quasi-Zeno Hamiltonian H
(n)
Z .

Transitions to a virtual state and back to the initial state can be
represented by loop diagrams (c), akin to the representation of
self-interaction with Feynman diagrams.

virtual states are also present in the continuous, nonprojective
measurement case [28,32], where they are compared with
Raman-like processes.

We draw visual analogy with Feynman diagrams [34]
for these virtual processes (see Fig. 1). Feynman diagrams,
used as pictorial representations of interactions in high-energy
physics, depict interactions as being mediated by virtual
particles. We can construct a similar picture for the virtual
processes of QqZD, where the incoming and outgoing lines
are the initial and final states in the measurement subspace,
the vertices are the transitions between states, and the internal
lines correspond to occupation of the intermediate states. In
this representation, the number of vertices corresponds to the
number of transitions, and hence the order of the quasi-Zeno
process; transitions described by the Zeno Hamiltonian H

(1)
Z

have one vertex and no virtual states, as they do not require
occupation of the intermediate states, whilst transitions from
the second-order quasi-Zeno Hamiltonian H

(2)
Z are represented

by two vertices and one virtual state. Second-order processes
that return back to the same initial state can be considered akin
to self-interacting processes, giving rise to self-energy type
contributions to the Hamiltonian. We note, however, that this
analogy is intended as a graphical aid to interpret the transitions
within the QqZD framework, and we are not proposing that the
mathematics of the processes described by Feynman diagrams
be directly mapped onto QqZD.

To further illustrate these virtual processes, we use a very
basic toy model consisting of the simplest system that can
exhibit nontrivial QqZD: a three-state system where two states
possess a degenerate measurement eigenvalue. Consider such
a system, say a spin-1 particle, with states {|−1〉,|0〉,|1〉},
where the label signifies the SZ value of the state. The
particle is subject to a transverse field of strength λ, such that

it has Hamiltonian H = λSX = (λ/
√

2)(|−1〉〈0| + |0〉〈1| +
H.c.), and frequent measurement is made of the magnitude
of its spin value (A = |SZ|). The corresponding projectors for
the measurement subspaces are P0 = |0〉〈0| for A = 0, and
P1 = I − P0 = |−1〉〈−1| + |1〉〈1| for A = 1.

The Hamiltonian contains no direct transitions between the
|−1〉 and |1〉 states, instead requiring the state to first go via
the |0〉 state. Thus, in such a setup in the standard QZD sce-
nario, the Zeno Hamiltonian vanishes for both measurement
subspaces; H

(1)
Z = 0. However, when the measurements are

finitely frequently spaced, as in the QqZD regime presented
here, the second-order quasi-Zeno Hamiltonian for the A = 1
subspace is nonzero; applying the appropriate projectors to
obtain the second-order quasi-Zeno Hamiltonian, we find for
the {|−1〉,|1〉} subspace that it takes the form

H
(2)
Z = λ2

2
(|−1〉〈−1| + |1〉〈1| + |1〉〈−1| + |−1〉〈1|), (2)

where the first two terms are “self-energy” type contributions
from the system transitioning to |0〉 and back into the initial
state, while the latter terms give rise to transitions between
the |SZ| = 1 states, again by sequentially undergoing two
transitions to and from state |0〉. This intermediate state |0〉 is
never observed to be occupied, and thus the transitions appear
as virtual processes.

This simple example can be straightforwardly solved to
find the steady state to which QqZD drives the system. The
eigenvalues of Eq. (2) are 0 and λ2, with associated eigenstates
|−〉 = (|−1〉 − |1〉)/√2 and |+〉 = (|−1〉 + |1〉)/√2, respec-
tively. Thus, according to standard QZD, a system initialized
in the state |−1〉 = (|+〉 + |−〉)/√2 subject to such a measure-
ment will remain in this state, while in contrast, QqZD predicts
the system evolution to be (exp(−λ2tδt/2)|+〉 + |−〉)/√2,
the decay in the norm representing the probability to remain
in the measurement subspace. Thus, according to QqZD,
the long-term evolution of the system is towards the state
|−〉, provided the system remains in the same measurement
subspace, which occurs with probability 1/2. Interestingly,
this final state is a dark state of the original Hamiltonian
(H |−〉 = 0), and hence once this steady state is reached, the
system will remain in it even if the measurement is no longer
performed.

As three-level systems are routinely realized in a variety of
experimental setups, this example may also provide a useful
schematic for an initial experimental demonstration of QqZD.

IV. FURTHER GENERALIZATIONS

In the above, we took the time between measurements to
be equal for simplicity. Generalization to nonequal time steps
between measurements is straightforward. The form of the
quasi-Zeno Hamiltonians are unchanged, but the dependence
on δt now leads to differing strengths of the HZ between each
measurement in the effective Hamiltonian. We can modify the
effective evolution to account for this by including a product
over effective evolutions for all the different measurement time
steps. Taking δtj as the time between measurements j − 1 and
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j , with
∑N

j=1 δtj = τ , this can be written

Ueff(τ ) =
N∏

j=1

e
∑∞

k=1
(−iδtj )k

k! H
(k)
Z .

Considering only the terms up to O(δt) in the total evolution,
we can neglect those arising from the noncommutativity of
effective Hamiltonians for differing time steps, as they occur
at higher order, suppressed by a factor δtj − δtj ′ , and hence
approximate Ueff(τ ) = exp(−iH

(1)
Z τ − ∑N

j=1 H
(2)
Z δt2

j /2).
With the evolution written explicitly in terms of each

measurement time step, we can also clearly see how time-
dependent Hamiltonians may be incorporated into the for-
malism, at least for cases where they can be treated as
being approximately piecewise constant between measure-
ments, by generalizing the quasi-Zeno Hamiltonians H

(k)
Z (t) =

PH (t)((I − PH (t))k−1P in the above effective evolution, and
imposing appropriate time ordering. This generalization also
allows for systems where the measurement time step depends
on a stochastic process (for example, the decay of a particle)
to be described. If the variance in the time steps for such a
process is sufficiently narrow, an “average” trajectory could be
considered by calculating the moments 〈δtn〉, with an average
number of measurements 〈N〉 = τ/〈δt〉.

Thus far, we have taken the measurements to occur
sufficiently close together that the measurement outcome can
be assumed to be constant. However, it is possible to relax
this condition, still with measurement occurring much more
frequently than changes to the measured value, and describe
the system evolution by a straightforward extension to the
QqZD formalism. Between changes in the measurement value,
the system is described by the appropriate QqZD effective
evolution operator for this subspace. When the measurement
eigenvalue changes, from a value corresponding to subspace
with projector P to that of subspace with projector P ′, the
change in the state is ρ → P ′HPρPHP ′, from the leading
term O(δt2) allowing transitions out of the measurement
subspace. After the measurement, the system is again de-
scribed by a QqZD effective evolution operator, but now that
corresponding to the new subspace. In an experimental run, one
can simply determine when this change in subspace occurs by
observing when the measurement value changes.

V. APPLICATION TO MANY-BODY SYSTEMS

Many-body systems often possess interesting properties
that are described by observables dependent on the collective
state of multiple particles. Different configurations of particles
can still result in the same system-wide measurement value for
this observable; such configurations hence correspond to the
same measurement subspace. This makes many-body systems
a suitable arena for QqZD, and we shall here provide examples
of many-body systems, along with associated observables
formed of linear functions of the occupation numbers of
the system modes, showing how this can lead to correlated
dynamics.

(a) (i)

(ii)

(iii)

(b) (i)

(ii)

(iii)

FIG. 2. Correlated processes in spin chains. Multiple configura-
tions of spins (a) belong to the same measurement subspace. Processes
that ultimately preserve the measurement can take place, at [b(i)] first
or [b(ii),(iii)] higher order. Here, the measurement is signified by
the total magnetization of the green regions.

A. Spin chains

For the first example, we consider an array of spins in a
chain [35], where each pair of neighboring spins is coupled
by an exchange interaction S+

i S−
i+1, such that the full system

Hamiltonian is

H = −J
∑
〈ij〉

S+
i S−

j ,

where J is the coupling strength of the interaction and 〈ij 〉
indicates that i and j are spins on neighboring sites. Further
terms that can be added to this Hamiltonian which we do
not consider here in our examples are biases due to external
fields or anisotropies λSX,Y,Z and spin-spin interactions along
the Z axis J̃ SZ

i SZ
j . We take the total magnetization (the

sum of SZ values) of a set of sites as our measurement,
such that the subspaces are defined by states with the same
magnetization in this region [Fig. 2(a)]. Dynamics changing
this magnetization are forbidden by the Zeno locking, and thus
the standard Zeno Hamiltonian contains only spin exchange
between neighboring spins with either both, or neither, in the
measured regions. That is, we can write the standard Zeno
Hamiltonian as

H
(1)
Z = −J

⎛
⎝ ∑

〈i∈A,j∈A〉
S+

i S−
j +

∑
〈i∈B,j∈B〉

S+
i S−

j

⎞
⎠, (3)

where A is the set of sites in the measured region(s), and B
the unmeasured sites.

However, the higher-order quasi-Zeno Hamiltonians me-
diate correlated spin-exchange events, where multiple pairs
of spins flip approximately simultaneously between mea-
surements, conserving the total magnetization measured. The
second-order quasi-Zeno Hamiltonian can be written

H
(2)
Z = J 2

∑
〈i ∈ A,j ∈ B〉
〈k ∈ A,l ∈ B〉

(S+
i S−

j S−
k S+

l + S−
i S+

j S+
k S−

l ). (4)

These processes mediate two such correlated exchanges,
involving only pairs that straddle the measurement region
boundaries, and can be of two forms: in the first, both
exchanges happen between the same pair (i.e., i = k and
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(a)

(b)

FIG. 3. Correlated atomic processes. (a) Frequent, consistent
measurement of the occupation of a set of sites facilitates correlated
tunneling of atoms over the boundaries of the measured region,
while (b) measuring occupation number differences gives rise to pair
process-like effects. Colored boxes indicate the measured regions
(green positive, blue negative), and arrows the same color indicate
correlated tunneling events.

j = l), but in opposite directions, thus leaving the individual
spins unchanged; in the second, the two pairs are distinct,
with one exchange increasing the total magnetization of the
measurement region, while the other decreases it. These
processes are illustrated in Fig. 2(b). In the latter case, there
is no restriction on the spatial separation of the two pairs, and
hence these processes can be correlated over long distances;
this then resembles a superexchange interaction [36,37], but
with the potential for longer separation between the pairs.

B. Atoms in optical lattices

Analogous processes can be considered for atoms in an
optical lattice. In state-of-the-art setups, lattices containing
bosonic atoms have been generated inside optical cavities
[38,39], and these setups allow for linear functions of the
atomic occupation of each site to be measured through the
leakage of light from the cavity after having been scattered
by the atoms [27,40]. In the absence of measurement, and
with negligible cavity backaction, the atoms behave according
to the Bose-Hubbard Hamiltonian [41] H = −J

∑
〈ij〉 b

†
i bj +

U
∑

i b
†
i b

†
i bibi , where bi is the bosonic annihilation operator

for an atom localized at site i,J parametrizes the rate of atomic
hopping between neighboring sites, and U is the strength of
on-site interactions between atoms.

Measurement of functions of atomic occupation numbers
of lattice sites controls the allowed tunneling processes b

†
i bj ,

forbidding those that change the measurement value, and
correlating sets of tunneling events that together preserve it
(analogous effects occur for continuous measurement with
quantum jumps [28]). In Fig. 3(a) we illustrate how measuring
the total occupation of a central region mediates long-range
correlated tunneling events across the boundaries of the region.
The Zeno Hamiltonian is given by (again with A indicating
the measured sites, and B the unmeasured)

H
(1)
Z = −J

⎛
⎝ ∑

〈i∈A,j∈A〉
b
†
i bj +

∑
〈i∈B,j∈B〉

b
†
i bj

⎞
⎠

+U
∑

i

b
†
i b

†
i bibi, (5)

thus allowing tunneling between pairs of sites where either
both or neither are in the measured region, and leaving the
on-site interactions unaffected. The second-order quasi-Zeno
Hamiltonian is given by

H
(2)
Z = J 2

∑
〈i ∈ A,j ∈ B〉
〈k ∈ B,l ∈ A〉

(b†i bj b
†
kbl + b

†
j bib

†
l bk). (6)

This mediates correlated pairs of tunneling events between
site pairs that straddle the boundaries of the two regions
A and B, preserving the total occupation of sites within
region A. When the two site pairs are identical (that is,
i = l and j = k), the associated terms can be reexpressed
as effective chemical potential and nearest-neighbor density-
density interaction terms J 2(2ninj + ni + nj ). In the nonin-
teracting limit (U = 0), this can be mapped onto the spin
chain scenario Eqs. (3) and (4) considered above, through a
Holstein-Primakoff transformation [35].

We can also consider a scenario where the measurement
is of the difference of occupation numbers at different sites.
As illustrated in Fig. 3(b), such a measurement scheme can
give rise to correlated events resembling pair processes, where
tunneling events into or out of a particular site or region can
only occur in pairs, in order to preserve the measurement value.
As before, the Zeno Hamiltonian contains the processes where
tunneling occurs between sites that are both in the same region,
as well as the on-site interactions:

H
(1)
Z = − J

⎛
⎝ ∑

〈i∈A,j∈A〉
b
†
i bj +

∑
〈i∈B,j∈B〉

b
†
i bj +

∑
〈i∈C,j∈C〉

b
†
i bj

⎞
⎠

+ U
∑

i

b
†
i b

†
i bibi,

where we now label the three regions as A measured (positive
contribution), B unmeasured, and C measured (negative
contribution). The corresponding second-order quasi-Zeno
Hamiltonian is

H
(2)
Z = J 2

⎛
⎜⎜⎜⎜⎝

∑
〈i ∈ A,j ∈ B〉
〈k ∈ C,l ∈ B〉

b
†
i bj b

†
kbl +

∑
〈i ∈ A,j ∈ B〉
〈k ∈ B,l ∈ A〉

b
†
i bj b

†
kbl

+
∑

〈i ∈ B,j ∈ C〉
〈k ∈ C,l ∈ B〉

b
†
i bj b

†
kbl +

∑
〈i ∈ A,j ∈ C〉
〈k ∈ C,l ∈ A〉

b
†
i bj b

†
kbl + H.c.

⎞
⎟⎟⎟⎠.

The first term in H
(2)
Z mediates the pair processlike effects,

while the other terms correspond to the simultaneous crossing
in opposite directions across the boundaries of each pairing
of regions. As before, when these boundary pairs are at the
same location, this is equivalent to an effective chemical
potential and nearest-neighbor density-density interaction for
these boundary sites.

We use a small-scale simulation to demonstrate these
effects, using the scheme of Eqs. (5) and (6) and Fig. 3(a).
We simulate this setup, with two atoms distributed across four
lattice sites, with no interparticle interactions (U = 0), and the
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FIG. 4. Simulation of correlated many-body dynamics. (a) Simulation of an effective Hamiltonian for atoms in an optical lattice, for the
scheme of Eqs. (5) and (6) and Fig. 3(a), showing first- and second-order processes. Color map shows average site occupation. (b) Survival
probability for the system to remain in the same Zeno subspace. (c) Exact evolution of the same system. (d) Difference between results for
exact and effective evolution; the primary error is in capturing the first-order dynamics, and scales linearly with δt (see main text). (e) Evolution
under the Zeno Hamiltonian of QZD for the same system fails to capture the correlated processes. Simulations use four sites, two atoms,
δtJ = 10−2,U = 0, with measurement imposing the constraint N2 + N3 = 1. Initial state |1,1,0,0〉.

total occupation of the central two sites measured at time steps
Jδt = 10−2 (well within the Zeno-locking regime), fixing
their occupation at one atom: N2 + N3 = 1 (see Appendix
B for further details). We calculate the evolution of the system
for the QqZD effective Hamiltonian, the exact evolution,
and the standard QZD evolution on a trajectory where the
measurement outcome is unchanging (Fig. 4). We see that
there is a very close agreement between the effective (a)
and exact evolution (c), as shown by their difference (d).
They exhibit the tunneling between the central sites (as per

standard QZD), as well as the transfer of atoms mediated by
the quasi-Zeno dynamics between the two outer sites due to
correlated tunneling, and the convergence to a (set of) steady
state(s). In contrast, the standard QZD evolution (e) completely
fails to capture the correlated tunneling and convergence to a
steady state, showing only the tunneling between the central
sites. We also show (b) the survival probability for the system
to remain in the Zeno subspace; we see that while the full
convergence to the steady state takes a long time (with such
trajectories occurring with low probability), the additional
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quasi-Zeno dynamics can still take place on time scales for
which Zeno locking is maintained with a high probability. The
lower probability to reach the steady state (in comparison to
the three-state example given in Sec. III) is in part because of
the competition between the first- and second-order dynamics,
as the system can be in states for which (second-order)
quasi-Zeno dynamics do not take place (e.g., |1,1,0,0〉), but
leakage from the measurement subspace still can; the standard
Zeno dynamics causes transitions between such states and the
states for which the quasi-Zeno dynamics do take place (e.g.,
|1,0,1,0〉).

The primary quantitative disagreement between the exact
and approximate effective evolution is in capturing the first-
order processes. This is because of the discrepancy between
the exact binomial series, and the approximate effective
exponential power series. Naively, one can argue this error to

be O(H (1)
Z

2
tδt) (up to a maximum of the largest possible occu-

pation of the site), because for each quasi-Zeno Hamiltonian
the discrepancy is in its associated second-order term in the
evolution, thus making the Zeno Hamiltonian H

(1)
Z responsible

for the primary level of error. However, the convergence to a
steady-state suppresses the dynamics, and so curtails this error
to some maximum value due to the damping of the accessible
state space in time by H

(2)
Z .

VI. DISCUSSION

We have shown how, beyond the freezing of the observed
value of a frequently repeated measurement of a system
manifest by QZE and QZD, it is possible for dynamics to still
take place across different states in the measurement subspace,
even in the absence of direct transitions between them, via
higher-order virtual processes that arise through transitions
that take the system temporarily out of the measurement
subspace, without altering the consistent outcome of the
measurement value. We developed this QqZD formalism,
and derived effective Hamiltonians to describe the system
evolution. We generalized to incorporate measurements with
nonequal time steps and time-dependent Hamiltonians, and
how the state and evolution of the system change when the
measurement value changes. We showed that this regime
generates correlated dynamics in many-body systems.

Whilst being relatively simple both mathematically and
conceptually, this regime has previously been largely unex-
plored, despite the abundance of possibilities for which it
lays the foundations. The field of dissipative dynamics, where
the interactions between a system and its environment can
be exploited to manipulate the dynamics of a system, and
to prepare particular states of the system, has seen a lot of
interest [25,26,42–44], as has the very related field of using
designed measurement as the source of dissipation for quantum
system engineering [27,29,45–47]. This work extends these
ideas, as by eliminating particular processes at first order only,
whilst preserving them at second order (or higher), can lead to
the emergence of correlated dynamics, as demonstrated here.
An experimental realization of this regime would potentially
be less taxing than similar experiments of standard QZE and
QZD, as the requirement on the time between measurements is
less stringent. The possible obstacles we foresee are the need to

maintain the coherence of the system for sufficiently long times
to witness the higher-order effects, and that for verification of
these effects, a second observable must be measured at the
start and end of the protocol that can distinguish states in the
measurement subspace.
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APPENDIX A: DERIVATION OF QUANTUM QUASI-ZENO
DYNAMICS

Here we provide details on the derivation of QqZD, and
clarify assumptions made about the system evolution. First,
we justify modeling the system as evolving under unitary
evolution between measurements. This is true in general for an
isolated, closed quantum system. Appealing to the so-called
church of higher Hilbert space (CHHS) [48], an ancilla can
be appended to the system to account for the effect of an
environment, such that the total system-ancilla evolution is
unitary, even if the system dynamics alone is not. If the
measurement outcome depends only on the system state,
and is independent of the ancilla state, then the inclusion
of the ancilla does not affect the QqZD result—one has
simply to trace out the ancilla from the QqZD evolution
in the same manner as usual for recovering the system
dynamics from a CHHS treatment. A second simplification
made in our treatment is that we treat the measurement as
von Neumann projections. This is in keeping with the simple
derivations of QZE and QZD [1,6], which have subsequently
been extended to more general settings, including coupling to
external “measurement devices” [49]. These treatments that
incorporate the measurement device recover QZE when the
time taken for the external device to measure the system state
is much shorter than the system dynamics. It has also been
shown that even when the measurements are not perfectly
projective, QZE can still persist [30]. Thus we expect when
these realistic concerns are incorporated into our simplified
picture of measurement, the results should be preserved.

In deriving the effective evolution for QqZD, we make use
of some important properties of projectors; they are idempotent
and mutually orthogonal (PjPk = Pj δjk), and together span
the entire Hilbert space (

∑
j Pj = I) [50].

As noted in the main text, the effect on state ρ of unitary
evolution followed by a projective measurement is described
by ρ → PU (δt)ρU †(δt)P . Defining U1(δt) = PU (δt), this
can be written ρ → U1(δt)ρU

†
1 (δt). Following N such sets

of evolution and measurement in a total time τ = Nδt , with
each measurement outcome in the same subspace P , we can
describe the resulting system evolution by

ρ → UN (δt)ρU
†
N (δt),
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where UN (δt) = U1(δt)N = (PU (δt))N . Expanding U (δt) as
a power series in terms of the Hamiltonian H , we hence have

UN (δt) =
[
P

(
1 − iHδt − H 2 δt2

2
+ O(δt3)

)]N

. (A1)

In the full QZD limit, where δt → 0 and N → ∞, this
binomial expansion is exactly equal to the exponential of
the Zeno Hamiltonian UN (τ ) → exp(−iH

(1)
Z τ ), giving the

standard QZD result. Close to, but outside of, this limit,
we can still approximately describe this evolution by an
exponential, but with the inclusion of the higher-order terms
added perturbatively. These corrections can be found by
examining the difference between the exact evolution, and
the evolution under the Zeno Hamiltonian H

(1)
Z . Specifically,

focusing on the O(δt2) term in the power series expansion, we
see that the exact evolution contains the term −PH 2Pδt2/2,
whereas an expansion of the exponential of the Zeno Hamil-

tonian yields −H
(1)
Z

2
δt2/2. We use the difference between

these two to motivate our definition of the second-order
quasi-Zeno Hamiltonian: H

(2)
Z = PH (I − P)HP , and the

requisite correction is given by −H
(2)
Z δt2/2. Moreover, we

then define the general quasi-Zeno Hamiltonian as H
(k)
Z =

PH ((I − P)H )k−1P to account for the corrections at higher
orders of δt . These corrections then lead to the definition of the
effective Hamiltonian, which contains the QqZD corrections
to the Zeno Hamiltonian:

Heff =
∞∑

k=1

(−iδt)k−1

k!
H

(k)
Z ,

as previously stated in Eq. (1). Taking this corrected effective
Hamiltonian, we proceed as with the standard QZD case
and exponentiate it to give the effective evolution operator
Ueff(τ ) = exp(−iHeffτ ), and the associated system evolution
at time τ = Nδt after N measurements is hence

ρ → Ueff(τ )ρU
†
eff(τ ).

We note that this replacement of the binomial series by an
exponential is approximate, and becomes exact only in the
limit δt → 0 (for fixed τ ). However, as we are in the limit
|Hδt | � 1, this approximation is still very faithful to the exact
evolution, as can be witnessed in our simulation.

The kth-order quasi-Zeno Hamiltonian mediates kth-order
transitions, where the initial and final states are in the
measurement subspace P , while all the intermediate states
are not. The absence of processes in these Hamiltonians which
have intermediate return to the measurement subspace is due
to such terms already arising from products of lower-order
quasi-Zeno Hamiltonians; as the higher-order quasi-Zeno

Hamiltonians are intended as corrections to the evolution
described by the lower-order quasi-Zeno Hamiltonians this
is not surprising. For example, the term PHPHP can be

obtained from H
(1)
Z

2
, while PH (I − P)HPHP = H

(2)
Z H

(1)
Z .

APPENDIX B: SIMULATION DETAILS

As stated in the main text, we simulate the scenario of
Eqs. (5) and (6) and Fig. 3(a) in Fig. 4, for two atoms distributed
across four lattice sites. The chosen parameters are Jδt = 10−2

and U = 0, with measurement of the central two sites fixing
N2 + N3 = 1, and initial state |1,1,0,0〉. We take the outcome
of each measurement to be consistent with this value; that is,
we postselect the trajectory in which there are no jumps to
other subspaces.

Applying this specific case to Hamiltonian Eqs. (5) and
(6), the Zeno Hamiltonian contains only the tunneling terms
between sites 2 and 3:

H
(1)
Z = −J (b†2b3 + b

†
3b2). (B1)

The second-order quasi-Zeno Hamiltonian contains terms
where atoms tunnel 1 → 2 and 3 → 4 in a correlated manner
(and the reverse process), as well as correlated tunnelings
across the same barrier in opposite directions:

H
(2)
Z =J 2(2(b†1b2b

†
3b4 + b

†
2b1b

†
4b3)

+ b
†
1b2b

†
2b1 + b

†
2b1b

†
1b2

+ b
†
3b4b

†
4b3 + b

†
4b3b

†
3b4).

This can be rearranged and rewritten in terms of the
effective chemical potentials and nearest-neighbor density-
density interactions:

H
(2)
Z =J 2(2(b†1b2b

†
3b4 + b

†
2b1b

†
4b3)

+ 2(n1n2 + n3n4) + n1 + n2 + n3 + n4). (B2)

The constraint imposed by having the central two sites’
occupation fixed at one atom reduces the size of the accessible
state space. There are two possible states accessible to these
two sites (|1,0〉 and |0,1〉). Similarly, given that the total
number of atoms is also fixed at two, the outer two sites
1 and 4 also have their occupation fixed at one atom, and
thus may be any of the same two states, giving a total state
space of dimension 4 for the whole system. This is then very
amenable to exact calculations. We calculate the effective and
exact evolution by using Eqs. (B1) and (B2) with Eqs. (1)
and (A1), respectively, and the standard Zeno evolution by
inputting Eq. (B1) into UQZD(τ ) = exp(−iH

(1)
Z τ ).
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