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Transformation of bound states of relativistic hydrogenlike atoms into a two-component form
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A single-step Eriksen transformation of 1S1/2, 2P1/2, and 2P3/2 states of the relativistic hydrogenlike atom
is performed exactly by expressing each transformed function (TF) as a linear combination of eigenstates of
the Dirac Hamiltonian. The TFs, which are four-component spinors with vanishing two lower components, are
calculated numerically and have the same symmetries as the initial states. For all nuclear charges Z ∈ [1 . . . 92]
a contribution of the initial state to TFs exceeds 86% of the total probability density. Next a large contribution to
TFs comes from continuum states with negative energies close to −m0c

2 − Eb, where Eb is the binding energy
of the initial state. The contribution of other states to TFs is less than 0.1% of the total probability density.
Other components of TFs are nearly 0, which confirms both the validity of the Eriksen transformation and the
accuracy of the numerical calculations. The TFs of the 1S1/2 and 2P1/2 states are close to the 1s and 2p states
of the nonrelativistic hydrogenlike atom, respectively, but the TF of the 2P3/2 state differs qualitatively from
the 2p state. Functions calculated with the use of a linearized Eriksen transformation, being equivalent to the
second-order Foldy-Wouthuysen transformation, are compared with corresponding functions obtained by Eriksen
transformation. Very good agreement between the two results is obtained.
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I. INTRODUCTION

In their pioneering work, Foldy and Wouthuysen (FW)
introduced the method of separating positive- and negative-
energy states of the Dirac Hamiltonian [1]. In the presence of
external fields the odd terms of the lowest order in 1/(m0c

2) are
removed to the desired accuracy by a sequence of unitary trans-
formations. As a result, the states of the Dirac Hamiltonian
having positive energies are transformed to the two-component
form, in which two upper components are nonzero and two
lower components vanish, up to the expected accuracy. In
this way one reduces the Dirac equation to two equations
for two-component spinors describing states of positive and
negative energies, respectively. The widely used second-order
FW transformation converts the Dirac Hamiltonian into a
Schrodinger Hamiltonian with relativistic corrections: the p̂4

term, the spin-orbit interaction, and the Darwin term. Works
considering higher-order FW transformations are discussed in
Ref. [2].

Another possibility of transforming the Dirac Hamiltonian
into a two-component form was proposed by Douglas and
Kroll (DK) in Ref. [3]. In this approach, used mostly in
quantum chemistry, one performs a series of transformations
leading to an expansion of the Dirac Hamiltonian in orders of
the external potential (see [3] and [4]). In each step of the DK
transformation the odd terms of the lowest order are removed
up to the expected accuracy. Using this method it is possible
to include many-electron effects into real atomic systems [5].
For a review of works related to this subject see Ref. [6].

Practical limitations of applying higher-order FW or DK
transformations are due to complicated calculations since
one has to manipulate increasing numbers of noncommuting
operators. To overcome these limitations several approaches
have been proposed, removing odd terms to a sufficiently
high order with the use of numerical methods [7,8]. The
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resulting 2 × 2 Schrödinger-like equations with relativistic
corrections are then solved numerically for energies and wave
functions. Good agreement between approximate and exact
Dirac energies was reported [8–11].

One can avoid complicated calculations in special cases us-
ing transformations separating exactly the Dirac Hamiltonian
into a two-component form. Such a transformation for free
relativistic electrons was proposed by Foldy and Wouthuysen
[1]. Case [12] found an exact form of the FW transformation
for the presence of a constant magnetic field. Tsai [13]
and Weaver [14] reported exact FW transformations for the
presence of a magnetic field and electroweak interactions.
Moss and Okninski [15] pointed out that there exist several
transformations separating positive and negative states of the
Dirac Hamiltonian, leading to similar but not identical results
for transformed functions. Nikitin [16] reported on FW-like
transformations for a constant electric field, a dipole potential,
and some classes of external fields with special symmetries.
The common weakness of the above methods is their inability
to generalize the results to arbitrary potentials.

There exist in the literature several examples of functions
transformed with the use of FW-like or DK-like transforma-
tions. Calculation of transformed functions and the transforma-
tion kernel for the FW transformations for free Dirac electrons
were given by Rusin and Zawadzki in Ref. [17], and for the
presence of a magnetic field in Ref. [18]. In the latter paper, the
analytical expression for a transformed Gaussian wave packet
was obtained. Neznamov and Silenko [19,20] analyzed the
properties of functions transformed with the use of FW-like
transformations and showed that the lower components of the
resulting functions are of the second order of 1/(m0c

2). In
several works related to DK-like transformations the resulting
functions were obtained numerically [6,8–11].

A transformation of the Dirac Hamiltonian for any potential
converting it into a block-diagonal form was proposed by Erik-
sen in Refs. [21] and [22]. This transformation is performed
in a single step by a unitary operator Û , which is a nonlinear
function of the Dirac Hamiltonian. Because of its nonlinearity,
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Û is usually approximated by a finite series in powers of
1/(m0c

2) [2,21]. The validity of the Eriksen transformation
and its power-series expansion was confirmed by de Vries
[2] and Silenko [23]. In the lowest-order terms, the Eriksen
transformation agrees with the results obtained by the FW
method, but higher-order terms differ [2,19].

The subject of the present work is transformation of bound
states of the Dirac Hamiltonian with a nontrivial potential by
the Eriksen operator Û without expanding Û in a power series.
In our approach we concentrate on the transformed functions
and their properties, and not on the transformed operators. Our
calculations are performed for the relativistic hydrogenlike
atom whose spectrum consists of both bound and continuum
states. To illustrate our method and results the transformation is
performed numerically for the three lowest bound states of the
relativistic hydrogenlike atom—1S1/2, 2P1/2, and 2P3/2—for
several values of the nuclear charge Z. To our knowledge there
has been no attempt to calculate functions transformed by the
single-step Eriksen transformation for the Dirac Hamiltonian
whose eigenfunctions are bound states.

It should be remembered that by solving the Dirac equation
(analytically or numerically), one directly obtains all its
eigenvalues and eigenstates that can be used for calculations
of observables, and no further transformation is needed. The
Dirac equation transformed to the block-diagonal form can
also be used for calculation of the observables, and both
approaches yield the same results because the wave functions
in both representations are related to each other by the unitary
transformation. Thus, the choice of representations of the Dirac
equation depends on its convenience in further calculations or
applications.

The paper is organized as follows. In Sec. II we describe
our approach, and in Sec. III we specify wave functions of the
relativistic hydrogenlike atom. In Sec. IV we show results of
calculations and in Sec. V we discuss our results. The paper is
concluded by a Summary (Sec. VI). In Appendixes A and B
we specify details of our calculations.

II. ERIKSEN TRANSFORMATION

Let us consider the Dirac Hamiltonian describing a relativis-
tic electron in the presence of the Coulomb potential created
by the atomic nucleus,

Ĥ = c
∑

i=x,y,z

α̂i p̂i + β̂m0c
2 − Ze2

4πε0r
, (1)

in which α̂i and β̂ are Dirac matrices in the standard notation,
|e| and m0 are the electron charge and mass, respectively, and
Z ∈ [1 . . . 92] is the nuclear charge. Both eigenenergies and
eigenstates of Ĥ are known analytically. The latter are given
by four-component spinors. The spectrum of Ĥ consists of
an infinite set of bound states having positive energies below
E = +m0c

2 and two sets of continuum states having energies
above +m0c

2 and below −m0c
2, respectively.

The Eriksen transformation is defined by the following
unitary operator [21]:

Û = 1√
2 + β̂λ̂ + λ̂β̂

(1 + β̂λ̂) ≡ Ẑ + Ẑβ̂λ̂. (2)

The above equation defines the operator Ẑ ,

Ẑ = 1√
2 + β̂λ̂ + λ̂β̂

. (3)

The sign operator λ̂ is defined as

λ̂ = Ĥ√
Ĥ2

. (4)

It is assumed that E = 0 is not an eigenenergy of Ĥ, which
holds for Ĥ in Eq. (1)

Let 〈r|n〉 = (ψ1,ψ2,ψ3,ψ4)T be an arbitrary eigenfunction
of Ĥ corresponding to a positive energy. After the Eriksen
transformation there is (see Appendix A)

Û

⎛
⎜⎝

ψ1

ψ2

ψ3

ψ4

⎞
⎟⎠ =

⎛
⎜⎜⎝
Ûψ1

Ûψ2

0
0

⎞
⎟⎟⎠; (5)

i.e., the transformed function has vanishing two lower com-
ponents. Because Û in Eq. (2) is a nonlinear function of the
differential operator ∇̂ and the position operator r̂ , it is not
possible to express Ûψ1 and Ûψ2 in a closed form.

To overcome this problem one notes that for an arbitrary
eigenstate |n〉 of Ĥ having energy En �= 0 there is

λ̂|n〉 = En

|En| |n〉 ≡ εn|n〉, (6)

where εn = ±1 is the sign of En. Thus, using Eq. (6) one can
calculate the matrix elements of the numerator of Û in Eq. (2)
between the eigenstates of Ĥ in Eq. (1). Similarly, expanding
Ẑ in Eq. (3) in a power series of (β̂λ̂ + λ̂β̂) one can calculate
matrix elements of Ẑ between the eigenstates of Ĥ. Thus, in
spite of the fact that we do not know the explicit form of Û in
Eq. (2), we have a way to calculate its matrix elements between
all eigenstates of Ĥ. This observation indicates the method of
calculating the transformed functions in Eq. (5).

Let |n0〉 and |χ〉 = Û |n0〉 be an eigenstate of Ĥ and its
Eriksen-transformed counterpart, respectively. Since |n〉 form
a complete set of states in the space of four-component spinors,
we may express |χ〉 as a linear combination of |n〉:

|χ〉 =
∑

n

an|n〉, an = 〈n|Û |n0〉. (7)

Equation (7) indicates the way to calculate the function |χ〉.
First, one selects a large but finite set of eigenstates of Ĥ in
Eq. (1), including both bound and continuum states having
positive or negative energies. Then we calculate (analytically
or numerically) the matrix elements 〈n|Û |n0〉 between all
states in the selected set. Finally, we calculate 〈r|χ〉 as a sum
over all eigenfunctions 〈r|n〉 of Ĥ, as given in Eq. (7). In
our approach we make only one approximation, namely, we
truncate the infinite set of eigenstates of Ĥ into a finite one.

Below we describe the consecutive steps necessary to
calculate the transformed functions |χ〉. Our derivation is
restricted to the transformation of the 1S1/2 state of the
relativistic hydrogenlike atom; its generalization to other states
is straightforward.
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A. Discretization of continuum states

Consider an arbitrary state |n〉 of Ĥ. The bound states
|n〉 depend on the integer quantum number n, while the
continuum states depend on the absolute value of the electron’s
momentum p =

√
(E/c)2 − (m0c)2 and the sign of the energy

branch ε = ±1. Three other quantum numbers describing |n〉,
namely, the total angular momentum j , the orbital number l,
and m = jz, are omitted in the present section. We assume
that the bound states are normalized to the Kronecker delta,
〈n1|n2〉 = δn1,n2 , while the continuum states are normalized to
the Dirac delta, 〈pεi

1 |pεj

2 〉 = δ(p1 − p2)δεi ,εj
.

Let ψ1S(r) = 〈r|1S〉 denote the 1S1/2 state of the relativistic
hydrogenlike atom with spin up. Then writing |n0〉 = |1S〉 in
Eq. (7) one obtains

χ1S(r) ≡ 〈r|Û |1S〉 =
∑

n

anψn(r) +
∑
ε=±

∫ ∞

0
aε

pψε
p(r), (8)

where an = 〈ψn|χ1S〉 and aε
p = 〈ψε

p|χ1S〉. The difficulty is
caused by the different normalization of bound and continuum
states. To surmount this problem we follow Refs. [24] and [25]
by replacing the continuum functions ψε

p(r) in Eq. (8) with the
so-called discretized functions 
ε

pi
(r),

χ1S(r) 	
∑

n

anψn(r) +
∑
ε=±

∑
pi

(
aε

pi

√
�p

)

×
(

1√
�p

∫ pi+ �p

2

pi− �p

2

ψε
p(r)dp

)
(9)

=
∑

n

anψn(r) +
∑
ε=±

∑
pi

Aε
pi


ε
pi

(r), (10)

where Aε
pi

and 
ε
pi

(r) are defined within the first and second
sets of large parentheses in Eq. (9), respectively. As shown in
Refs. [24–26], for �p → 0 the summation over pi in Eq. (10)
reduces to the integration over dp, as given in Eq. (8). The
essential features of functions 
ε

pi
(r) are that (a) they are

localized and integrable in the real space [26]; (b) they are
normalized to the Kronecker delta, 〈
εi

pi
|
εj

pj
〉 = δpi ,pj

δεi ,εj
;

(c) they are orthogonal to all functions ψn of bound states; and
(d) 
εi

pi
and ψn form a complete basis for four-component

spinors. Therefore, the bound states ψn(r) and discretized
functions 
ε

pi
(r) can be treated similarly, i.e., all integrals

including continuum functions ψp(r) may be replaced by sums
over discretized functions 
ε

pi
(r). The discretized functions in

Eq. (10) are also called eigendifferentials in the literature [27].

B. Probability amplitudes

To find the probability amplitudes an and Aε
pi

in Eq. (10) we

calculate the matrix elements of Û between eigenstate 1S1/2

and eigenstate |n〉,

an = 〈n|Û |1S〉 = 〈n|Ẑ|1S〉 + 〈n|Ẑβ̂λ̂|1S〉, (11)

Aε
pi

= 〈

ε

pi

∣∣Û |1S〉 = 〈

ε

pi

∣∣Ẑ|1S〉 + 〈

ε

pi

∣∣Ẑβ̂λ̂|1S〉, (12)

with the normalization condition∑
n

|an|2 +
∑
ε=±

∑
pi

∣∣Aε
pi

∣∣2 = 1. (13)

The operator Ẑ has vanishing matrix elements between the
eigenstates of Ĥ having positive and negative energies (see
Appendix A). Since |1S〉 state has positive energy there is
λ̂|1S〉 = |1S〉 [see Eq. (6)]. The use of Eq. (6) leads to the
exact treatment of the sign operator λ̂ in the calculation of the
matrix elements of Û . Inserting the unity operator

1̂ =
∑

n

|n〉〈n| +
∑
ε=±1

∑
pi

∣∣
ε
pi

〉〈

ε

pi

∣∣ (14)

into expressions for an and Aε
pi

in Eqs. (11) and (12), we obtain

an = 〈n|Ẑ|1S〉 +
∑
n′

〈n|Ẑ|n′〉〈n′|β̂|1S〉

+
∑
pj

〈n|Ẑ|
+
pj

〉〈
+
pj

|β̂|1S〉, (15)

A+
pi

= 〈
+
pi

|Ẑ|1S〉 +
∑
n′

〈
+
pi

|Ẑ|n′〉〈n′|β̂|1S〉

+
∑
pj

〈
+
pi

|Ẑ|
+
pj

〉〈
+
pj

|β̂|1S〉, (16)

A−
pi

=
∑
pj

〈
−
pi

|Ẑ|
−
pj

〉〈
−
pj

|β̂|1S〉. (17)

Thus, to find the probability amplitudes an and Aε
pi

one needs
to calculate seven types of matrix elements:

〈n′|β̂|n〉, 〈
+
pi

|β̂|n〉, 〈
−
pi

|β̂|n〉, 〈n′|Ẑ|n〉,
(18)

〈
+
pi

|Ẑ|n〉, 〈
+
pi

|Ẑ|
+
pj

〉, 〈
−
pi

|Ẑ|
−
pj

〉.
The matrix elements of β̂ between two eigenstates of Ĥ are

obtained in a standard way by computing four integrals be-
tween the components of these states (see below). Calculation
of the matrix elements of Ẑ is more complicated since this
operator cannot be represented in a closed form [see Eq. (3)].
To find Ẑ in Eq. (3) we introduce an auxiliary operator,

Ŝ = λ̂β̂ + β̂λ̂ =
∑

s

ξs |s〉〈s|, (19)

where ξs and |s〉 are the eigenvalues and eigenvectors of Ŝ,
respectively. Then, assuming that the square root exists, one
has

Ẑ =
∑

s

1√
2 + ξs

|s〉〈s|. (20)

Equations (19) and (20) give us a practical way to calculate
Ẑ in four steps. We first select the basis, consisting of three
sets of eigenstates of Ĥ: bound states {ψn}, discretized states
having positive energies {
+

pi
}, and discretized states having

negative energies {
−
pi

}. Then we calculate the matrix elements

of Ŝ in Eq. (19) between these states. The resulting matrix has a
block-diagonal form plotted schematically in Fig. 1. The three
sets of states composing the basis of matrix Ŝn1,n2 are infinite
and the matrix in Fig. 1 is of infinite order. In our calculations
we truncate the infinite sets to finite ones (see Table I). In the
third step one calculates all eigenvalues and eigenstates of Ŝ,
as given in Eq. (19), and in the last step one constructs the
operator Ẑ in Eq. (20). After this process Ẑ is approximated
by a finite matrix of size = 1576 × 1576 (see Table I).
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FIG. 1. Schematic matrix Ŝ = β̂λ̂ + λ̂β̂ in the basis of states
ψnS and discretized functions 
±

pi
in Eq. (10). Diagonal matrix

elements, which dominate over nondiagonal ones, are shown ex-
plicitly. Nondiagonal elements between bound states are indicated by
x, while nondiagonal elements between bound and continuum states
are indicated by y. Note the block-diagonal form of matrix Ŝ and
vanishing matrix elements between states of positive and states of
negative energies.

C. Foldy-Wouthuysen-like approximation for Û
Following Eriksen, one can formally expand the square root

in Eq. (3), treating q̂ = β̂λ̂ − 1 as an expansion parameter. In
the second order in q̂, one obtains [21]

Û 	 1 + 1
2 q̂ − 1

8 (q̂ + q̂∗) + . . . . (21)

Eriksen showed that this expansion is equivalent to the FW
transformation in the second order of 1/(m0c

2). Functions
transformed with the use of Eriksen and FW transformations
have similar upper components. For this reason we refer to the
transformation defined in Eq. (21) as the FW-like expansion
of the Eriksen operator. After simple algebra one obtains

ÛFW = 3
4 + 1

2 β̂λ̂ − 1
8 (β̂λ̂ + λ̂β̂). (22)

The operator ÛFW in Eq. (22) is a linear function of Ŝ =
β̂λ̂ + λ̂β̂, and it is not necessary to calculate its inverted square

TABLE I. Model parameters used in calculations.

Quantity Value

Number of bound states 40
Number of continuum states

For E > 0 512
For E < 0 1024

Summation over discretized states in Eqs. (9) and (10)
�p 0.1 �(rB/Z)−1

Lower limit of pi 0.1 �(rB/Z)−1

Upper limit of pi

For E > 0 51.2 �(rB/Z)−1

For E < 0 102.4 �(rB/Z)−1

root Ẑ [see Eqs. (3) and (20)]. This simplifies calculations of
transformed functions ÛFW|ψ〉.

Let |n1〉 and |n2〉 be two eigenstates of Ĥ, whose signs are
ε1 and ε2, respectively. For ε1 = ε2 we have

〈n1|ÛFW|n2〉 = 3
4δn1,n2 + 1

4ε2β̂n1,n2 , (23)

while for ε1 = −ε2 there is

〈n1|ÛFW|n2〉 = 1
2ε2β̂n1,n2 . (24)

Comparing Eqs. (15)–(17) and Eqs. (23) and (24) we see that
in both cases one has to calculate the same matrix elements of
β̂, as listed in Eq. (18).

III. EIGENSTATES OF Ĥ AND SELECTION RULES
FOR β̂n1,n2

In this section we find selection rules for the matrix elements
of β̂ between eigenstates of Ĥ. Next we introduce the radial
wave functions of bound and continuum states of Ĥ. We also
qualitatively estimate magnitudes of radial integrals used in
the matrix elements of β̂.

A. Selection rules for β̂n1,n2

Because of the spherical symmetry of the problem, the
eigenstates 〈r|n〉 are products of the radial functions g(r) and
f (r), and the function (θ,ϕ), depending on angular variables.
The latter is characterized by three quantum numbers: the
orbital angular momentum l, the total angular momentum j ,
and m = jz. The auxiliary quantum number κ is defined as

κ =
{

−j − 1
2 for j = l + 1

2 ,

j + 1
2 for j = l − 1

2 .
(25)

It is either a positive or a negative integer, but not 0. The
eigenstates of Ĥ are [28,29]

ψn(r,θ,ϕ) =
(

g(r) κ,m(θ,ϕ)
if (r) κ,−m(θ,ϕ)

)
, (26)

where κ,m(θ,ϕ) are two-component spinors,

κ,m(θ,ϕ) =

⎛
⎜⎝

√
κ+ 1

2 −m

2κ+1 Yκ,m−1/2(θ,ϕ)

− κ
|κ|

√
κ+ 1

2 +m

2κ+1 Yκ,m+1/2(θ,ϕ)

⎞
⎟⎠, (27)

and Ya,b(θ,ϕ) are the spherical harmonics. For a > 0 the latter
are defined as

Ya,b(θ,ϕ) = (−1)b
√

2a + 1

4π

(a − b)!

(a + b)!
P b

a (cos(θ ))eibϕ, (28)

where P b
a (cos(θ )) are the associated Legendre polynomials

in the usual notation [31]. For a < 0 there is Ya,b(θ,ϕ) =
Y−a,−b(θ,ϕ), and for |a| < |b| there is Ya,b(θ,ϕ) ≡ 0. The
functions κ,m(θ,ϕ) fulfill the orthogonality relation [29]∫ π

0

∫ 2π

0
κ1,m1 (θ,ϕ)κ2,m2 (θ,ϕ) sin(θ )dθdϕ = δκ1κ2δm1m2 .

(29)
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TABLE II. Quantum numbers characterizing eigenstates of the
relativistic hydrogenlike atom used for calculations in Figs. 2 to 6.

Eigenstate κ m nr Examples of intermediate states

1S1/2 −1 1/2 0 1S1/2, 2S1/2, 3S1/2, . . .

2P1/2 1 1/2 1 2P1/2, 3P1/2, 4P1/2, . . .

2P3/2 −2 3/2 1 2P3/2, 3P3/2, 4P3/2, . . .

The matrix element of β̂ between two eigenstates |n1〉 and
|n2〉 is

β̂n1,n2 =
∫

d3r
(

g1κ1,m1

if1κ1,−m1

)†(
1̂ 0
0 −1̂

)(
g2κ2,m2

if2κ2,−m2

)

= δκ1κ2δm1m2

∫ ∞

0
(g1g2 − f1f2)r2dr. (30)

Equation (30) gives selection rules for the matrix elements
of β̂ between eigenstates of Ĥ. The matrix element β̂n1,n2 is
nonzero only for states having the same quantum numbers κ

and m. Returning to Eqs. (15)–(17) we see that all intermediate
states |n′〉 and |
±

pj
〉 must be described by the same quantum

numbers κ = −1 and m = 1/2 as the initial state |1S〉. This
holds for both the bound and the continuum eigenstates of Ĥ.
Below we analyze three groups of states characterized by the
quantum numbers listed in Table II. Extension of the results to
states described by other quantum numbers is straightforward.

B. Radial wave functions

To complete determination of the matrix elements β̂n1,n2

in Eq. (30) we need to calculate the integrals over the radial
functions g(r) and f (r). These functions are known explicitly
for both bound and continuum states. The integrals in Eq. (30)
can be computed either numerically or analytically; see below.
In this work we use analytical expressions for the integrals,
which is more accurate for large quantum numbers n or large
values of electron momentum.

For bound eigenstates the functions g(r) and f (r) are
[29,30]

rg(r) = −A
√

1 + Wnr
B {nrF1 − (N − κ)F0}, (31)

rf (r) = −A
√

1 − Wnr
B {nrF1 + (N − κ)F0}, (32)

where

A =
√

�(2γ + 1 + nr )

�(2γ + 1)
√

4N (N − κ)nr !

(
2Z

NrB

)1/2

, (33)

B = exp

(
− Zr

NrB

)(
2Zr

NrB

)γ

, (34)

Fν = 1F1

(
−nr + ν,2γ + 1,

2Zr

NrB

)
, (35)

where ν = 0,1. The discrete energy is

Enr
= m0c

2

{
1 +

(
αZ

nr + γ

)2
}−1/2

, (36)

in which γ =
√

κ2 − (αZ)2, α = e2/(4πε0�c) 	 1/137 is
the fine-structure constant, Wnr

= Enr
/m0c

2 < 1, N =√
n2

κ − 2nr (|κ| − γ ), nκ = nr + |κ|, rB 	 0.51 Å is the Bohr
radius, and the function 1F1(a,c,z) is the confluent hyperge-
ometric function in the standard notation [31]. Since the first
argument of the confluent hypergeometric function in Eq. (35)
is a negative integer, this function reduces to a polynomial of
the order nr − ν of z = 2Zr/(NrB). Expanding Enr

in Eq. (36)
in the vicinity of m0c

2 one obtains

Wnr
= Enr

m0c2
	 1 − (αZ)2

2(nr + |κ|)2
+ · · · . (37)

Thus the functions g(r) in Eq. (31) are of the order of unity,
while the functions f (r) in Eq. (31) are of the order of αZ < 1.

Let |1〉 and |2〉 be two eigenstates of Ĥ with the same
quantum numbers κ and m. Then

〈1|2〉 =
∫ ∞

0
[g1(r)g2(r) + f1(r)f2(r)]r2dr = δ1,2, (38)

〈1|β̂|2〉 =
∫ ∞

0
[g1(r)g2(r) − f1(r)f2(r)]dr = β̂12. (39)

Subtracting the above equations one finds

β̂12 = δ1,2 − 2
∫ ∞

0
f1(r)f2(r)r2dr. (40)

Since in Eq. (40) the functions f1(r) and f2(r) are of the
order of αZ, the diagonal matrix elements of β̂ are of the
order of unity, while the nondiagonal ones are of the order of
(αZ)2 � 1.

The continuum radial functions g(r) and f (r) are [28,29,32]

rg(r) = +√
(|Wp| + ε)(DF + D∗F∗), (41)

rf (r) = iε
√

(|Wp| − ε)(DF − D∗F∗). (42)

The electron energy is

Ep = ε
√

(m0c2)2 + (cp)2. (43)

Here ε = ±1 is the energy sign, Wp = Ep/(m0c
2), and |Wp| >

1. Then

D = eπy/2|�(γ + iy)|
2(π |Wp|)1/2�(2γ + 1)

[eiη(γ + iy)], (44)

F = (2kr)γ e−ikr
1F1(γ + 1 + iy,2γ + 1,2ikr). (45)

The momentum of the relativistic electron is �k =
(�/λc)

√
W 2

p − 1 > 0, where λc = �/(m0c) is the Compton
wavelength. Finally, y = αZWp/

√
W 2

p − 1 and

eiη =
(

−κ − iy/Wp

γ + iy

)1/2

. (46)

The function ψε
p(r) = (g(r)

f (r)) is normalized to δ(p1 − p2)δε1ε2 .
The asymptotic forms of g(r) and f (r) are

rg(r) 	 +
√

|Wp| + ε

π |Wp| cos(kr + δ), (47)

rf (r) 	 −ε

√
|Wp| − ε

π |Wp| sin(kr + δ), (48)
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where

δ = y ln(2kr) − arg[�(γ + iy)] − πγ

2
+ η. (49)

Thus, for large arguments, g(r) and f (r) reduce to trigonomet-
ric functions with slowly varying phases. For small electron
momenta there is |Wp| 	 1 + p2/(2m2

0c
2). Then, for ε = +1,

the function g(r) in Eq. (41) is of the order of unity, while
f (r) in Eq. (42) is of the order of p/(m0c) � 1. For ε = −1
the magnitudes of g(r) and f (r) reverse: f (r) is of the order
of unity, while g(r) is of the order of p/(m0c) � 1. For large
electron momenta, p � m0c, the magnitudes of g(r) and f (r)
are similar.

Let us qualitatively estimate the magnitudes of the matrix
elements β̂nS,pε between the bound state |nS〉 and the contin-
uum state |p ε〉 of small momentum, described by the same
values of κ and m. Combining the above estimations with those
for the functions of bound states [see Eq. (37)] we have

β̂nS,pε ∝
{
αZp/(m0c) for ε = +1,

αZ for ε = −1.
(50)

Since p/(m0c) � 1, the continuum states having negative
energies are expected to make much larger contributions to
the transformed functions than the continuum states having
positive energies. This conclusion is confirmed numerically
below.

The matrix elements of β̂ between radial wave functions
can be calculated analytically or numerically. There are several
works related to this subject; see, e.g., Refs. [33–36]. For the
analytical results for the diagonal matrix elements, we refer
the reader to Appendix B.

IV. RESULTS

Our calculations were performed numerically for spin-up
states 1S1/2, 2P1/2, and 2P3/2 for Z ∈ {1 . . . 92}, but for
brevity we quote results for five representative values of Z.
In Table I we list numerical and model parameters used in the
calculations.

We begin with the analysis of matrix elements of β̂ between
bound states. In Table III we list the values of β̂1S,ns for several
Z and n. For all Z the diagonal elements β̂1S,1S dominate
over the nondiagonal ones, which agrees with qualitative
estimations in Eq. (40). The nondiagonal elements of β̂

gradually decay with n, and the analysis indicates that they
vanish as 1/n3/2. For small Z the diagonal elements are nearly
equal to unity, while the nondiagonal ones are negligible. With

TABLE III. Matrix elements of β̂ between bound states of the
relativistic hydrogenlike atom for several values of the nuclear
charge Z.

Z Element β̂1S,1S β̂1S,3S β̂1S,5S β̂1S,10S

1 H 0.99 −3.7 × 10−6 −2.0 × 10−6 −7.9 × 10−7

24 Cr 0.98 −2.1 × 10−3 −1.1 × 10−3 −4.6 × 10−4

47 Ag 0.94 −8.2 × 10−3 −4.4 × 10−3 −1.7 × 10−3

74 W 0.84 −2.0 × 10−2 −1.1 × 10−2 −4.2 × 10−3

92 U 0.74 −3.2 × 10−2 −1.6 × 10−2 −6.4 × 10−3

FIG. 2. Matrix elements β̂nS,p± versus effective wave vector K =
(p/�)(αZ) for several values of n. Results for n = 1 are obtained
analytically from Eq. (B8).

increasing Z the diagonal elements gradually decrease and
other bound states begin to be relevant.

Next we calculate the matrix elements of β̂nS,pε between
bound states |nS〉 and continuum states |p ε〉 as functions of
the effective wave vector K = (p/�)(αZ). In Fig. 2 we plot
the matrix elements β̂1S,p− and β̂nS,p+ for Z = 92 and several
values of n. The elements β̂1S,p± are calculated analytically
from Eq. (B8).

Each curve in Fig. 2 has an asymmetric bell-like shape;
it vanishes at K = 0, has a maximum or minimum in the
vicinity of K 	 αZ/(rBnκ ), and decreases to 0 for large K .
The magnitudes of β̂1S,p− are much larger than those of β̂nS,p+,
which emphasizes the greater contribution of negative-energy
states to Û |1S〉. Finally, the magnitude of β̂nS,p+ decreases
with n, so that only the first few states make significant
contributions to Û |1S〉.

Having calculated the matrix elements β̂nS,mS and β̂nS,p±
we compute the probability amplitudes an and Aε

pi
and the

resulting probability densities |an|2 and |Aε
pi

|2, as given in
Eqs. (11) and (12). The results for Z = 92 are shown in
Fig. 3. The state 1S1/2 makes the largest contribution to χ1S

and dominates over contributions of all other states. But,
surprisingly, the next significant contributions to χ1S originate
from the continuum states of negative energies around E−

p 	
−1.5m0c

2. The contributions for other states are negligible.
For the relativistic hydrogen atom (Z = 1) the corresponding
probability densities are similar to those in Fig. 3, but with a
much larger contribution of the 1S1/2 state (see below).

Let P1S = |a1S |2 denote the probability density for the 1S1/2

state of Ĥ. Let P ± = ∑
i |A±

pi
|2 be the integrated probability

density for continuum states of Ĥ and PnS = ∑
n>1 |an|2 be the

integrated probability density for bound states of Ĥ except the
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FIG. 3. Probability densities |an|2 and |A±
pi

|2 calculated from
Eqs. (15)–(17) for Z = 92 versus the electron energy. The probability
densities |an|2 for the three lowest n’s are shown explicitly. Shaded
areas indicate integrated probability densities P ± for continuum states
of positive and negative energies; see Fig. 4 for Z = 92.

1S1/2 state. We plot these four quantities in Fig. 4 as functions
of the nuclear charge Z ∈ [1 . . . 92].

For small Z the probability density P1S is close to unity,
which means that, for light atoms, χ1S is almost entirely
composed of state 1S1/2. For larger Z this probability density

FIG. 4. Contribution of various eigenstates in transformed func-
tion χ1S versus nuclear charge Z. Solid line: probability density
|a1|2 for the 1S1/2 state. Dot-dashed line: integrated density P − for
continuum states of negative energies. Dashed line: integrated density
P + for continuum states of positive energies. Dotted line: integrated
densities PnS for bound states of Ĥ except the 1S1/2 state.

FIG. 5. Electron wave functions prior to and after Eriksen
and FW-like transformations for the 1S1/2 state of a relativistic
hydrogenlike atom with nuclear charge Z = 92. Negative values:
functions rf1S , rÛf1S , and rÛFWf1S . According to the Eriksen theory
the function rÛf1S should be identically 0. The FW-like transformed
function rÛFWf1S is also close to 0, but its magnitude is larger
than the magnitude of rÛf1S . Positive values: functions rg1S , rÛg1S ,
rÛFWg1S , and rgNR

1S . Note the small difference between exact rÛg1S

and approximate rÛFWg1S functions.

gradually decreases, but for Z = 92, it is still P1S 	 86%.
Thus, even for very heavy atoms the transformed function
is composed mostly of the 1S1/2 state. For small Z all three
integrated probability densities P ± and PnS are negligible, but
for larger Z the P − becomes about 14%. However, neither P +
nor PnS exceeds 0.1% in the whole range of Z, so that their
contributions to χ1S may be neglected.

Having determined the expansion probability amplitudes
an and A±

pi
we calculate the transformed function Ûψ1S in

Eq. (5). In Fig. 5 we plot the results for Z = 92. Functions
rg1S and rf1S of the 1S1/2 state are represented by dashed
lines, while rÛg1S and rÛf1S of Eq. (2) are indicated by solid
lines. Dash-dotted lines are functions transformed with the use
of ÛFW given in Eq. (22). Finally, the dotted line shows the 1s

function of the nonrelativistic hydrogenlike atom,

rgNR
1s (r) = 2r

(
Z

rB

)3/2

e−rZ/rB . (51)

The transformed function rÛf1S , which is the lower
component of χ1S , should be identically 0 for all r . As shown in
Fig. 5, this property is satisfied to a high accuracy, except in the
the vicinity of r = 0. To estimate the accuracy of calculations
for rÛf1S we compute the norm of this function:

Nrf1S
=

∫ ∞

0
|f1S(r)|r2dr. (52)
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TABLE IV. Norms of the rg(r) and rf (r) functions prior to and
after Eriksen and FW-like transformations, calculated using Eq. (52)
for different nuclear charges Z.

Z Element Nrg Nrf NrÛf NrÛFWf

1 H 1.000 1.3 × 10−5 1.01 × 10−10 1.02 × 10−10

24 Cr 0.992 0.008 3.57 × 10−7 4.28 × 10−6

47 Ag 0.970 0.030 7.62 × 10−6 9.51 × 10−5

74 W 0.921 0.079 5.27 × 10−5 7.86 × 10−4

92 U 0.871 0.129 1.33 × 10−4 2.29 × 10−3

Similarly, we calculate the norms of rg1S , rf1S , rÛf1S , and
rÛFWf1S for several values of the nuclear charge Z. The results
are listed in Table IV. Since the function rÛf1S should be
identically 0, its norm in Eq. (52) should vanish. In practice,
the norm of rÛf1S is slightly different from 0 but negligibly
small compared with the norm of rf1S . This occurs both for
Z = 1 and for Z = 92.

It is shown in Table IV that the norm of rÛf1S is always
smaller than the norm of rÛFWf1S , which means that, as
expected, the exact transformation is more accurate than
the approximate one. On the other hand, for small Z the
FW-like transformation is almost as accurate as the Eriksen
transformation. However, as reported in Table IV, irrespective
of its poorer accuracy, the FW-like transformation for the 1S1/2

state is quite accurate for all Z ∈ [1 . . . 92].
Returning to Fig. 5, it is shown that the functions rÛg1S and

rÛFWg1S are almost identical, i.e., both transformations lead to
similar results. Next, the transformed functions are closer to the
rg1S function of the 1S1/2 state of the relativistic hydrogenlike
atom than to the 1s state of the Schrodinger hydrogenlike atom.
Since the latter function is close to the rg1S state of the Dirac
hydrogenlike atom, it is expected that also the Eriksen and
FW-like transformations of the nonrelativistic function would
be close to the rÛg1S function.

Finally, with a high accuracy, rÛg1S and rÛFWg1S are
normalized to unity. Using Fig. 5 and Table IV, one can
compare the results of the FW-like transformation with the
results of the exact transformation separating positive- and
negative-energy states for the Dirac Hamiltonian with nontriv-
ial potential. Figure 5 and Table IV prove the high accuracy
of the FW-like transformation often used in nonrelativistic
quantum mechanics.

We also performed calculations of transformed functions
of the 2P1/2 and 2P3/2 states of the relativistic hydrogenlike
atom. The results for matrix elements and contributions of
various states to the resulting functions are similar to those
presented in Figs. 2–4 and Tables III and IV. In Fig. 6 we
plot the upper components of the 2P1/2 and 2P3/2 functions
prior to and after the Eriksen and FW-like transformations.
For both values of j the functions after Eriksen and FW-
like transformations are practically indistinguishable. For j =
1/2 and j = 3/2 the functions rÛg are close to the original
(nontransformed) functions of the 2P1/2 and 2P3/2 states of
the relativistic hydrogenlike atom. For j = 1/2 the function
rÛg is close to the radial function 2p of the nonrelativistic
hydrogenlike atom, while the transformed function of the 2P3/2

state is qualitatively different from the 2p state.

FIG. 6. Upper components of the 2P1/2 and 2P3/2 states of a
relativistic hydrogenlike atom for Z = 92 prior to and after Eriksen
and FW-like transformations. Note the small differences in functions
resulting from Eriksen vs FW-like transformations. The functions
rg, rÛg, and rÛFWg for j = 1/2 are close to the 2p function of
the nonrelativistic hydrogenlike atom, but for j = 3/2 they differ
qualitatively from the 2p function.

V. DISCUSSION

The results presented in Sec. IV are obtained for the nuclear
charge Z ∈ [1 . . . 92]. Strictly speaking, they are valid only
for the hydrogen atom, since in real atoms the presence of
many electrons and interactions between them modify the
forms of atomic orbitals and continuum states, so that they
cease to be the eigenstates of Ĥ in Eq. (1). To overcome this
problem we may, to some extent, approximate the presence of
other electrons by introducing an additional phenomenological
potential acting on electrons in atomic orbitals. Following
Ref. [37], for the 1s state the Coulomb potential in Eq. (1)
should be replaced with

Veff(r) = − 1

4πε0

e2(Z − 0.3)

r
+ V0(Z), (53)

in which V0(Z) does not depend on r . After this modification,
the new potential is still Coulomb-like but with the effective
value of Z∗ = Z − 0.3. As shown in Fig. 4, differences
between the four probability densities calculated for Z and
Z∗ are small. Therefore, the results shown in Figs. 2 to 5 for
Z = 92 are very close to those computed for Z∗ = 91.7. For
2p or 2s states, the potential in Eq. (53) should have a different
value of the effective charge Z∗ < Z [37] and the transformed
p-like functions in the effective potential in Eq. (53) should
be close to the corresponding functions in Fig. 6. We conclude
that the results shown in Figs. 2 to 6 and Tables III and IV
remain valid for all Z ∈ [1 . . . 92] in the range of applicability
of the approximation given in Eq. (53).

It is not meaningful to analyze higher terms of the expansion
of Û in power series of αZ, since one neglects the presence
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of radiative corrections to the Coulomb potential which may
be of comparable magnitude. In our work we do not expand
Û in a series, but calculate Ûψ exactly in a finite but large
basis. Within our approach we may incorporate QED effects
by adding to the Coulomb potential an additional potential,
Vrad(r). This potential is short-range, has spherical symmetry,
and vanishes for r � λc [30,38,39].

As pointed out by Eriksen, a transformation analogous
to that in Eq. (2) can be applied to two-body interactions
[21]. Similarly, within the Hartree-Fock approximation, the
Coulomb potential in Eq. (1) can be replaced by a self-
consistent potential with spherical symmetry [5] and our
approach can be generalized to many-electron systems. In
Sec. IV we limit the analysis to the lowest bound states of
the relativistic hydrogenlike atom. Our method could be easily
generalized to computations of the Eriksen transformation of
other bound eigenstates of Ĥ, as described by other quantum
numbers, κ , m, and nr . A convenient feature of the relativistic
Coulomb problem is its radial symmetry, which limits the
number of states entering into summations in Eqs. (11) and
(12) to those having the same quantum numbers κ and m. This
simplifies the computation of matrix elements in Eq. (18) by
reducing them to one-dimensional integrals [see Eq. (30)]. This
simplification is not essential to our problem but, in practice,
reduces the sizes of matrices Ŝ and Ẑ [see Eqs. (19) and (20)].

The advantage of the present approach, compared to the
series of FW- or DK-like transformations, is a clear physical
interpretation of states entering into the transformed functions
Ûψ . As shown in Figs. 3 and 4, the state Ûψ consists mostly
of the initial state ψ and continuum states having negative
energies in the vicinity of E 	 −m0c

2 − Eb. Our figures
show marginal contributions of other bound or continuum
states to Ûψ . The selection rules in Eq. (30) automatically
choose the proper angular symmetry of the transformed
function Ûψ . Radial functions forming χ1S(r) have the same
quantum numbers κ and m as the initial state ψ . In contrast,
the Gaussian or exponential orbitals, frequently used in
numerical calculations in quantum chemistry, are somewhat
artificial.

Our results shown in Figs. 3 and 4 possibly explain the
accuracy of eliminating negative-energy components in FW-
like and DK-like methods, as reported in Refs. [5] and [8–11].
It is shown that the contribution of negative-energy states
to the transformed functions Ûψ varies from parts of single
percent to the total probability density for light atoms to 14%
of the total probability density for heavy atoms. Therefore, for
all nuclear charges Z ∈ [1 . . . 92], the presence of negative-
energy states in the function Ûψ can always be treated as
a perturbation to states of Ĥ having positive energies and it
can be effectively removed by series of FW-like or DK-like
transformations.

The Moss-Okninski transformation [15] was used by
Rusin and Zawadzki to transform a Gaussian wave packet
in the presence of an external magnetic field [18]. After the
transformation the packet retained the bell-like shape but its
width had changed [18]. As shown in Figs. 5 and 6, the shape
of wave functions of the relativistic hydrogenlike atom is
also retained after transformations. The results in Fig. 5 and
Table IV for the FW-transformed functions agree with those
of Silenko [23], who found that the lower components of any

function transformed by the FW-like transformation are of
second order in 1/(m0c

2).
The precision of the results in Sec. IV depends on the

accuracy of special functions in Eqs. (31) and (32) and
Eqs. (41) and (42), namely, the confluent hypergeometric
functions, gamma functions, and hypergeometric functions.
These functions have been calculated using methods described
in detail in Ref. [40] and tested with the results obtained on
a Web-page calculator for special functions [41]. Functions
g(r) and f (r) calculated numerically were checked for their
orthogonality to other functions. The exact results for diagonal
and nondiagonal matrix elements of β̂ and Ŝ served as
additional tests of the employed procedures. Asymptotic forms
of g(r) and f (r) were used for testing the exact functions
g(r) and f (r) in Eqs. (41) and (42) and their normalization.
A convenient feature of our problem is the possibility of
analytical calculations for all matrix elements of β̂ in Eq. (18).
There are two tests of accuracy of the numerical procedures:
the sum rule for the probability amplitudes an and Aε

pi
in

Eq. (13) and the requirement that function Ûψ has vanishing
lower components. As shown in Fig. 5 and Table IV, a high
accuracy of numerical calculations is achieved.

VI. SUMMARY

We calculated the single-step Eriksen transformation of
the wave functions for the 1S1/2, 2P1/2, and 2P3/2 states
of the relativistic hydrogenlike atom. In the new representation
the functions have two nonzero components. The proposed
method does not require an expansion of the Eriksen operator Û
in the power series of 1/(m0c

2) or the potential. Our approach
is based on the observation that, although the operator Û
defining the transformation is not given in an explicit form,
it is possible to calculate analytically or numerically its matrix
elements between eigenstates of Ĥ. To exploit this observation,
we expressed the transformed wave functions in the form
of linear combinations of eigenstates of Ĥ for a sufficiently
large set of states. The continuum states of Ĥ are replaced
with the so-called discretized functions (eigendifferentials),
which allow one to treat bound and continuum states in a
similar way. Our results may possibly explain the accuracy of
FW-like and DK-like transformations reported in the literature,
since the contribution from states of negative energies to
the total probability density can be safely treated as a
perturbation to the contribution of states with positive energies.
As expected, lower components of Ûψ are nearly 0 except
in the vicinity of r = 0. This result confirms the accuracy
of the Eriksen transformation and numerical calculations.
The upper components of Ûψ are well-localized functions,
similar to their counterparts in the Dirac representation. The
nonvanishing components of Ûψ and ÛFWψ are close to
each other, which confirms the accuracy of the FW-like
transformation. In conclusion, it is believed that the reported
results contribute to a better understanding of the Eriksen and
Foldy-Wouthuysen transformations.
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APPENDIX A: PROPERTIES OF Ẑ AND Û OPERATORS

Here we show that the operator Ẑ in Eq. (3) has vanishing
matrix elements between eigenstates of Ĥ for positive and
negative energies. Consider matrix Ŝ in Fig. 1, which is block-
diagonal with vanishing matrix elements between eigenstates
of Ĥ having positive and negative energies. Schematically,

in the basis used in Fig. 1, its form is Ŝ = (Ŝ
+ 0

0 Ŝ−), where

the operators Ŝ± are constructed from matrix elements of β̂

between states having the same energy signs. Then any integer

power of Ŝ is also block-diagonal: (Ŝ)m = ((Ŝ+)m 0
0 (Ŝ−)m).

The operator Ẑ can be expanded in power series, Ẑ =∑∞
m=0 zm(Ŝ)m, with suitably chosen coefficients zm (see

Ref. [21]). Since each term in this series is block-diagonal, the
operator Ẑ is block-diagonal as well, and its matrix elements
between eigenstates of Ĥ for different energy signs vanish.
This completes the proof.

The operator Ẑ has block-diagonal form in the represen-
tation of the Dirac spinors. To show this we first note that Ŝ
is block-diagonal in this representation. Expressing λ̂ in the

form of 2 × 2 blocks, λ̂ = (λ̂11 λ̂12

λ̂21 λ̂22
), there is Ŝ = β̂λ̂ + λ̂β̂ =

(2λ̂11 0
0 −2λ̂22

). Repeating the arguments presented above we

find Ẑ = (Ẑ11 0
0 Ẑ22

).

Next we show that Û in Eq. (2) transforms any eigenstate
of the Dirac Hamiltonian to the two-component form. Let
ψ± = (g±

f ±) be eigenstates of Ĥ of positive or negative energies,

respectively, and g± and f ± be the two-component vectors.
Then λ̂ψ± = ±ψ± and

Ûψ+ = Ẑ(1 + β̂λ̂)ψ+ =
(
Ẑ11g

+

0

)
, (A1)

Ûψ− = Ẑ(1 + β̂λ̂)ψ− =
(

0

Ẑ22f
−

)
. (A2)

This completes the proof.
The operators β̂λ̂ and λ̂β̂ commute, which can be shown

directly. Expanding Ẑ in a power series of (Ŝ − 2) we find that
each term in the series commutes with β̂λ̂ and λ̂β̂. Therefore
Ẑ commutes with β̂λ̂ and λ̂β̂, which allows one to interchange
the orders of Ẑ and β̂λ̂ in the definition of Û in Eq. (2).

APPENDIX B: MATRIX ELEMENTS OF β̂

The diagonal matrix elements of β̂ can be obtained without
direct specification of the wave functions 〈r|n〉 (see, e.g.,
Ref. [33]). Here we calculate these elements with the use of
the Hellmann-Feynman theorem. Let us treat the electron mass
m0 in Eq. (1) as a variable parameter. Then

〈n(m0)|Ĥ(m0)|n(m0)〉 = E(m0). (B1)

Differentiating both sides of Eq. (B1) with respect to m0 one
obtains

〈n|β̂|n〉 = 1

c2

∂E(m0)

∂m0
, (B2)

and the diagonal matrix elements of β̂ can be obtained by
straightforward differentiations of both sides of Eqs. (36) and
(43) with respect to m0. The results of Eq. (36) are known [33],
but to our knowledge, their extension to the continuum states
in Eq. (43) has not been published yet.

Next, we consider the diagonal matrix elements between
discretized functions defined in Eq. (9). Combining Eqs. (9),
(43), and (B2) one has〈


εi

pi

∣∣β̂∣∣
εj

pj

〉
= 1

�p

∫ pi+�p/2

pi−�p/2

∫ pj +�p/2

pj −�p/2

〈
ψεi

p1

∣∣β̂∣∣ψεj

p1

〉
dp1dp2

= δεi ,εj

�p

∫ pi+�p/2

pi−�p/2

∫ pj +�p/2

pj −�p/2

∂Ep1

c2∂m0
δ(p1 − p2)dp1dp2

= δεi ,εj
δpi ,pj

�p

∫ pi+�p/2

pi−�p/2

m0c
2

Ep

dp (B3)

−−−→
�p→0

δεi ,εj
δpi ,pj

m0c
2

Epi

. (B4)

The energy Ep in Eq. (B3) is given in Eq. (43). Using the
same approach to the diagonal matrix elements of Ẑ between
discretized states we find

〈
−
pi

|Ẑ|
−
pj

〉 = δpi ,pj

�p

∫ pi+�p/2

pi−�p/2

dp√
2 + 2m0c2/Ep

	 δpi ,pj√
2 + 2m0c2/Epi

. (B5)

Since functions ψε
p are normalized to δ(p1 − p2)δε1ε2 , the

nondiagonal matrix elements of β̂ and Ẑ between continuum
functions vanish.

Calculation of the matrix elements of β̂ between discretized
states in Eq. (10) and bound states requires computation of the
integral

〈

ε

pi

∣∣β̂|1S〉 = 1√
�p

∫ pi+�/2

pi−�/2

〈
ψε

p

∣∣β̂|1S〉dp

−−−→
�p→0

√
�p

〈
ψε

pi

∣∣β̂|1S〉. (B6)

The element β̂1S,p− is a combination of two integrals of the
form

Qε = T0

∫ ∞

0
e−(C0+iεK)r (2rC0)γ (2Kr)γ 1F1(a,μ,2iKr)dr,

(B7)

in which T0 is an r-independent constant [see Eqs. (31) and
(32) and Eqs. (41) and (42)], a = γ + 1 + iy, μ = 2γ + 1,
C0 = Z/rB , and K = (p/�)(αZ). The integral in Eq. (B7)
can be calculated analytically and we obtain

Qε = T0�(μ)(4C0)γ
Kγ

(C0 + iεK)μ

(
C0 − iεK

C0 + iεK

)a

. (B8)
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The remaining matrix elements β̂nS,pε can be expressed
in terms of special functions and below we list formulas
necessary for the calculations. For bound states the confluent
hypergeometric function is the polynomial defined recurrently,

1F1(−n,c,z) =
n∑

j=0

tn,j zj , (B9)

tn,j+1 = tn,j

−n + j − 1

j (c + j − 1)
, (B10)

with tn,0 = 1. The matrix elements β̂nS,mS between bound
functions can be calculated with the use of the Euler integral:∫ ∞

0
xb−1e−sxdx = 1

sb
�(b). (B11)

For calculations of the matrix elements β̂nS,pε between bound
and continuum states we use the formula [42]

∫ ∞

0
e−st tb−1

1F1(a,c,kt)dt = �(s)

zb 2F1(a,b,c,k/s), (B12)

assuming that Re(b) > 0 and Re(s) > max[Re(k),0],
where 2F1(a,b,c,z) is the hypergeometric function in
the standard notation [31]. We use also the identi-
ties 2F1(a,b,c,z) = 2F1(b,a,c,z) and 2F1(a,b,c,z) = (1 −
z)−a

2F1(a,c − b,c,z/(z − 1)). More general expressions for
the matrix elements of β̂ are given in Refs. [34–36].
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