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Excited-state quantum phase transitions (ESQPTs) are generalizations of quantum phase transitions to excited
levels. They are associated with local divergences in the density of states. Here, we investigate how the presence
of an ESQPT can be detected from the analysis of the structure of the Hamiltonian matrix, the level of localization
of the eigenstates, the onset of bifurcation, and the speed of the system evolution. Our findings are illustrated for
a Hamiltonian with infinite-range Ising interaction in a transverse field. This is a version of the Lipkin-Meshkov-
Glick (LMG) model and the limiting case of the one-dimensional spin- 1

2 system with tunable interactions
realized with ion traps. From our studies for the dynamics, we uncover similarities between the LMG and the
noninteracting XX models.
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I. INTRODUCTION

Quantum phase transitions (QPTs) correspond to abrupt
changes in the character of the ground state of a system when
a control parameter reaches a critical point [1,2]. Strictly,
they occur in the thermodynamic limit, but scaling analysis
of finite systems can indicate their presence. The nature of the
QPTs is determined according to Ehrenfest’s classification of
thermodynamic phase transitions as transitions of first order,
second order, and so on [3–5]. QPTs have received significant
attention by recent experiments with ultracold gases [6–8].

Excited-state quantum phase transitions (ESQPTs) refer to
QPTs that take place at the excited levels [9,10]. In systems
that exhibit an ESQPT, the vanishing gap between the ground
state and the first excited state, characteristic of ground-state
QPTs, does not occur in isolation, but in conjunction with
the clustering of the levels near the ground state. This local
divergence of the density of states propagates to higher
excitation energies as the control parameter increases beyond
the ground-state critical point.

ESQPTs have been verified in various models, including
molecular vibron [10,11], nuclear interacting boson [12],
Jaynes-Cummings [13,14], kicked-top [15], Lipkin-Meshkov-
Glick (LMG) [12,16,17], and Dicke [13,14,18] models. In
the last two cases, the density of states was found ana-
lytically [18,19]. ESQPTs are not exclusive to integrable
models; precursors of the transition persist even in the chaotic
domain [14,20–22]. Experimental signatures of ESQPTs
were found in the bending motion of different molecular
species [23–26], superconducting microwave billiards [27],
and spinor condensates [28].

Few works exist about the effects of ESQPTs on the system
dynamics [13,16,29–31]. In Refs. [32,33], we showed that
the time evolution of an initial state with energy close to
the ESQPT critical point can be exceedingly slow. These
results are general and valid for any Hamiltonian with a

U(n + 1) algebraic structure that has limiting SO(n + 1) and
U(n) dynamical symmetries

HU(n+1) = (1 − ξ )HU(n) + ξ

N
HSO(n+1), (1)

where ξ is the control parameter and N is the system size. The
U(n + 1) Hamiltonian in the bosonic form with n � 1 rep-
resents the one-dimensional [U(2)], two-dimensional [U(3)],
and three-dimensional [U(4)] limits of the vibron model
[11,34–37]. These models are used to describe the vibrational
spectra of molecules. The U(2) Hamiltonian corresponds to the
LMG model [38–40], introduced in nuclear physics, and since
then used in various contexts, from studies of Bose-Einstein
condensates to entanglement.

In this work, we focus on the LMG model and extend the
results of Refs. [32,33]. We concentrate on the spin version of
the model. It corresponds to an infinite-range Ising interaction
[SO(2) part of the Hamiltonian] in a transverse field [U(1) part
of the Hamiltonian]. This limit of all to all coupling is nearly
reached with experiments with ion traps [41,42], where the
range of the interaction can be tuned. These experiments study
the dynamics of the spin system for the same initial states that
we consider here.

We show that at the ESQPT critical point, the eigenstates of
the LMG model are highly localized in the ground state of the
U(1) part of the Hamiltonian. As a consequence, the evolution
of this particular basis vector under the LMG Hamiltonian
is very slow. The presence of the ESQPT can therefore
be detected by analyzing the structure of the eigenstates
and the speed of the evolution of U(1) basis vectors. The
second alternative could be tested with the above-mentioned
experiments with ion traps [41,42].

A third alternative to identify the presence of the ESQPT
that we explore here is the bifurcation phenomenon. It refers
to the sudden change in the value of the total magnetization
in the direction of the Ising interaction, which occurs at the
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critical point. Below the energy of the ESQPT, the eigenstates
are degenerate, each having a positive or negative value of the
total magnetization. Above the critical point, the magnetization
of all states becomes zero. Bifurcations similar to this one
have been studied experimentally as a function of the control
parameter [43–45]. Here, we analyze how the bifurcation
emerges as a function of the excitation energies, while the
control parameter is kept fixed and above the QPT critical
point.

Our studies of the dynamics of the LMG model reveal
similarities between this model, which has infinite-range
interaction, and the XX model with a single excitation,
which has only nearest-neighbor couplings. Specifically, the
energy distributions of several initial states corresponding to
U(1) basis vectors are analogous for both systems, which
results in equivalent time evolutions. Relationships between
the LMG and other integrable models have been explored
before [46,47], especially in the context of scaling behaviors
of the entanglement entropy [48,49].

The analogy with the XX model motivated a closer look
at the structure of the Hamiltonian matrix of the LMG model.
From this study, we show that the ESQPT critical energy can be
identified even before diagonalization, by simply comparing
the spacings between neighboring energy levels and their
coupling strengths.

The work is divided as follows. Section II describes the
LMG model and gives the Hamiltonian elements in the
U(1) and in the SO(2) bases. Section III provides results
for the eigenvalues, structures of the eigenstates, and the
magnetizations. It is at this point that we discuss the onset
of localized states and bifurcation. Section IV investigates the
dynamics under the LMG Hamiltonian for different initial
states, establishes a connection between the LMG and XX
models, and analyzes the structure of the LMG Hamiltonian
matrix. Details about the XX model are found in the Appendix.
Final remarks are presented in Sec. V.

II. MODEL

One-dimensional lattices of interacting spins- 1
2 described

by the Hamiltonian

H (α)
s = B

N∑
i=1

σ z
i +

∑
i<j

J

|i − j |α σ x
i σ x

j (2)

have been recently realized with trapped ions [41,42]. Above,
� = 1, σ

x,z
i are Pauli matrices acting on sites i, N is the total

number of sites, B is the amplitude of the external field, and J

is the coupling parameter. In the experiments, the range of the
interaction, determined by α, can be tuned from α = 3 to α

very close to zero. The case of infinite-range interaction α = 0
corresponds to a version of the LMG model [12,17].

Hamiltonian (2) for α = 0 can be written in the form [12,17]

H (α=0)
s = (1 − ξ )

(
N

2
+

N∑
i=1

Sz
i

)
− 4ξ

N

N∑
i,j=1

Sx
i Sx

j , (3)

where spin operators S
x,z
i are used. The necessary steps to

reach Eq. (3) are as follows: multiply both terms in H (α)
s by 2,

add the constants 2BN and JN , and then use a single control

parameter ξ , so that 4B = (1 − ξ ) and J = −ξ/N . Note that
to guarantee that H (α=0)

s is intensive, the interaction term is
rescaled with 1/N .

In general, the Hamiltonian matrix from Eq. (2) has total
dimension 2N , but when α = 0 [Eq. (3)], its effective size
reduces to N + 1. All N !/(Nup!Ndown!) states with Nup spins
pointing up in the z direction and Ndown spins pointing down
become degenerate. The Hamiltonian can then be written in
terms of the total spin in the z direction Sz = ∑N

i=1 Sz
i and the

total spin in the x direction Sx = ∑N
i=1 Sx

i as

Hs = (1 − ξ )

(
N

2
+ Sz

)
− 4ξ

N
S2

x . (4)

The LMG Hamiltonian Hs (4) has a U(2) algebraic structure
with two limiting dynamical symmetries represented by the
U(1) subalgebra, when ξ = 0, and the SO(2) subalgebra, when
ξ = 1. The eigenstates of the U(1) part of the Hamiltonian
correspond to the states |s mz〉 and those of the SO(2) part are
the states |s mx〉, where s = N/2 is the total spin quantum
number and mz(x) is the total magnetization in the z (x)
direction with −N/2 � mz(x) � N/2.

The elements of the Hamiltonian matrix in the U(1) basis
are given by

〈s mz|Hs|s mz〉 =
(

N

2
+ mz

)(
1 − 2ξ + 2

ξmz

N

)
− ξ,

〈s mz + 2|Hs|s mz〉 = − ξ

N

√(
N

2
+ mz + 2

)

×
√(

N

2
+ mz + 1

)(
N

2
− mz

)(
N

2
− mz − 1

)
.

Hs (4) conserves parity (−)s+mz [12], so the matrix is split
in two blocks, one of dimension Deven = N/2 + 1 with even
parity and the other of dimension Dodd = N/2 and odd parity.

In the SO(2) basis, the elements of the Hamiltonian matrix
are

〈s mx |Hs|s mx〉 = −4ξ

N
m2

x + (1 − ξ )
N

2
,

〈s mx + 1|Hs|s mx〉 = ξ − 1

2

√(
N

2
− mx

)(
N

2
+ mx + 1

)
.

Hamiltonian (4) may also be written in a bosonic form. The
Holstein-Primakoff mapping is not suitable here because the
total number of bosons in this representation is not conserved.
Instead, the Schwinger representation is more appropriate:

Sz =
N∑

i=1

Sz
i = t†t − N

2
= nt − N

2
, (5)

S+ =
N∑

i=1

S+
i = t†s = (S−)†. (6)

The resulting Hamiltonian describes a system with two species
of scalar bosons, boson s and boson t ,

Hb = (1 − ξ )t†t − ξ

N
(t†s + s†t)2, (7)
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where N is the conserved total number of bosons N = nt + ns .
The elements of the Hamiltonian matrix in the basis

|Nnt 〉 = (t†)nt (s†)N−nt

√
nt !(N − nt )!

|0〉, (8)

where 0 � nt � N and |0〉 is the vacuum state [16,17,50,51],
are analogous to those for the |s mz〉 basis, substituting mz with
nt − N/2.

The LMG Hamiltonian shows a second-order QPT at the
critical point ξc = 1/5. The ESQPT occurs for ξ > ξc.

III. EIGENVALUES, EIGENSTATES, AND OBSERVABLES

ESQPTs are characterized by the clustering of the eigen-
values around the energy EESQPT of the critical point. This
is illustrated with the density of states for the LMG model
in Figs. 1(a), 1(b), 1(c), and 1(d) for ξ = 0.2,0.4,0.6,0.8,
respectively. There, and throughout this paper, we subtract
from the eigenvalues Ek the energy of the ground state E0 and
deal with E′

k = Ek − E0. From those four panels, one sees
that the peak of the distribution moves to higher energies as ξ

increases from the QPT critical point (ξc = 0.2) up. The value
of EESQPT therefore depends on ξ .

A. Separatrix and semiclassical approximation

The dependence of the value of EESQPT on the control
parameter is visible also in Fig. 1(e), where we plot the
normalized excitation energies E′

k/N for all levels versus ξ .
The dashed line in that panel follows the clustering of the
eigenvalues. This line corresponds to the separatrix that marks
the ESQPT. Its equation

EESQPT(ξ ) = (1 − 5 ξ )2

16 ξ
(9)
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FIG. 1. Top panels: normalized density of states for Hs (4) with
ξc = 0.2 (a), ξ = 0.4 (b), ξ = 0.6 (c), and ξ = 0.8 (d), N = 2000. The
corresponding classical potentials [Eq. (11)] are shown in the insets.
Bottom panel (e): normalized excitation energies vs ξ , N = 100. The
separatrix [Eq. (9)] is indicated with the dashed line. All panels: even
parity sector. Arbitrary units.

is obtained in the mean-field approximation (limit of very large
N ), as summarized below [10,11].

Using Glauber coherent states, we can write the classical
limit of Hamiltonian (7) in terms of coordinate and momenta
as ([10] and references therein)

Hclass = 1 − ξ

2N2
p2 + ξ

N2
x2p2 + V (x), (10)

where the potential is

V (x) = 1 − 5ξ

2
x2 + ξx4. (11)

We can also use projective coherent states [51,52] and set
momenta equal to zero to obtain the classical energy functional
associated with Hamiltonian (7), which is given by ([11] and
references therein)

Eξ (x) = (1 − ξ )
x2

1 + x2
− ξ

4x2

(1 + x2)2
. (12)

Either from Eq. (11) or (12), we see that when ξ � ξc = 1
5 ,

the potential has a minimum at x = 0, which is quadratic
for ξ < ξc and quartic for ξ = ξc [inset of Fig. 1(a)].
For ξ > ξc, the potential has a double-well shape [insets
of Figs. 1(b)–1(d)], with minima at x = ±√

(5ξ − 1)/(4ξ ),
while x = 0 is now a maximum. The energy difference
between the maximum value V (x = 0) and the minimum
value V [x = ±√

(5ξ − 1)/(4ξ )] marks the ESQPT criti-
cal energy and leads to the equation of the separatrix
[Eq. (9)]. At excitation energies equal to EESQPT(ξ ) = V (x =
0) − V [x = ±√

(5ξ − 1)/(4ξ )] = (1 − 5ξ )2/(16ξ ), the ori-
gin, which was prohibited for E < EESQPT due to the potential
barrier, can now be reached.

The emergence of ESQPTs can therefore be understood
from the double-well potential. For energies very close to the
top of the potential barrier, the classical velocity becomes very
small, indicating that a system with energy ∼EESQPT spends
a long time in the vicinity of x = 0. The appearance of such
stationary point is associated with the singularity in the density
of states marked by the separatrix [9,53,54].

The above classical picture helps the understanding of the
structure of the eigenstates of the algebraic quantum model.
The U(1) part of the Hamiltonian corresponds to a truncated
one-dimensional harmonic oscillator, where the ground state
nt = 0 (mz = −N/2) has a large probability to be found at
the origin. Since, in analogy with the above discussion, the
eigenstates with energies very close to EESQPT are also likely
to be found around x = 0, they must be highly localized in the
U(1) ground state. This is corroborated by our results for the
eigenstates in the next subsection.

B. Structure of the eigenstates in the U(1) basis

Written in the U(1) basis, the eigenstates with energies
below the separatrix E′

k/N < EESQPT have a structure closer
to that of the eigenstates of the SO(2) Hamiltonian, while
those with energies above the separatrix are more similar to the
eigenstates of the U(1) Hamiltonian [10]. The eigenstates with
energy very close to the separatrix E′

k/N ∼ EESQPT are the
ones at the point of transition from one dynamical symmetry
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to the other and they are highly localized in the U(1) ground
state, which has mz = −N/2 (nt = 0).

1. Components of the eigenstates in the U(1) basis

In Figs. 2(a)–2(d), we show the structures of four eigen-
states written in the U(1) basis. |C(k)

mz
|2 is the probability to find

the eigenstate |ψk〉 = ∑N/2
mz=−N/2 C(k)

mz
|s mz〉 in the basis vector

|s mz〉 and e′
mz

= 〈s mz|Hs|s mz〉 − E0 is the energy of the
basis vector in the total Hamiltonian shifted by the ground-state
energy of Hs. The energy of the eigenstate in Fig. 2(a) [2(d)]
is below (above) the separatrix; there are several basis vectors
contributing to this eigenstate and they mostly have low (high)
energies. In Figs. 2(b) and 2(c), we show, respectively, the
eigenstate with the second closest and the closest normalized
energy to EESQPT. These states are highly localized in the U(1)
ground state (mz = −N/2). The point for |C(k)

−N/2|2 is indicated
with an arrow in the figures. Compare also the y-axis scales in
Figs. 2(b) and 2(c) with Figs. 2(a) and 2(d).

The localization of the eigenstates with E′
k/N ∼ EESQPT

in the U(1) ground state can be anticipated by computing the
energy e′

−N/2/N , which is also very close to EESQPT. As shown
in Fig. 2(e), e′

−N/2/N follows the separatrix as ξ increases.
Note that for a given N , the difference EESQPT − e′

N/2/N

increases with ξ , but at the same, for a fixed ξ > ξc, this
difference decreases with N .

For ξ < ξc, |s mz=−N/2〉 is the basis vector with the lowest
energy. As ξ increases above ξc, this state is carried up in
energy and e′

−N/2/N gets above the energy of some of the
basis vectors with mz > −N/2. The number of states with
e′
mz

< e′
−N/2 increases with ξ . At ξ = 1, the energies of all

FIG. 2. Top panels: squared coefficients |C(k)
mz

|2 of the eigenstates
|ψk〉 written in the U(1) basis vs the energies of the corresponding
basis vectors; ξ = 0.6, N = 2000. The eigenstates chosen have
energies E′

k/N = 0.2515 (a), 0.4163 (b) (second closest to the
ESQPT critical point), 0.4166 (c) (closest one to the ESQPT critical
point), and 0.5764 (d). Vertical lines indicate the separatrix EESQPT =
0.4167. Bottom panel (e): normalized energy of the U(1) basis vectors
in the total Hamiltonian vs ξ , N = 100. The separatrix [Eq. (9)] is
indicated with the dashed line and the energy of the U(1) ground
state e′

−N/2/N with the thick solid line. All panels: even parity sector.
Arbitrary units.
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FIG. 3. Log-log plots of the largest components (filled circles)
and the second largest components (empty squares) |C(k)

mz
|2 vs N for

the eigenstate that is most localized in the U(1) ground state (its
energy E′

loc/N is very close to the EESQPT) (a) and for the eigenstate
at a position Deven/4 above E′

loc/N (b). Solid lines are fittings with
indicated power-law decays, ξ = 0.6 and even parity.

U(1) basis vectors are below e′
−N/2, apart from mz = N/2,

which becomes degenerate with it.
In Figs. 3(a) and 3(b), we study the dependence of the

largest and the second largest components |C(k)
mz

|2 on the system
size for two different eigenstates. In Fig. 3(a), we select the
eigenstate that is most localized in |s mz = −N/2〉. The energy
of this eigenstate is very close to EESQPT, although for some
system sizes, it is not the closest one to the separatrix. The
figure shows that the largest component decays slower with
N than the second largest one, indicating that |s mz = −N/2〉
is indeed the preferred basis vector for any system size. In
Fig. 3(b), we choose an eigenstate with energy above the
separatrix. In this case, the magnitudes of the largest and
second largest components practically coincide, indicating no
preference for a particular basis vector. These components
decrease much faster with N than those two for the localized
state.

2. Level of localization of the eigenstates in the U(1) basis

The change in the structure of the eigenstates written in
the U(1) basis as they approach the separatrix signals the
existence of an ESQPT. To evaluate this change, we may
use quantities, such as the participation ratio (PR) or the
Shannon (information) entropy [55–58], that measure the level
of localization of the eigenstates in a chosen basis. The P is
defined as

P
(k)
U(1) = 1∑

mz

∣∣C(k)
mz

∣∣4 . (13)

A large value indicates an extended state in the chosen
basis and a small value, a localized state. When ξ = 0, the
eigenstates coincide with the U(1) basis vectors, so P

(k)
U(1) = 1.

In Figs. 4(a)–4(d), we show P
(k)
U(1)/N for all eigenstates [59].

Each panel has a different value of the control parameter.
For 0 � ξ � ξc, P is a smooth function of energy, indicating
more localized states at the edges, as seen in Fig. 4(a). Above
the critical point [Figs. 4(b)–4(d)], the eigenstates remain
localized at the edges of the spectrum, but the same happens
also for the states with energies close to EESQPT. This causes
the dip in the value of P

(k)
U(1) for E′

k/N ∼ EESQPT, as seen in
the figures. The P serves therefore as an order parameter for
ESQPTs.
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FIG. 4. (a)–(d) Participation ratio of all the eigenstates of the
even parity sector written in the U(1) basis; N = 500 (dark curve)
and 2000 (light curve). Vertical lines mark the EESQPT obtained from
Eq. (9). (e) Dependence on N of the ratio Rmax

loc = P max
U(1)/P

loc
U(1) between

the participation ratio of the most delocalized state P max
U(1) , and the P

of the most localized state in the U(1) ground state P loc
U(1). Arbitrary

units.

Overall, P
(k)
U(1)/N decreases with system size for all

eigenstates, indicating that they are far from being ergodic.
Ergodicity implies that P

(k)
U(1) ∝ N . However, the participa-

tion ratio of the most localized state in the U (1) ground
state P loc

U(1) decays faster with N than the P of the most
delocalized state P max

U(1) . This is clearly seen in Fig. 4(e),
which shows the dependence on the system size of the
ratio Rmax

loc = P max
U(1)/P

loc
U(1). Thus, the level of localization

of the eigenstates with energies very close to the separa-
trix gets more pronounced with N than for other generic
eigenstates.

C. Structure of the eigenstates in the SO(2) basis

An important aspect of the eigenstates below the separatrix
is that those with the same value of |mx | are degenerate.
This can be explained as follows. The SO(2) part of Hs is
given by the square of the operator Sx ; the eigenstates of
S2

x with the same value of |mx | are degenerate. The same
occurs to the eigenstates of Hs that have energy below the
separatrix since they are closer to the SO(2) symmetry. In
contrast, above the separatrix, where the eigenstates of Hs are
closer to the U(1) symmetry, the degeneracy is lifted. In this
region, mx = 0. (This sudden change in the value of mx at
the separatrix is related to the bifurcation phenomenon that is
described in the next subsection.) In Fig. 5, we consider all
N + 1 eigenvalues of the Hamiltonian Hs (4). The separatrix
clearly marks the point where pairs of eigenstates with different
parity are distinguished by energy (above the separatrix) from
those that are degenerate (below the separatrix).

In the top panels of Fig. 6, we show the structures of the
eigenstates with the same energies considered in Fig. 2, but

0 0.2 0.4 0.6 0.8 1
ξ

0

0.2

0.4

0.6

0.8

1

E’
k/N

FIG. 5. Normalized excitation energies vs ξ for all N + 1
eigenstates, including both parities, one parity is indicated with solid
lines and the other with dashed lines; N = 100.

now written in the SO(2) basis. |C(k)
mx

|2 is the probability to

find the eigenstate |ψk〉 = ∑N/2
mx=−N/2 C(k)

mx
|s mx〉 in the basis

vector |s mx〉 and e′
mx

= 〈s mx |Hs|s mx〉 − E0 is the energy of
the SO(2) basis vector in the LMG Hamiltonian shifted by the
ground-state energy of Hs. In Fig. 6(a), the energy is below the
separatrix, so there are two degenerate eigenstates perfectly
overlapping. They have contributions from basis vectors with
energies below EESQPT. Very close to the separatrix [Figs. 6(b)
and 6(c)], the two eigenstates shown in each panel are very
similar, but not exactly equal anymore. Above the separatrix
[Fig. 6(d)], where eigenstates of different parity have different
energies, only one eigenstate is considered, the same one from
Fig. 2(d). In this case, all contributing basis vectors have energy
values above the separatrix.

FIG. 6. Top panels: squared coefficients |C(k)
mx

|2 of the eigenstates
|ψk〉 written in the SO(2) basis vs the energies of the corresponding
basis vectors; ξ = 0.6, N = 2000. The eigenstates shown have the
energies considered in Fig. 2: two degenerate states with E′

k/N =
0.2515 (a), two with E′

k/N ∼ 0.4163 (b) (second closest energy to
EESQPT), two with E′

k/N ∼ 0.4166 (c) (closest energy to EESQPT), and
one state with E′

k/N = 0.5764 (d). Vertical lines mark the ESQPT
energy E′

k/N = 0.4167. Bottom panel (e): normalized energy of the
SO(2) basis vectors in the total Hamiltonian vs ξ , N = 100. The
separatrix [Eq. (9)] is indicated with the dashed line. Both parities
are included. Arbitrary units.
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FIG. 7. Participation ratio of all N + 1 eigenstates of both parity
sectors written in the SO(2) basis; N = 500 (dark curve) and 2000
(light curve). Vertical lines mark the EESQPT obtained from Eq. (9).
Arbitrary units.

In the SO(2) basis, there is no particularly localized
eigenstate, apart from those at the edges of the spectrum. None
of the basis vectors have a special role, as the U(1) ground state
has. In Fig. 6(e), we show the energies of all SO(2) basis vectors
e′
mx

versus the control parameter. The main effect of increasing
ξ is the spreading of the energies of these states. Despite this
seemingly lack of special features of the eigenstates in the
SO(2) basis, the participation ratio can still detect the ESQPT,
as discussed next.

In Figs. 7(a)–7(d), we show P
(k)
SO(2)/N for all eigenstates

written in the SO(2) basis. There is a discontinuity at EESQPT,
above which the eigenstates suddenly become much more
delocalized. This is somewhat expected since the eigenstates
above the separatrix are closer to the U(1) symmetry than to
the SO(2) symmetry. The sudden jump to higher values of
P

(k)
SO(2)/N , marked by a gap in the values of the participation

ratio at the separatrix, may be seen as a signature of the
ESQPT.

D. Observables

A natural consequence of the localization in the U(1) ground
state of the eigenstates that have energy close to the separatrix
is their reduced value of the total magnetization in the z

direction. This is illustrated in Figs. 8(a) and 8(b), which show
the normalized z magnetization 〈m(k)

z 〉/N = 〈ψk|Sz|ψk〉/N
for all eigenstates. For the states below the separatrix, the
range of values of 〈m(k)

z 〉/N is quite limited and very close to
zero. This reflects the proximity of these states to the SO(2)
symmetry, for which 〈s mx |Sz|s mx〉/N = 0. At the separatrix,
〈m(k)

z 〉/N suddenly approaches − 1
2 , which is the value for the

U(1) ground state. Above the separatrix, a broad range of
values are obtained up to 〈m(k)

z 〉/N ∼ + 1
2 . [Similar results

were shown for a U(3) Hamiltonian in [60].]
For the normalized total magnetization in the x direction,

〈m(k)
x 〉/N = 〈ψk|Sx |ψk〉/N , a discontinuity also occurs at the

separatrix, as seen in Figs. 8(c) and 8(d). For energies below
the separatrix, pairs of degenerate eigenstates have the same

FIG. 8. Top: normalized total magnetization in the z direction
for all eigenstates with even parity. Bottom: normalized total
magnetization in the x direction for all eigenstates of both parities.
Vertical lines indicate the separatrix [Eq. (9)]; N = 2000.

magnitude of |〈m(k)
x 〉|/N . In this energy region, the eigenstates

have structures similar to those of the eigenstates of the S2
x

operator, that is, the SO(2) part of the Hamiltonian. Above
the separatrix, where the eigenstates are closer to the U(1)
symmetry, the value of the x magnetization becomes zero. This
is an example of the bifurcation phenomenon [43–45,61,62],
which has been associated with the presence of QPTs.
Figures 8(c) and 8(d) indicate that it also detects the presence
of ESQPTs. The onset of the bifurcation happens not only for
the ground state [45] and not only as a function of the control
parameter [43–45], but also for a fixed ξ > ξc as a function of
energy.

IV. QUENCH DYNAMICS

From the previous results for the eigenstate expectation
values of the magnetizations and the structures of the eigen-
states, we may anticipate the dynamics of the LMG model
and other systems exhibiting ESQPTs. For instance, due
to the localization of the eigenstates with E′

k ∼ EESQPT in
|s mz〉 = |s −N/2〉, this basis vector should evolve slowly
under Hs (4). We also expect the total x magnetization
of an initial state corresponding to |s mx〉 = |s 0〉 to be
dynamically frozen under Hs . These predictions, as well as
other results, are explored in this section. The main motivation
for studying dynamics comes from current experiments with
ion traps [41,42] and optical lattices [63,64], where dynamics
is routinely analyzed.

Here, we study the evolution of different U(1) basis vectors
and SO(2) basis vectors under the LMG Hamiltonian Hs (4)
with ξ above the QPT critical point. Having as initial state
a U(1) basis vector is equivalent to performing an abrupt
perturbation (quench), where ξ is initially 0 and is then
suddenly changed to a value ξ > ξc. Using the SO(2) basis
vector as initial state corresponds to quenching the control
parameter from ξ = 1 to ξ > ξc.

The quantities considered for the time evolution analysis
are the survival probability and the total magnetizations in
the z and x directions. The survival probability of the initial
state, also called nondecay probability or fidelity, is given by
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the absolute square of the overlap between the initial state
|�(0)〉 = |s ini〉 (where ini stands for a value of mz or mx) and
the evolved state |�(t)〉, as

F (t) ≡ |〈�(0)|�(t)〉|2 = |〈�(0)|e−iHs t |�(0)|2

=
∣∣∣∣∣
∑

k

∣∣C(k)
ini

∣∣2
e−iEkt

∣∣∣∣∣
2

=
∣∣∣∣
∫

dE e−iEtρini(E)

∣∣∣∣
2

. (14)

Above, ρini(E) = ∑
k |C(k)

ini |2δ(E − Ek) is the energy distri-
bution of |�(0)〉 weighted by the components |C(k)

ini |2. One
often refers to ρini(E) as strength function [65] or local density
of states (LDOS); we use the latter term. It is evident from
Eq. (14) that the survival probability is the absolute square of
the Fourier transform of the LDOS.

A. Initial state from the U(1) basis: |s mz〉
The dynamics can be anticipated by examining the structure

of the initial states projected onto the energy eigenbasis,
that is, |�(0)〉 = |s mz〉 = ∑

k C(k)
mz

|ψk〉. As expected from
the previous analysis of the eigenstates, the U(1) ground
state (mz = −N/2) is highly localized in the eigenstate with
E′

k/N ∼ EESQPT, as seen in Fig. 9(a). Its evolution should
therefore be very slow, even though the energy e′

−N/2/N of
this state may be very high. As mz increases from −N/2,
the U(1) states become more and more delocalized in the
energy eigenbasis [Figs. 9(b)–9(h)], with higher contributions
occurring at the edges of their energy distributions. The
evolution should consequently become faster. Notice that
due to this steady spreading in energy, the U(1) basis that
has energy e′

mz
/N closest to EESQPT, after the state with

mz = −N/2, is actually a very delocalized state with similar
contributions from eigenstates below and above the separatrix.
This is the state in Fig. 9(h). Once the energies e′

mz
/N

get above the separatrix, the U(1) states gradually localize

FIG. 9. Structure of the U(1) basis vectors projected onto the
eigenstates of the total Hamiltonian Hs : even parity, N = 2000, ξ =
0.6. The values of mz are −1000 (a), −960 (b), −900 (c), −800
(d), −600 (e), −400 (f), −200 (g), 334 (h), 600 (i), 800 (j), 900 (k),
980 (l). Vertical dashed lines mark EESQPT. The states with energy
closest to the separatrix are (a), with e−1000/N = 0.4164, and (h),
with e334/N = 0.4166.

again, with higher contributions from eigenstates with large
energies, that is, those closer to the right edge of the spectrum
[Figs. 9(i)–9(l)].

The symmetric shape of the U(1) basis vector in Fig. 9(h) is
similar to that found for the eigenstate in Fig. 2(d), which
is written in the U(1) basis and is above the separatrix,
and for the eigenstate in Fig. 6(a), which is written in the
SO(2) basis and is below the separatrix. A closer look at
the structures of these states reveal sinusoidal oscillations
approximately modulated by a function ∝ (const − E2)−1/2.
Interestingly, this envelope also coincides with the density of
states of the XX model, as discussed below. This suggests
a connection between the XX model and the LMG model,
which is useful since several analytical results exist for the first
one [46,66].

1. Energy distribution of the initial state

In what follows, we focus on the evolution of three initial
states with even parity. They are the ones with mz = −N/2
and mz = −N/2 + 2, and the one with the second closest
e′
mz

/N to EESQPT. The LDOS for these states is shown in
Fig. 10. For mz = −N/2 and mz = −N/2 + 2, the LDOS is
highly localized on the eigenstates close to the separatrix. For
the initial state with the second closest e′

mz
/N to EESQPT, the

LDOS in Fig. 10(c) is very similar to that found for the XX
model with a single excitation.

The Hamiltonian of the XX model is given by

H =
∑

i

J
(
Sx

i Sx
i+1 + S

y

i S
y

i+1

)
, (15)

where J is the coupling strength between nearest-neighbor
spins. This is a noninteracting Hamiltonian that simply moves
excitations along the chain. An excitation corresponds to
a spin pointing up in the z direction. For periodic bound-
ary conditions and a single excitation, it is straightforward
to obtain analytically the eigenvalues and eigenstates of
this Hamiltonian, as shown in the Appendix. From these
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O

S

0.4

200
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600
800

0.35 0.4 0.45 0.5
Ek’/N

200

400
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0.4

0 0.2 0.4 0.6 0.8
Ek’/N

0

5

10

15

20

LD
O

S

0 0.2 0.4 0.6 0.8

(a) (b)

mz=1668

mz=-4998

(c)

mz=-5000

FIG. 10. LDOS for initial states corresponding to U(1) basis
vectors with mz = −N/2 (a), mz = −N/2 + 2 (b), and the one with
the second closest e′

mz
/N to EESQPT (c); N = 104, ξ = 0.6. In (c), the

dashed line represents Eq. (17) withA2 ∼ 0.27 and e′
mz

/N = EESQPT.
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results, we can show that the LDOS for an initial state
|φl〉 where all spins point down, except for one, is given
by

ρ|φl〉(E) = 1

π
√

J 2 − E2
. (16)

This expression, shifted by the energy e′
mz

/N ∼ EESQPT, as

ρini(E) = 1

π
√
A2 − (e′

mz
/N − E)2

, (17)

fits the curve in Fig. 10(c) extremely well. The only fitting
parameter is A, which is related with the range of energies
sampled by the initial state. It is interesting that the LDOS for
a model with infinite-range interaction can coincide with that
for a model with only nearest-neighbor couplings.

2. Survival probability

The survival probability is shown in Fig. 11(a) for N = 104.
As predicted, the decay is very slow for mz = −N/2 [top curve
in Fig. 11(a)] and it becomes much faster as mz increases from
−N/2 + 2 (middle curve) to 1668 (bottom curve). The latter
is the state with the second closest e′

mz
/N to EESQPT, for the

parameters considered in the figure.
Figure 11(b) reinforces the localization of the mz = −N/2

state: the F (t) curves for N = 103 and 104 fall on top of each
other. In contrast, the short-time evolution of initial states with
larger mz does accelerate (figure not shown).

In Fig. 11(c), we show the long-time evolution of the
delocalized initial state with e′

mz
/N ∼ EESQPT for system sizes

N = 103 and 104. The dashed lines represent a power-law
decay ∝ t−1, which matches the numerical curves very well.
This algebraic decay at long times can be justified by studying
the Fourier transform of Eq. (17). It leads to the following

FIG. 11. Survival probability vs time. In (a) from top to bottom:
initial states corresponding to U(1) basis vectors with mz = −N/2,
mz = −N/2 + 2, and the one with the second closest e′

mz
/N to

EESQPT; N = 104. (b) mz = −N/2 for N = 103 (first curve to show
revival) and N = 104. (c) Initial state with the second closest e′

mz
/N

to EESQPT; N = 103 (top) and N = 104 (bottom); dashed lines give
F (t) ∝ 1/t . All panels: ξ = 0.6. Arbitrary units.

expression for the survival probability:

F (t) =
∣∣∣∣∣∣

1

πA

∫ e′
mz

/N+A

e′
mz

/N−A

e−iEtdE√
1 − (E−e′

mz
/N

A
)2

∣∣∣∣∣∣
2

(18)

= |J0(At)|2, (19)

where J0 is the Bessel function of the first kind. For very long
times,

F (t 	 A) 
 2

πAt
cos2

(
At − π

4

)
, (20)

from where the algebraic decay ∝ t−1 is evident. Beyond this
decay, the survival probability fluctuates around a saturation
value [67–72].

The dynamics for the LMG model starting with a delocal-
ized U(1) state with energy away from the ESQPT is therefore
analogous to that impinged by the closed XX model on any
initial state |φl〉 with a single excitation. There are, however,
evident differences between the two systems. (i) The speed
of the evolution under the LMG Hamiltonian depends on the
initial state, while for the XX case, it is the same for any
|φl〉. (ii) For the LMG model, the density of states diverges
at EESQPT, while the shape of the level density for the XX
model is equivalent to that of the LDOS in Eq. (16), where
divergences occur only at the edges of the spectrum [73].
(iii) The Hamiltonian matrices for both models written in the
basis of spins aligned in the z direction are tridiagonal, but the
structure of the LMG matrix is richer. From its analysis one
can, in fact, identify the energy of the ESQPT critical point, as
discussed below.

3. Structure of the LMG Hamiltonian matrix

For the LMG model written in the U(1) basis with the
diagonal elements ordered from the lowest to the highest value
of mz, the structure of the matrix for ξ � ξc differs from that
for ξ > ξc. This difference is explained in Fig. 12.

Figure 12(a) depicts the coupling strength between two
neighboring levels H

mz
mz+2 = 〈mz|Hs |mz+2〉 versus the spacing

between the same two levels e′
mz+2

− e′
mz

= 〈mz+2|Hs |mz+2〉 −
〈mz|Hs |mz〉. For ξ � ξc, the spacing is always positive, which
indicates that for any mz, e′

mz+2
> e′

mz
[see the top curve of

Fig. 12(a)]. The spacing is minimum at the edges of the
matrix: for mz = −N/2, where e′

mz
has the lowest value, and

for mz = N/2, where e′
mz

has the highest value. In both cases,
the magnitude of the coupling is close to zero and therefore
ineffective. The ratio (e′

mz+2
− e′

mz
)/〈mz|Hs |mz+2〉 between the

level spacing and the coupling strength as a function of e′
mz

is
shown in Fig. 12(b) for ξ = ξc. The absolute value of this ratio
is indeed very large at the edges, so one expects the eigenstates
to be highly localized at the borders of the spectrum.

For ξ > ξc, the magnitude of the coupling strengths for the
pairs of states (mz = −N/2 and −N/2 + 2) and (mz = N/2
and N/2 − 2) remain very close to zero and the absolute values
of their spacings further increase [see Fig. 12(a)]. Once again,
one therefore expects the eigenstates with energies close to
e′
mz=−N/2 and e′

mz=N/2 to be very localized. The difference
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FIG. 12. Structure of the Hamiltonian matrix of the LMG model
Hs [Eq. (4)], written in the U(1) basis; only even parity is considered.
(a) Coupling strength between two neighboring levels vs spacing
between those levels; from top to bottom: ξ = 0.2,0.4,0.6,0.8,1.0.
(b)–(f) Ratio of the spacing between neighboring levels and their
coupling strength; the value of ξ is indicated in the panels. Absolute
ratio > 1 indicates ineffective coupling. Arbitrary units.

with respect to the case where ξ � ξc is that the spacings
for mz’s close to −N/2 have now negative values, indicating
that e′

mz=−N/2 is not the lowest energy anymore. The absolute
value of the ratio |(e′

mz+2
− e′

mz
)/Hmz

mz+2 | for mz = −N/2 is
still very large, but e′

mz=−N/2 is now shifted to high values
[see Figs. 12(c)–12(f)]. This value follows the separatrix, as
discussed in Fig. 2(e). As a consequence, the energy of the
localized eigenstate with mz ∼ −N/2 is now expected to also
be away from the edge of the spectrum and to be ∼EESQPT.
The presence of the ESQPT can therefore be anticipated even
before diagonalization by performing this simple analysis of
the matrix elements.

4. Total magnetization in the z direction

The different speeds of the evolution of U(1) basis vectors
seen in Fig. 11 must be reflected also in the dynamics of the
total magnetization mz(t). In Fig. 13, we show the evolution
of the absolute value of the normalized difference |mz(t) −
mz(0)|/N starting with the same initial states considered in
Fig. 11. The dynamics for the state with mz = −N/2 is,

0 1 2 3 4 5 6
Time

0

0.2

0.4

0.6

|<
m

z(t)
>-

<m
z(0

)>
|/N

0 0 1 2 3 4 5 6
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0

0.2

0.4

0.6

0

(a) (b)
-500

-498 -4998
-5000

168 1668

FIG. 13. Evolution of the total magnetization in the z direction.
The values of mz(0) are indicated in the panels; they are mz(0) =
−N/2, mz(0) = −N/2 + 2, and the one with the second closest
e′
mz

/N to EESQPT. (a) N = 103 and (b) N = 104. Both panels: ξ = 0.6.
Arbitrary units.

as expected, very slow and it further slows down as the
system size increases from N = 103 [Fig. 13(a)] to N = 104

[Fig. 13(b)]. In contrast, the behavior of the state with the
second closest energy to EESQPT, mz = 168 in (a) and mz =
1668 in (b), is very similar for different system sizes. The slow
evolution of mz(t) signals the presence of the ESQPT.

B. Initial state from the SO(2) basis: |s mx〉
We now consider as initial state an eigenstate of the SO(2)

part of the Hamiltonian |�(0)〉 = |s mx〉 = ∑
k C(k)

mx
|ψk〉.

Equivalently to the analysis developed in Sec. IV A, we start by
studying in Fig. 14 the dependence of the components |C(k)

mx
|2

on the eigenvalues of Hs . The structure is the same for states
with a negative or positive value of mx , so only negative values
and mx = 0 are shown.

The state with |mx | = N/2 is rather localized at the low
eigenvalues of Hs . As |mx | increases, the states become more
spread out and they move towards higher energies. Eventually,
eigenstates with energies below and above the separatrix
give significant contributions to |s mx〉. The structures of
the components below and above the separatrix are clearly
different. As seen in Fig. 14(c), the damping of the oscillations
above the separatrix is smoother and the frequency of the
oscillations is smaller than below the separatrix.

As |mx | approaches zero, the main contributions come from
eigenstates with energies above EESQPT, where the structures
of the eigenstates approach those of U(1) eigenstates, and very
regular structures are formed [Figs. 14(f)–14(h)]. At mx = 0
[Fig. 14(i)], all contributing eigenstates have E′

k/N > EESQPT

and the nonzero values of |C(k)
mx

|2 have a dependence on energy
very similar to that of the LDOS for the XX model given in
Eq. (16).

The x magnetization of the eigenstates that contribute to
|�(0)〉 = |s mx〉 have values close to the magnetization of the
initial state. As a result, the evolution of mx(t) is trapped around
its initial value, as seen in Fig. 15(a). The special case is that of
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FIG. 14. Structure of the SO(2) basis vectors projected onto the
eigenstates of the total Hamiltonian Hs ; N = 200, ξ = 0.6. The
values of mx are −100 (a), −75 (b), −58 (c), −39 (d), −10 (e),
−5 (f), −3 (g), −1 (h), 0 (i). Circles are numerical results and thin
black lines are guides for the eye. Vertical dashed lines mark EESQPT.
Arbitrary units.
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FIG. 15. Evolution of the total magnetization in the x direction
(left) and of the survival probability (right); N = 103. The values of
mx(0) are indicated in the panels. Dashed lines on the right panels
correspond to F (t) ∝ 1/t . All panels: ξ = 0.6. Arbitrary units.

|�(0)〉 = |s 0〉, where only the eigenstates with mx = 0 lead
to |C(k)

mx
|2 �= 0.

The trapping of mx(t) is consistent with experimental
studies of the phenomenon of bifurcation performed in
Refs. [43,44]. There, the initial state was a coherent state with
a positive or negative value of mx(0). The behavior of mx(t)
depended on the value of the control parameter. If the system
was in the nonlinear regime, that is ξ > ξc, mx(t) remained
trapped, oscillating around its initial value. If the system was
in the linear regime, that is ξ < ξc, oscillations between both
signs were verified and the temporal mean was zero. Here,
we argue that distinct behaviors of mx(t) occur also for a
fixed value of ξ , but for initial states prepared at different
energies. If |�(0)〉 is a superposition of energy eigenbasis with
E′

k > EESQPT, then mx(t) = 0, since all contributing energy
eigenbases have mx = 0. In contrast, for a superposition of
energy eigenbasis with E′

k < EESQPT, the time average of
mx(t) will be larger than zero (smaller than zero) if the majority
of the contributions come from the branch of Fig. 8(c) where
the eigenstates have mx > 0 (mx < 0).

The right panels of Fig. 15 show the survival probability for
the same initial states considered in Fig. 15(a). The decay is
slower for mx(0) = 495 [Fig. 15(b)] because this state is more
localized than the others, but apart from this, the decay is very
similar for the three states. At long times, they show a power-
law behavior ∝ t−1, as seen also for the delocalized state in
Fig. 11(c). This was expected already from Fig. 14, which
suggested that the LDOS for |�(0)〉 = |s mx〉 with |mx | <

N/2, especially for those with |mx | very close to zero, should
have a shape well described by Eq. (17).

V. CONCLUDING REMARKS

Focusing on the LMG model, we identified several ways,
other than the local divergence of the density of states, to
detect the presence of an ESQPT. They are itemized as
follows.

(i) The level of localization of the eigenstates written in
the U(1) basis. At the separatrix, the eigenstates are highly
localized in the ground state of the U(1) part of the LMG
Hamiltonian.

(ii) The ratio between the spacings of neighboring levels of
the LMG Hamiltonian matrix written in the U(1) basis and their
interaction strengths. One sees that these spacings are larger
than their coupling strengths for levels with energy very close
to EESQPT. Since the coupling is ineffective, the eigenstate is
localized. The ESQPT critical point can therefore be predicted
even before diagonalization.

(iii) The value of the total magnetization in the z direction.
The ground state of the U(1) part of the Hamiltonian has
mz = −N/2 (nt = 0). It is only for the localized eigenstates
very close to the separatrix that the expectation value of the z

magnetization approaches this minimum value.
(iv) The bifurcation of the total magnetization in the x

direction. The structures of the eigenstates above the separatrix
are closer to the U(1) symmetry and their x magnetization is
zero. Below the separatrix, the eigenstates are closer to the
SO(2) symmetry. They come in pairs of degenerate states,
each one having a positive or a negative value of mx . The
separatrix marks the point of this bifurcation.

(v) The speed of the evolution of U(1) basis vectors under
the LMG Hamiltonian. The localization of the eigenstates at
the separatrix implies that the evolution of the U(1) basis vector
with mz = −N/2 is very slow, as was confirmed by studying
mz(t) and the survival probability. This finding establishes a
connection with experiments with ion traps [41,42], where
the evolution of U(1) basis vectors is currently studied. There,
however, the range of the interaction is close to, but not exactly
infinite. One of our future goals is to investigate whether the
results obtained in this work can be extended to the scenario
where α �= 0 in Hamiltonian (2).

The slow evolution despite the presence of infinite-range
interactions emphasizes the importance of taking into account
both the Hamiltonian and also the initial state [74] when
investigating nonequilibrium quantum dynamics. Conclusions
based on only one of the two may result incomplete.

(vi) The trapping of the evolution of mx(t) close to its
initial value. If the eigenstates contributing to the evolution of
a chosen initial state have E′

k/N < EESQPT and if they belong
to a single branch of the two possible branches of values of mx ,
the temporal mean of mx(t) will be nonzero. If the contributing
eigenstates have E′

k/N > EESQPT, then the temporal mean of
mx is zero. This analysis is similar to that developed in the
experimental investigation of bifurcations with Bose-Einstein
condensates [43] and nuclear magnetic resonance [44]. The
difference here is that the bifurcation occurs by varying the
energy of the initial state, instead of by changing the value of
the control parameter.

We also revealed similarities between the LDOS of the
LMG model and the XX model with a single excitation. This
allowed us to use the analytical expression obtained for the
XX model to fit very well the LDOS of the LMG Hamiltonian.
With it, we obtained an analytical expression for the long-
time decay of the survival probability for both models, which
is ∝ t−1.

012113-10
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It is our hope that the results reported in this work will
motivate further experimental studies of ESQPTs, especially
in the context of quench dynamics.
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APPENDIX: XX MODEL

The Hamiltonian of the XX model is given by

H =
∑

i

J
(
Sx

i Sx
i+1 + S

y

i S
y

i+1

)
, (A1)

where J is the coupling strength between nearest-neighbor
spins. For periodic boundary conditions and a single excitation,
the eigenvalues of this Hamiltonian can be found analytically
as follows. Define the eigenstates as

|ψk〉 =
N∑

l=1

a
(k)
l |φl〉, (A2)

where |φl〉 is the state with a spin pointing up in the z direction
(an excitation) on site l, while all other spins point down.
Substituting this equation and

H |φl〉 = J

2
(|φl−1〉 + |φl+1〉) (A3)

into H |ψk〉 = Ek|ψk〉, gives the equation for the energy

Eka
(k)
l = J

2

(
a

(k)
l−1 + a

(k)
l+1

)
. (A4)

Due to the periodic boundary conditions, a
(k)
l+N = a

(k)
l and it is

appropriate to use the ansatz a
(k)
l = ei2πkl/N , from where we

obtain

Ek = J cos

(
2πk

N

)
, (A5)

with k = −N/2,−N/2 + 1, . . . −1,0,1, . . . N/2 − 1, and the
eigenstates

|ψk〉 = 1√
N

N∑
l=1

ei2πkl/N |φl〉, (A6)

which are Bloch waves.
For an initial state corresponding to one of the basis vectors

|φl〉, the LDOS is derived from ρ|φl〉(E) = N−1 ∑
k δ(E − Ek).

In the thermodynamic limit, using 2πk/N → E , we have

ρ|φl〉(E) = 1

2π

∫ π

−π

δ(E − J cos E)dE . (A7)

The integral can be solved with the identity δ(f (E)) =∑
i δ(E − Ei)/|f ′(Ei)|, where Ei = ± arccos(E/J ) are the

roots of f (E). We then obtain

ρ|φl〉(E) = 1

π
√

J 2 − E2
. (A8)

Notice that for the LDOS of the XX model, the probabilities
|a(k)

l |2 = 1, while the components |C(k)
mz

|2 for the LMG model
oscillate, as shown in Fig. 9(h). Yet, the two resulting LDOS
are comparable.
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[21] J. Chávez-Carlos, M. A. Bastarrachea-Magnani, S. Lerma-

Hernández, and J. G. Hirsch, arXiv:1604.00725.
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