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A recent experiment [K. C. Lee et al., Science 334, 1253 (2011)] succeeded in detecting entanglement
between two macroscopic specks of diamonds, separated by a macroscopic distance, at room temperature. This
impressive result is a further confirmation of the validity of quantum theory in (at least parts of) the mesoscopic
and macroscopic domain, and poses a challenge to collapse models, which predict a violation of the quantum
superposition principle, which is bigger the larger the system. We analyze the experiment in the light of such
models. We will show that the bounds placed by experimental data are weaker than those coming from matter-wave
interferometry and noninterferometric tests of collapse models.
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I. INTRODUCTION

The counterintuitive properties of quantum mechanics have
always fascinated and puzzled the scientific community. This
is even more true now that rapid technological developments
allow or promises to test quantum physics in regimes and con-
ditions, which were unaccessible only a few years ago [1,2].
At stake there is not only a deeper understanding of nature,
but also the hope to set the grounds for novel quantum
technologies.

The quantum-to-classical transition certainly is the most
problematic aspect of quantum theory. Why is our direct
physical experience that of a classical world, if we are
made of atoms and molecules, which obey the laws of
quantum physics? Why do we not see superpositions and
entanglement in play in everyday life? Can these be pushed to
the macroscopic domain, at least in controlled environments
such as laboratory experiments?

A recent experiment [3] made a significant step forward in
this direction. Two millimeter-size diamonds, distant some 15
cm one from the other, were entangled, and the entanglement
was detected, via optical techniques, at room temperature.
This means that objects directly visible by the human eye,
in standard environmental conditions, and separated by a
macroscopic distance, show a quantum behavior.

This remarkable result, besides being interesting for
our understanding of nature, poses a challenge to collapse
models [4–10]. These models predict an evolution for the
state vector fundamentally different from standard quantum
mechanics: every system interacts nonlinearly with a classical
noise, which induces the collapse of the wave function in
space. This violation of quantum linearity depends on the
size of the system: it is negligible for microscopic systems,
and increases with the number of constituents to the point
that macroscopic objects are always well localized in space.
Somewhere in the mesoscopic domain, the breakdown of the
quantum superposition principle starts becoming significant,
explaining the quantum-to-classical transition.

The question we address here, is what the experimental
result has to say regarding these models. The lifetime of the
entangled state is very short (∼10−12 s), but on the other hand,
the masses (∼1016 amu) and distances (∼10 cm) involved
are very large, truly macroscopic, and could in principle
compensate the very short time. On the other hand, it is not
immediately clear that collapse models should enter into play
here at all. There is no center-of-mass motion involved, which
is the typical way to enhance the collapse effect and test it
experimentally. On the other hand, internal vibrations imply
mass motion, to which these models are sensitive.

We will clarify all these issues. In our analysis, we
will consider the mass-proportional continuous-spontaneous-
localization (CSL) model [6], which is the reference model
in the literature for the comparison with experimental data.
People refer to this model for historical and practical reasons.
It was the first model including the description of identical
particles; moreover, the collapse was formulated in terms of
a continuous diffusion process, as opposed to the original
Ghirardi-Rimini-Weber (GRW) [4] model, the first consistent
collapse model, where the collapse is described by a discrete
jump process. Continuous processes are somehow easier to
work with. We will compute the predictions that CSL makes
for the experiment under consideration, and which bounds the
data place on the CSL parameters.

II. EXPERIMENTAL SETUP

The experiment is described in [3] and reviewed in
Appendix A. In this section we give a concise presentation
of the experimental setup, which is summarized in Fig. 1.
The core consists of two 0.25-mm-thick diamond plates
(3 mm × 3 mm in size), which are spatially separated by
a distance of 15 cm. Entanglement is created among their
phononic states, using pump-and-probe ultrashort optical
pulses with a bandwidth of ∼7 THz.

The initial pump pulse is split in two by a 50:50 beamsplitter
(BS1), and the two parts are sent each to one diamond. When
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FIG. 1. Experimental setup, schematic representation. A pump
pulse, split by the beamsplitter BS1, is sent to the diamonds. The
two separate Stokes modes produced through Raman transitions and
exiting each diamond, are combined by the polarization beamsplitter
PBS2 and reach the detector Ds . A probe pulse sent after a short time
interval is sent through the diamonds to produce anti-Stokes photons,
which are then combined on PBS3 and sent to the detectors Da .

the pulse is absorbed, a phonon is created inside the diamond,
and a Stokes photon with wavelength λs = 900 nm is emitted.
The optical phonon mode is a bulk vibration consisting of two
counteroscillating sublattices of 1016 atoms in a volume of size
L ∼ 10−5 m, with a carrier frequency of 40 THz.

The Stokes photons emitted by each diamond are recom-
bined by a polarizing beam splitter (PBS2) and interfere with
each other through a half-wave plate and polarizer with relative
phase shift φs . Then they are detected by a single photon
counter.

To verify that the detection of the Stokes photons is
evidence of entanglement between the two diamonds, strong
probe pulses are directed to the crystals at a time ta = ts + T

with T = 350 fs, before each Stokes photon has reached the
detector, where ts is the time when the Stokes photon is created.

The interaction of the probe pulse with the diamond induces
the transition of the phononic state to the ground state, with
the emission of an anti-Stokes photon with a wavelength of
λa = 735 nm. Due to their different frequencies, the optical
paths of the Stokes and anti-Stokes photons can be separated
into two different spatial modes by means of a long pass
filter.

The anti-Stokes photons are then combined through a
beamsplitter, interfere with each other through a half-wave
plate and polarizer with a relative phase shift of φa , and finally
are detected. The role of the probe pulse is to coherently
transfer the entangled phonon state into the anti-Stokes mode
for entanglement verification.

III. CSL PREDICTION AND BOUNDS ON THE COLLAPSE
PARAMETERS

Apart from all (important) details, the essence of the
experiment is that it creates the superposition of different
matter distributions inside the two crystals, as shown in
Fig. 2. Differently from other interferometric proposals for
testing CSL effects [4–12], which all rely on creating the

FIG. 2. Schematic representation of the displacements of carbon
atoms in one diamond. The two different colors represent the two
different counteroscillating sublattices. Full colors denote the two
sublattices at rest, while faded ones represent the two sublattices at
the maximum relative distance.

center-of-mass superpositions of massive systems, in this
case the center of mass of each of the two crystals remains
always well localized. However, within each diamond, two
sublattices are placed in the superposition of either being at
rest (no Stokes photon produced) or oscillating (Stokes photon
produced). Therefore we have a superposition of different
matter distributions in space. Since the CSL dynamics is
constructed precisely to destroy superpositions of matter in
space, and the effect scales with the mass of the system, we
expect the dynamics of the experiment to be sensitive to CSL
effects. We now compute these effects.

The mass-proportional CSL master equation for the density
matrix ρt , in the position representation, is [10]

d

dt
ρt = − i

�
[H,ρt ]

− λ

2r3
Cπ3/2m2

0

∫
dx[M(x),[M(x),ρt ]], (1)

where m0 = 1 amu and

M(x) =
∑

n

mne
−(x−x̂n)2/2r2

C , (2)

where x̂n denotes the position operator of the nth particle, and
the sum runs over all particles. The model is characterized
by two phenomenological constants, a collapse rate λ and
a characteristic length rC , which measure, respectively, the
intensity and the spatial resolution spontaneous collapse.
The standard values suggested for CSL parameters are λ =
10−17 s−1 and rC = 10−7 m [10]. A value about eight orders
of magnitude stronger for the collapse rate has been suggested
by Adler [13], motivated by the requirement of making the
wave function collapse effective at the level of latent image
formation in the photographic process.

In Eq. (2), the sum is taken over all the particles, but
being m0 the mass of the nucleon, the terms associated to
the electrons contain a multiplicative factor (me/m0)2 ∼ 10−6

and therefore they can be neglected.
We label with “L” and “R,” respectively, the diamond at

left and right, and the two counter oscillating sublattices with
1 and 2. M(x) can be rewritten in terms of the sum over the set
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of atoms belonging to each sublattice:

M(x) =
∑

α

∑
n∈Aα

mne
−(x−x̂n)2/2r2

C , (3)

where α = L1,L2,R1,R2 is the index of the sublattice and Aα

is a set of atoms belonging to the same sublattice.
The following expression holds:

x̂n = x(0)
n ,α + x̂α + �x̂n, (4)

where x(0)
n ,α is the classical rest position of particle n in sublat-

tice α, while x̂α marks the oscillation of the sublattice (here we
are assuming that the sublattice moves rigidly when excited),
and �x̂n denotes the displacement operator of the particle due
to the quantum motion around the equilibrium position. Since
these oscillations are very small compared to the interparticle
distance (approximately two orders of magnitude smaller), we
can assume the rigid body approximation and neglect the last
term. Therefore we have

M(x) =
∑

α

∫
dr μα(r)e−(x−x̂α−r)2/2r2

C , (5)

where we have introduced the mass density distribution of the
sublattice: μα(r) = ∑

n∈Aα
mnδ

(3)(r − x(0)
n ,α) .

Let us define g(x̂α) = exp[−(x − x̂α − r)2/2r2
C]. Since the

sublattice vibrates a little around the equilibrium, x̂α is small
compared to the other variables, justifying a Taylor expansion
around x̂α = 0:

g(x̂α) ≈ g(0) + ∇g(x̂α)|x̂α=0 · x̂α. (6)

Using the Taylor expansion we can rewrite M(x) = M0(x) +
M̂1(x), where M0 contains no operator and M̂1 is linear in x̂α .
Then the second term of Eq. (1) becomes

− λ

2r3
Cπ3/2m2

0

∑
α,α′

∫
dr1

∫
dr2 μα(r1) μα′ (r2)

× Iij (r1,r2)[(x̂α)i ,[(x̂α′ )j ,ρt ]], (7)

with

Iij (r1,r2) = 1

r4
C

∫
dx e−[(x−r1)2+(x−r2)2]/2r2

C

× (x − r1)i(x − r2)j . (8)

Since μα and μα′ refer to different spatial regions, the
contributions of the terms with α �= α′ in Eq. (7) are negligible.
Moreover, since the phonon sets the sublattices in motion only
along the z direction (i = j = 3), the only relevant contribu-
tion in Eq. (7) comes from [(x̂α)3,[(x̂α)3,ρt ]] := [zα,[zα,ρt ]].
After simple calculations, which are reported in Appendix B,
we can rewrite the expression in Eq. (7) as

−
∑

α

ηα[zα,[zα,ρt ]], (9)

with

ηα = λ

4r4
Cm2

0

∫
dr1dr2μα(r1)μα(r2)e−(r1−r2)2/4r2

C

×
[
r2
C − (z1 − z2)2

2

]
. (10)

As previously pointed out, the optical phonon modes are
characterized by the counteroscillations of the sublattices 1
and 2 inside each diamond. This means that, at every time

ẑL
1 = −ẑL

2 = q̂L, ẑR
1 = −ẑR

2 = q̂R. (11)

Taking also into account that the mass distribution is the same
for each sublattice (ηα = η,∀α), we can rewrite Eq. (1) as
follows:

d

dt
ρt = − i

�
[H,ρt ] − 2η[q̂L,[q̂L,ρt ]] − 2η[q̂R,[q̂R,ρt ]],

(12)

which has the well-known form first derived by Joos and
Zeh in [14]. The first term on the right encodes the standard
quantum evolution, as previously described. The remaining
two terms contain the CSL effect.

In order to solve Eq. (12), we first express q̂L,R in terms
of the annihilation and creation operators, both for the left, L,
and the right, R, case:

q̂L =
√

�

ωm∗
âL + â

†
L√

2
, q̂R =

√
�

ωm∗
âR + â

†
R√

2
, (13)

where m∗ = 6m0 is the reduced mass of the unit cell [15].
We restrict the analysis to the four-dimensional subspace,
tensor product of the two two-dimensional “left” and “right”
subspaces generated by the vacuum and the single-phonon
states. In other words, we compute the matrix elements of
Eq. (12) restricting the analysis to the states

|0L,0R〉 = |0〉, |1L,0R〉 = â
†
L|0〉,

(14)
|0L,1R〉 = â

†
R|0〉, |1L,1R〉 = â

†
L â

†
R|0〉.

Equation (12) then becomes

d

dt
ρt = −iω[H,ρt ] − 1

2
��[ρt ], (15)

where � = 4η�/ωm∗ and the matrix elements of the operators
[H,ρ] and �[ρ], computed in the basis defined in Eq. (14),
are

[H,ρ] =

⎛
⎜⎜⎜⎝

0; −ρ12; −ρ13; −2 ρ14

ρ21; 0; 0; −ρ24

ρ31; 0; 0; −ρ34

2 ρ41; ρ42; ρ43; 0

⎞
⎟⎟⎟⎠, (16)

�[ρ] =

⎛
⎜⎜⎜⎝

2ρ11 − ρ22 − ρ33; 2ρ12 − ρ21 − ρ34; 2ρ13 − ρ24 − ρ31; 2ρ14 − ρ23 − ρ32

2ρ21 − ρ12 − ρ43; 2ρ22 − ρ11 − ρ44; 2ρ23 − ρ41 − ρ14; 2ρ24 − ρ13 − ρ42

2ρ31 − ρ42 − ρ13; 2ρ32 − ρ41 − ρ14; 2ρ33 − ρ44 − ρ11; 2ρ34 − ρ43 − ρ12

2ρ41 − ρ32 − ρ23; 2ρ42 − ρ31 − ρ24; 2ρ43 − ρ34 − ρ21; 2ρ44 − ρ33 − ρ22

⎞
⎟⎟⎟⎠. (17)
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In accordance with the description of the previous section,
we take as initial state the superposition of the states |1L,0R〉
and |0L,1R〉, which in the density matrix formalism gives the
following initial condition:

ρ0 = 1

2

⎛
⎜⎝

0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

⎞
⎟⎠. (18)

The presence of the off-diagonal elements are a measure of
quantum superposition and, in this case, of entanglement. The
time evolution of the matrix elements, according to Eq. (15),
is

ρ11 = ρ44 = 1

4
(1 − e−2�t ),

ρ22 = ρ33 = 1

4
(1 + e−2�t ),

ρ14 = �

2
e−�t

(
2iω[cosh(t) − 1]

2
+ sinh(t)



)
,

ρ41 = �

2
e−�t

(
− 2iω[cosh(t) − 1]

2
+ sinh( t)



)
,

ρ23 = ρ32 = 1

2
e−�t �

2 cosh(t) − 4ω2

2
,

where  = √
�2 − 4ω2 and the other terms are zero.

It is interesting to observe that in the long-time limit the
density matrix approaches

ρ∞ = 1

4

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠. (19)

As we can see, the off-diagonal elements are suppressed, as an
effect of the collapse mechanism embodied in the second term
of Eq. (1). Moreover, all states are equally populated, as an
effect of the noise which, on top of killing superpositions, also
induces a Brownian-type of motion inside the crystals, where
phononic states are constantly created and destroyed.

The next step now is to evaluate η. To do so we choose
to follow the approach used in [16], with some obvious
differences. Starting from Eq. (3), we write the function M(x)
in Fourier space as

M(x) =
∑

α

∑
n∈Aα

mne
−(x−x̂α−x̂n)2/2r2

C

= r3
C

(2π )3/2

∑
α

∫
dk e−r2

Ck2/2eik·(x−x̂α )μ̃(k),

where μ̃(k) is the Fourier transform of the density μ(r), which
is the same for all sublattices. From Eq. (10) we obtain, after
tedious but straightforward calculations, the expression of η

as a Fourier integral:

η = λ r3
C

2 π3/2m2
0

∫
dk k2

z |μ̃(k)|2e−r2
Ck2

. (20)

In the experiment here considered, each phonon has roughly a
cylindrical shape with a radius R = 3.6 μm and length equal
to the width of the diamonds, d = 0.25 mm [15]. Since the

density of atoms for diamonds is n = 176.2 × 1027 m−3, the
total number of atoms contributing to the phonon is N ∼ 2 ×
n × (π R2 d) = 3.6 × 1015 (the factor 2 arises because there
are two diamonds). For a cylinder with homogeneous mass
density:

μ(r) =
{

m
πR2d

, r ∈ V,

0, otherwise,
(21)

and its Fourier transform is [16]

μ̃cyl(kz,k⊥) = 2m

k⊥R
J1(k⊥R)sinc

(
kzd

2

)
, (22)

where k⊥ = (kx,ky), J1 denotes the Bessel function, and m =
12 × N × m0 is the total mass (the factor 12 comes from the
carbon atom mass number A = 12). Finally we arrive at the
expression

η = λ
N2

d2
�⊥

(
R√
2rC

)
[1 − e−d2/4r2

C ], (23)

where

�⊥(x) = 2

x2
{1 − e−x2

[I0(x2) + I1(x2)]}, (24)

with I0 and I1 the modified Bessel functions.
Taking the reference value rC = 10−7 m [10], and by

plugging in all the numbers, we get

η ∼ 6 × 1035λ m−2. (25)

To extract the order of magnitude of the CSL effect during the
measurement, let us take the solutions of Eq. (12) and neglect
the contribution of H . Then, the density matrix in the position
representation evolves as

ρt = ρ0e
−4η(�z)2T , (26)

where �z =
√

�

m∗ω = 1.6 × 10−11 m is the maximum dis-
placement due to the oscillation of the phonon in one
diamond [15] and T = 350 fs. Since the experiment shows
full quantum interference which implies no sign of collapse
effects, the following relation must be true:

4η(�z)2T  1, (27)

from which we identify the exclusion zone reported in Fig. 3
(red region).

The shape of the exclusion zone can be understood by
studying the dependence of η on λ and rC . From Eq. (23) we see
that η always depends linearly on λ, while the dependence on
rC changes for different values of rC . More precisely (keeping
in mind that R = 3.6 × 10−6 m and d = 2.5 × 10−4 m) it can
be shown that when rC � 10−7 m then η ∼ λr2

C (slope = −2
for the red line), when rC � 10−5 m (slope = 0) then η ∼ λ,
and when rC � 10−3 m then η ∼ λ/r2

C (slope = 2).

IV. COMMENTS AND CONCLUSIONS

The bound here derived is weak in the sense that neither
Adler’s value for λ, nor GRW’s (black points in Fig. 3), are
tested by the experiment. The reason is easy to understand.
First of all, entanglement (over a distance of 15 cm) here
does not play a role. The reason is that the real superposition
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FIG. 3. Exclusion plot in the λ-rC parameter space. The red curve
(“Diamonds”) shows the bound here computed from the experiment
under consideration; the region marked in red is excluded with a
high confidence level. For comparison we have included the upper
bounds from x-ray experiment [17] (green), from nanocantilever
experiments [18] (blue), and from KDTLI experiment [1] (purple).
For reference, we have also included the GRW [4] values (λ =
10−16 s−1, rC = 10−7 m) and the values proposed by Adler [13]:
(λ = 10−8 s−1, rC = 10−7 m) and (λ = 10−6 s−1, rC = 10−6 m).

of matter is within the two crystals (the two counteroscillating
sublattices), not between the two diamonds. CSL is insensitive
to entanglement, which does not carry spatial superposition
of matter. The second reason is that the superposition times
and distances are too small, and are not fully compen-
sated by the very large number of atoms involved in the
superposition.

In spite of this, our bound competes with that coming from
the Kapitza-Dirac-Talbot-Lau interferometer (KDTLI) [1],
where the superposition times and distances are larger, but
the number of atoms involved is much smaller. These two are,
so far, the only direct, i.e., interferometric, tests of the quantum
superposition principle, in the sense that they both create and
test a quantum superposition of the center-of-mass position of
a relatively massive system. The latter is stronger for smaller
values of rC , ours for larger values.

Both bounds, however, are weaker than those coming from
noninterferometric tests: violation of the equipartition theorem
with cantilevers [18], and x-ray measurements [17]. At present,
noninterferometric tests proved the strongest upper bound for
the CSL parameters; what is not clear is whether these bounds
are robust against changes in the collapse mechanism, while
those associated to interferometric tests are [19].
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APPENDIX A: THEORETICAL DESCRIPTION OF THE
EXPERIMENT

Let us first consider a single diamond, and let ŝ† and b̂†

be the creation operators of a Stokes photon and of a phonon,
respectively:

ŝ†|0s ,0b〉 = |1s ,0b〉, b̂†|0s ,0b〉 = |0s ,1b〉, (A1)

where |0s ,0b〉 is the photonic-phononic initial vacuum state.
The interaction (at time ts) between the pump pulse and the
diamond induces, with a small probability amplitude εs , the
excitation of a phononic state, accompanied by the emission
of a Stokes photon. The initial vacuum state then changes to

|ψ,ts〉 = |0s ,0b〉 + εs |1s ,1b〉 (A2)

(up to an overall normalization factor), with |εs |2  1. For the
two diamonds, we have

|�,ts〉 = |ψ,ts〉L ⊗ |ψ,ts〉R
= |0s ,0b〉L ⊗ |0s ,0b〉R + εs |1s ,1b〉L ⊗ |0s ,0b〉R

+ εs |0s ,0b〉L ⊗ |1s ,1b〉R, (A3)

where the subscripts L and R refer to the left and right dia-
mond, respectively, and we have neglected terms proportional
to ε2

s . Note that at this stage, there is no entanglement yet.
Next, the Stokes modes interfere with a relative phase shift

φs , simply resulting in an additional multiplicative factor in the
right diamond’s optical mode (|1s ,1b〉R → e−iφs |1s ,1b〉R), due
to the different optical path in the two branches. The resulting
state is still factorized.

The coherence lifetime of phonons is about 7 ps, but before
that time, about T = 350 fs after the pump pulse, a strong
probe pulse is directed to the crystals. As a result, the phonon
is converted into a 40 THz blueshifted anti-Stokes photon
with a probability |εa|2  1: |0a,1b〉 → |0a,1b〉 + εa|1a,0b〉,
while the vacuum state is left unaltered. Note that, in order to
simplify the notation, we omitted to write explicitly the state
of the Stokes photon, being irrelevant for future calculations.
From now on we will use this notation.

Therefore, after the interaction with the probe pulse, the
state (A3) changes to

|�,ts + T 〉 = |0a,0b〉L ⊗ |0a,0b〉R + εs[ |0a,1b〉L ⊗ |0a,0b〉R
+ e−iφs |0a,0b〉L ⊗ |0a,1b〉R
+ εa(|1a,0b〉L ⊗ |0a,0b〉R
+ e−iφs |0a,0b〉L ⊗ |1a,0b〉R)], (A4)

where, as before, higher order terms in εa have been neglected.
This state is still factorized.

The next step is the creation of an entangled state. At
time t ′s > ts + T the presence of Stokes photons is detected,
which is a signal of a phonon being created in the crystal. The
state (A4) is then projected to

|�,t ′s〉 = εs{|0a,1b〉L ⊗ |0a,0b〉R + e−iφs |0a,0b〉L ⊗ |0a,1b〉R
+ εa(|1a,0b〉L ⊗ |0a,0b〉R
+ e−iφs |0a,0b〉L ⊗ |1a,0b〉R)}, (A5)
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apart from an overall normalization factor. This state is
not factorizable anymore: entanglement between the two
diamonds has been created.

The final step is entanglement detection. The anti-Stokes
photons coming from left and right (which have different
polarizations) are recombined in the same spatial mode with
a polarizing beamsplitter, and interference is created, with
a controllable phase φa , by means of a half-wave plate at
45◦, which deletes the polarization differences between the R

and L anti-Stokes photons. This is done in order to erase the
“which way information” brought in by the polarization. After
that, the flux of anti-Stokes photons is divided with another
beamsplitter, which directs the incoming signal to two different
detectors D+ and D−. The overall measurement process can
be described as the projection of the outcoming state |�,t ′s〉 of
the states:

|a±〉 = |1a〉L ⊗ |0a〉R ± eiφa |0a〉L ⊗ |1a〉R√
2

. (A6)

The number N± of the anti-Stokes photons counted in the
two detectors is thus given by the product between the total
number of incoming pulses and the measurement probability
itself, which is given by

P± = ε2
a |〈a±|�,t ′s〉|2

= 2ε2
a sin2

(
φa + φs

2
+ π ± π

4

)
, (A7)

where ε2
a comes about because the measured quantity is not

just the photocounting in detectors D±, but the coincident
counts between the Stokes photons detected in Ds and the
anti-Stokes ones, which make sure that an anti-Stokes photon
is coming from an excited phonon state created previously
with the emission of the Stokes photon. Equation (A7) is
slightly different from the one reported in [3] and corrects
it, as confirmed by the authors [15].

The experiment confirms the theoretical prediction of
Eq. (A7), as shown in Fig. 2 of [3]. As a proof of the fact that
this is a measure of entanglement being created among the two
diamonds, one can check what happens if the wave function of
the two diamonds’ phononic states system is factorized in the
left and right branches: |�a〉 = |ψL〉|ψR〉. In this case one can
easily check that the count rate becomes N ′

± = 1
2ε2

a , meaning
that all anti-Stokes photons are equally divided in the two
branches + and −.

APPENDIX B: CALCULATIONAL DETAILS

We report the calculation of the integral in Eq. (8), necessary
to derive Eq. (10), in the case i = j = 3. We start with the
change of variables u = x − r1 and y = r1 − r2, obtaining

I3,3(y) = e−y2/2r2
C

r4
C

∫
du u3(u3 + y3)e−(1/r2

C )(u2+u·y).

We decompose the integral in du in the three Cartesian
components (u1,u2,u3), giving the two integrals:

∫
dui e

−(ui/r
2
C )(ui+yi ) = √

π rCey2
i /4r2

C , i = 1,2,∫
du3 e−(u3/r

2
C )(u3+y3)u3(u3 + y3)

= 1

4

√
πrCey2

3 /4r2
C

(
2r2

C − y2
3

)
.

Finally we get the result

I3,3(r1,r2) = π3/2

2rC

e−[(r1−r2)2/4r2
C ]

[
r2
C − (r1 − r2)2

3

2

]
,

which directly leads to Eq. (10).
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