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Quantum-trajectory thermodynamics with discrete feedback control
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We employ the quantum-jump-trajectory approach to construct a systematic framework to study the
thermodynamics at the trajectory level in a nonequilibrium open quantum system under discrete feedback
control. Within this framework, we derive quantum versions of the generalized Jarzynski equalities, which are
demonstrated in an isolated pseudospin system and a coherently driven two-level open quantum system. Due
to quantum coherence and measurement backaction, a fundamental distinction from the classical generalized
Jarzynski equalities emerges in the quantum versions, which is characterized by a large negative information gain
reflecting genuinely quantum rare events. A possible experimental scheme to test our findings in superconducting
qubits is discussed.
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I. INTRODUCTION

Recent years have witnessed the rise of an interdisciplinary
field of information thermodynamics [1]. Information process-
ing and feedback control in small classical thermodynamic
systems are fairly well understood in terms of thermodynamic
variables [2–5] and information gain [6,7] along individual tra-
jectories. In particular the generalized Jarzynski equalities [6]

〈e−β(W−�F )〉 = η, 〈e−β(W−�F )−I 〉 = 1 (1)

connect the work W with the efficacy η of feedback control
and the mutual information I . Here �F and β are respectively
the free-energy difference and the inverse temperature. These
relations have been experimentally verified by using colloidal
particles [8] and a single-electron box [9].

However, there has been little progress in the quantum
aspect of information thermodynamics at the trajectory level.
The main difficulty is to identify the thermodynamic variables
and the information content compatible with genuine quantum
effects such as superposition and measurement backaction.
The thermodynamics of information processing has been
discussed mainly on the basis of statistical ensembles [10–
14], whereas only special cases have been examined at the
trajectory level including classical measurement errors [15],
an isolated driving [16] and a separated thermalization pro-
cess [17].

Meanwhile, there have been remarkable advances in ex-
perimental techniques to measure and control small quantum
systems such as trapped ions [18], quantum dots [19], and
superconducting qubits [20], which can be used to implement
quantum information processing and operate in the presence of
dissipation and dephasing. In particular, continuous monitor-
ing [21–23] and measurement-based feedback control [24,25]
have been achieved in superconducting qubits. It thus seems
timely to develop a theoretical framework to study quantum
trajectory thermodynamics under feedback control.

Among various proposals for the definitions of work and
heat in open [26–29] and isolated quantum systems [30–
32], the quantum-jump-trajectory (QJT) approach, which was
originally developed in quantum optics [33–35] and applied
to quantum thermodynamics quite recently [36–47], provides
a natural framework to define thermodynamic quantities.

The QJT-based definition naturally incorporates quantum
coherence and gives the definitions of work and heat that
reduce to the widely accepted ones (see Appendix C for details)
upon ensemble averaging [48,49] or in the classical [3] and
adiabatic limits [50–52].

In this paper, we extend the QJT approach to a widely
applicable quantum thermodynamic process with discrete
feedback control to establish a framework for systemati-
cally studying information thermodynamics in small open
quantum systems at the level of individual trajectories. Yet
another genuinely quantum-mechanical effect—measurement
backaction—is also included. In particular, we find the
quantum generalizations of Eq. (1) and highlight the fun-
damental distinction from their classical counterparts [6],
which is characterized by a new information content (17)
that signals quantum rare events by large negative values.
The present work thus significantly broadens the scope of
information thermodynamics to open quantum systems, where
quantum coherent thermodynamics, measurement backaction,
and feedback control may conspire to yield as yet unexplored
emergent quantum phenomena.

This paper is structured as follows. In Sec. II, we review
the quantum master equation formalism of quantum ther-
modynamics at the ensemble level. In Sec. III, we review
the quantum trajectory thermodynamics in the absence of
feedback control. In Sec. IV, we combine quantum trajectory
thermodynamics with feedback control to establish the general
framework for information thermodynamics in the quantum
regime. We derive the quantum versions of the generalized
Jarzynski equalities in Sec. V. Two examples are given in
Sec. VI. Finally, we conclude the paper in Sec. VII. Several
complicated algebraic manipulations and detailed discussions
are relegated to Appendixes to avoid digressing from the main
subject. Appendix A provides a detailed derivation of the mas-
ter equation (2). Appendix B shows how heat and work can be
defined without ambiguity along a single quantum trajectory.
Appendix C demonstrates how the QJT-based definitions of
work and heat reduce to their widely accepted definitions
at the ensemble level and in the classical or adiabatic limit.
Appendix D gives derivations of the generalized quantum
Jarzynski equations. Appendix E describes some details of
the example discussed in Sec. VI.
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FIG. 1. A system is weakly coupled to an ideal heat bath with
inverse temperature β and simultaneously driven out of equilibrium
by a time-dependent inclusive Hamiltonian H (λt ) and an exclusive
one ht . At the trajectory level, the system is projectively measured
twice in the eigenbasis of the instantaneous Hamiltonian at the
initial and final times, while the heat bath is subjected to continuous
projective monitoring during the whole process.

II. QUANTUM THERMODYNAMICS

A. Markovian quantum master equation

We consider a d-level system with nondegenerate energy
gaps, whose state at time t is described by the density operator
ρt . As schematically illustrated by Fig. 1, the system is under
nonequilibrium driving and weakly coupled to a large heat
bath at inverse temperature β. The time-dependent driving
can be classified into an inclusive part H (λt ) with a tunable
work parameter λt and an exclusive part ht [53], where only
the former is included in the system energy Et = Tr[ρtH (λt )]
while the latter arises from external driving. We assume a
sufficiently slow inclusive driving speed λ̇t and a short memory
time τB of the heat bath [54] [see Eq. (A2) for details].
Under the Born-Markov approximation and the rotating-wave
approximation [55,56], the Lindblad master equation [57] can
be obtained as (see Appendix A for the derivation)

ρ̇t = Lt ρt = − i

�
[H (λt ) + ht ,ρt ] +

∑
j

D[Lj (λt )]ρt , (2)

where D[c]ρ ≡ cρc† − {c†c,ρ}/2 is a traceless superop-
erator, and Lj (λ) is the j th jump operator satisfy-
ing [Lj (λ),H (λ)] = �j (λ)Lj (λ) with �j (λ) ∈ {Eλ

k − Eλ
l :

H (λ)|kλ〉 = Eλ
k |kλ〉, k,l = 1,2, . . . ,d} and the detailed bal-

ance condition L
†
j ′ (λ) = Lj (λ)e−β�j (λ)/2 with j ′ being

uniquely determined from �j ′ (λ) = −�j (λ) if �j (λ) �= 0
and j ′ = j otherwise. The Lamb shift is ignored. Since ht

is exclusive, the detailed balance condition ensures the system
to relax to an instantaneous equilibrium state only when λt is
constant and ht is turned off [42].

While we introduce Eq. (2) based on the standard small-
system + large-environment approach [39], the same equation
of motion can be obtained for an effective heat bath consti-
tuted from a set of independent and identically distributed
systems (e.g., two-level atoms [38]), each of which that
sequentially interacts with the system during an appropriate
short time [40]. This can be understood from the fact that any
Markovian, completely positive and trace-preserving (CPTP)
open quantum dynamics possesses the Lindblad form [58].
Equation (2) is valid if ht is perturbative [i.e., ht � H (λt )]
or represents a sequence of sudden pulses (see Appendix A
for a heuristic argument). Thus, our formalism applies to a
broad class of driving protocols such as π pulses used in
Ref. [14] and potentially to quantum computation [59], where

a gate operation Ug = e−ihg at time tg can be generated by
ht = �hgδ(t − tg).

B. Work and heat at the ensemble level

In the absence of an exclusive driving (ht = 0), we have the
following well-known expressions for work and heat [48,49]:

〈W 〉 =
∫ τ

0
dtλ̇tTr[∂λH (λt )ρt ],

〈Q〉 = −
∫ τ

0
dtTr[H (λt )ρ̇t ], (3)

where ρt is the solution to Eq. (2) during the time interval
0 � t � τ . Such definitions of work and heat allow intuitive
interpretations that the energy change due to a change of the
work parameter (the state) is identified as work (heat), and
satisfy the first law of thermodynamics �E ≡ Eτ − E0 =
〈W 〉 − 〈Q〉. Here Q > 0 corresponds to the heat transferred
from the system to the heat bath.

In the presence of an exclusive driving (ht �= 0), the
definitions of work and heat should be modified by

〈W 〉 =
∫ τ

0
dtλ̇tTr[∂λH (λt )ρt ] − 1

i�

∫ τ

0
dtTr[[ht ,H (λt )]ρt ],

〈Q〉 = −
∫ τ

0
dtTr[H (λt )ρ̇t ] − 1

i�

∫ τ

0
dtTr[[ht ,H (λt )]ρt ].

(4)

Here, additional terms appears due to the fact that ht affects
the unitary part of the system’s dynamics just like H (λt ),
but the effect is dropped when we evaluate the energy
expectation. If we used Eq. (3), for a short time interval [t,t +
dt], an additional energy change − i

�
Tr[[ht ,ρt ]H (λt )]dt =

− 1
i�

Tr[[ht ,H (λt )]ρt ]dt due to the unitary state evolution
contributed by ht would be misidentified as heat.

A simple illustrative example is a situation relevant to
the quantum Bochkov-Kuzovlev equalities for isolated sys-
tems [60], where λt = λ,∀t ∈ [0,τ ] is fixed so that 〈W 〉 =
�E = Tr[H (λ)(ρτ − ρ0)] and 〈Q〉 = 0. One can check that
Eq. (4) indeed gives this result, whereas Eq. (3) leads to the
wrong results: 〈Q〉 = Tr[H (λ)(ρτ − ρ0)] and 〈W 〉 = 0. An
interesting special limit is the quantum logic gate operation
with ht = �hgδ(t − tg). Suppose that the input state is ρt−g ,
the energy cost, which is attributed to work, of the quantum
logic gate operation Ug = e−ihg generated by ht should be
〈Wg〉 = Tr[H (λ)(ρt+g − ρt−g )], where ρt+g = Ugρt−g U

†
g is the

quantum state after the operation. It is clear that Eq. (4)
gives such a result. However, if we used Eq. (3), we would
again arrive at a wrong conclusion that such an energy cost is
identified as heat.

To further convince ourselves the necessity of the additional
terms in Eq. (4), we may recall the classical counterpart. As is
well known in classical stochastic thermodynamics, the work
functional with respect to a trajectory �t ≡ (xt ,pt ) in the phase
space of a Brownian particle with mass M , subjected to a
nonconservative force ft and confined in a time-dependent
potential V (x,λt ), is [61]

WC[�t ] =
∫ τ

0
dtλ̇t ∂λV (xt ,λt ) + 1

M

∫ τ

0
dtptft . (5)
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Suppose that ft arises from a fictitious potential ht (x) ≡ −ftx.
Then WC[�t ] can be rewritten as

WC[�t ] =
∫ τ

0
dtλ̇t ∂λH (xt ,λt ) −

∫ τ

0
dt{ht (xt ),H (xt ,λt )}PB,

(6)

where H (x,λ) = p2/2M + V (x,λ) is the classical Hamilto-
nian, and {·,·}PB is the Poisson bracket. By replacing the
Poisson bracket with the commutator 1

i�
[·,·] and taking the

ensemble average Tr[ρt . . .], we reproduce the first expression
in Eq. (4).

III. QUANTUM-TRAJECTORY THERMODYNAMICS

A. Quantum-jump trajectory

While classical trajectory thermodynamics or stochastic
thermodynamics is a relatively mature field [62], little progress
has been made on its quantum generalization until very recent
years (see Appendix B for some related remarks). Interestingly,
this cutting-edge problem is found to be closely related to the
well-established QJT approach, which we briefly review here.

According to the equation of motion (2), up to accuracy
O(δt2), ρt+δt can be expressed as the nonselective postmea-
surement state of ρt for a certain measurement [44]:

ρt+δt =
[
I − i

�
Heff(t)δt

]
ρt

[
I + i

�
H

†
eff(t)δt

]

+
∑

j

Lj (λt )
√

δtρtL
†
j (λt )

√
δt, (7)

where Heff(t) = H (λt ) + ht −∑
j i�L

†
j (λt )Lj (λt )/2 is the

non-Hermitian effective Hamiltonian. In terms of a
selective measurement, we can interpret the open quantum
dynamics during a short time interval as follows:
there is a probability δpj = Tr[L†

j (λt )Lj (λt )ρt ]δt (or

p0 = 1 −∑
j Tr[L†

j (λt )Lj (λt )ρt ]δt) of the outcome j �= 0
(or j = 0) being observed, which is accompanied by the
backaction that changes ρt into Lj (λt )ρtL

†
j (λt )δt/δpj (or

[I − i
�
Heff(t)δt]ρt [I + i

�
H

†
eff(t)δt]/p0). If ρt is a pure state

|ψt 〉〈ψt |, it will stay pure but evolve differently for different
outcomes. In particular, if the outcome j = 0 is observed, we
have

|ψt+δt 〉 = 1√
p0

[
I − i

�
Heff(t)δt

]
|ψt 〉

=
⎡
⎣I − i

�
Heff(t)δt + 1

2

∑
j

‖Lj (λt )|ψt 〉‖2δt

⎤
⎦|ψt 〉,

(8)

which describes a state change of the order of O(δt) called
nonunitary evolution. If j �= 0 is observed, we have

|ψt+δt 〉 =
√

δt

δpj

Lj (λt )|ψt 〉 = Lj (λt )|ψt 〉
‖Lj (λt )|ψt 〉‖ , (9)

which describes a state change of the order of O(1) due to
a quantum jump (QJ). Combining these two different types

of evolutions, we obtain the QJ-type stochastic Schrödinger
equation:

d|ψt 〉 =
⎡
⎣− i

�
Heff(t) + 1

2

∑
j

‖Lj (λt )|ψt 〉‖2

⎤
⎦|ψt 〉dt

+
∑

j

[
Lj (λt )

‖Lj (λt )|ψt 〉‖2
− I

]
|ψt 〉dN

j
t , (10)

where dN
j
t ’s are independent random variables satisfying

(dN
j
t )2 = dN

j
t and E[dN

j
t ] = ‖Lj (λt )|ψt 〉‖2dt . This

stochastic Schrödinger equation is known as an unraveling of
the original LME (2), in the sense that ρt can be reproduced by
taking the average over all the possible realizations of |ψt 〉, i.e.,
ρt = E[|ψt 〉〈ψt |]. It is worth mentioning that the unraveling is
not unique. For the same LME, we also have the quantum-state
diffusion unraveling [63] in addition to the QJ-type one.

B. Work and heat at the trajectory level

While the QJ-type stochastic Schrödinger equation (10)
was originally proposed for numerical computations [34], its
physical interpretation was soon found in a specific direct
photon-detection process [64]. Here the photon field serves
as the heat bath (though it is the zero-temperature vacuum
in Ref. [64]). Thus, the interpretation can be straightforwardly
generalized to the continuous projective monitoring of the heat
bath (see Fig. 1). In the context of quantum thermodynamics,
such an idea was first discussed in Ref. [36].

The QJT approach presupposes a pure initial state. This
condition is achieved by a projective measurement (PM) in the
eigenbasis of the initial Hamiltonian H (λ0); the PM also deter-
mines the initial energy Eλ0

a with a being some quantum num-
ber. Furthermore, we perform another PM in the eigenbasis of
H (λτ ) at the final time, which determines the final energy E

λτ

b .
This two-time energy measurement (TTEM) scheme is inher-
ited from the well-investigated special cases for isolated quan-
tum systems [50,51]. It is worth mentioning that the TTEM
scheme is applicable only if [ρ0,H (λ0)] = 0. Fortunately, this
condition is satisfied if ρ0 is the canonical distribution, which
is the case in this paper. Generalization to a coherent initial
state ([ρ0,H (λ0)] �= 0) remains an open problem [30].

Each QJT ψt represents a single individual realization of
Eq. (10), with definite dN

j
t and quantum number a (b) obtained

by continuously monitoring the heat bath and the initial (final)
PM. Practically, a QJT corresponds to a sequence of outcomes
observed in a single-shot experiment. In terms of single-shot
readouts, the heat Q[ψt ] and work W [ψt ] along such a QJT
can be evaluated as [38,40,42,43]

Q[ψt ] =
∑

j

∫ τ

0
dN

j
t �j (λt ),

W [ψt ] = E
λτ

b − Eλ0
a +

∑
j

∫ τ

0
dN

j
t �j (λt ). (11)

We can see that once the j th QJ occurs at time t , the accumu-
lated heat increases by �j (λt ) (which may be negative), so the
heat is counted discretely at the trajectory level. Combining
the heat with the energy change determined by the initial and
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final PM outcomes, the work can be found from the first law
of thermodynamics at the trajectory level.

IV. QUANTUM FEEDBACK CONTROL

A. Discrete feedback control

We are now in a position to apply quantum trajectory
thermodynamics to feedback control, which is the main
objective of this paper. Complementary to continuous feedback
controls [65–67], we consider the following measurement-
based (discrete) feedback control [10]. (i) Initially (t = 0),
the system is at thermal equilibrium, i.e., ρ0 = e−βH (λ0)/Zλ0

with Zλ ≡ Tr[e−βH (λ)]. A PM λ0 is performed to determine
the initial energy of the system, where λ ≡ {|kλ〉〈kλ| :
H (λ)|kλ〉 = Eλ

k |kλ〉,k = 1,2, . . . ,d}. (ii) During 0 < t < tm,
the system evolves under fixed protocols λt and ht . (iii) At t =
tm, a general measurement described by a set of measurement
operators MA ≡ {Mα : α ∈ A} with

∑
α M†

αMα = I (I is the
identity operator) is performed on the system. We assume that
the measurement device is initially prepared to be in a pure
state and that the measurement time is negligible. (iv) During
tm < t < τ , we choose driving protocols λα

t and hα
t that depend

on measurement outcomes α. (v) Finally, at t = τ , a PM λτ

is performed to determine the final energy of the system.

B. Work and heat in feedback control processes

In the presence of feedback control, a QJT can be
constructed as follows. (i) Starting from an energy eigenstate
|aλ0〉, the system’s state |ψt 〉 evolves stochastically according
to Eq. (10) with fixed λt and ht . (ii) Conditioned on the
system’s state |ψt−m 〉 just before the measurement, there is a
probability ‖Mα|ψt−m 〉‖2 to observe an outcome α, which en-
tails a sudden state change into |ψα

t+m
〉 = Mα|ψt−m 〉/‖Mα|ψt−m 〉‖

due to the measurement backaction. (iii) The system evolves
stochastically according to Eq. (10) with driving protocols λα

t

and hα
t , and finally ends at |bλα

τ 〉 after the second PM. A typical
QJT is schematically illustrated in Fig. 2 (top half).

By identifying the energy cost of the measurement as
work [10], the heat and work along a QJT are evaluated by
Eq. (11) with λt replaced by λα

t for t > tm. By defining λα
t ≡ λt

(∀α ∈ A) for t < tm for convenience, we have

Q[ψt,α] =
∑

j

∫ τ

0
dN

j
t �j

(
λα

t

)
,

W [ψt,α] = E
λα

τ

b − Eλ0
a +

∑
j

∫ τ

0
dN

j
t �j

(
λα

t

)
. (12)

V. GENERALIZED QUANTUM JARZYNSKI EQUALITIES

While the fluctuation patterns of work and heat can be rather
complex owing to the restriction on the dynamics imposed by
the detailed balance condition, the fluctuations share some
universal properties, which are captured by the fluctuation
theorems [28,29]. In the presence of feedback control, by
adding certain correction terms due to measurement [15–17],
we can derive some generalized fluctuation theorems.

A simple derivation of the fluctuation theorems is to invoke
the time-reversed (TR) process. Due to the measurement

FIG. 2. A forward QJT (top) and the corresponding time-reversed
QJT (bottom) starting from the initial energy eigenstates |aλ0 〉 and
�|bλα

τ 〉, respectively, where � is the time-reversal operator. Here the
j1th (j ′

1th) quantum jump occurs at t1 < tm (t̄1 < t̄m), the measurement
MA (MBα

) is performed at tm (t̄m) with the outcome being α,
the j2th (j ′

2th) quantum jump occurs at t2 > tm (t̄2 > t̄m), and the
forward (backward) trajectory ends at the final energy eigenstate |bλα

τ 〉
(�|aλ0 〉) due to the projective measurement λα

τ (̃λ0 ≡ �λ0�†).
In general, |ψ̄τ−t 〉 �= �|ψt 〉.

backaction, in the TR process for a given α we should
not only reverse the driving protocols, but also perform a
measurement MBα

at t̄m ≡ τ − tm, where M̃α ≡ �M†
α�† ∈

MBα
(α ∈ Bα) with � being the time-reversal operator. The

other measurement operators in MBα
can be arbitrary since

we only postselect the TR QJTs with outcome α. Then for a
given measurement outcome α, the TR dynamics for t �= t̄m is
described by

ρ̇t = L̄α
t ρt = − i

�

[
H̄
(
λ̄α

t

)+ h̄α
t ,ρt

]+∑
j

D
[
L̄j

(
λ̄α

t

)]
ρt , (13)

where λ̄α
t ≡ λα

τ−t and Ōt = �Oτ−t�
† if the operator is explic-

itly time dependent and Ō = �O�† otherwise. Consequently,
we find the following trajectory version of the detailed balance
condition (see Appendix D 1 for the derivation):

P[ψt,α] = eβ(W [ψt ,α]−�Fα )P̄[ψ̄t ,α], (14)

where P[ψt,α] (P̄[ψ̄t ,α]) is the probability of a forward (TR)
QJT with the total of K QJs associated with Ljk

(λα
t ) [L̄j ′

k
(λ̄α

t )]
at tk (t̄k ≡ τ − tK+1−k) and the measurement outcome of MA

(MBα
) being α, and �Fα = β−1 ln(Zλ0/Zλα

τ ) is the free-energy
difference. A typical TR QJT is presented in Fig. 2 (bottom
half).

A. First main result

Based on Eq. (14), we can derive the quantum versions
of Eq. (1). The efficacy of feedback control reads (see
Appendix D 2 for the derivation)

ηQJT =
∑

α

Tr
[
M̃†

αM̃αρ̄α
t̄−m

]
, (15)

where t̄−m ≡ τ − t+m and ρ̄α
t is the solution to the TR Lindblad

quantum master equation (13) starting from the canonical
ensemble e−βH̄ (λτ )/Zλτ . The classical result can be reproduced
for a general classical measurement Mα = ∑

n

√
pα|n|n〉〈n|
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FIG. 3. (a) A quantum rare event in a spinless (time-reversal symmetric, i.e., � = I ) two-level system with tm = 0 and MA being nothing
but the initial PM. Here the outcome of the initial PM at time t = 0 is assumed to be the excited state e. Nevertheless, an unexpected quantum
jump g → e occurs at t1, indicated by a tiny jump in the excited state fidelity (blue). A large negative IQJT is implied by the small excited state
fidelity at the final state of the time-reversed QJT (green). (b) In the classical limit, the first jump at t1 is always e → g if the system is initially
in e because of the absence of quantum superposition, and the time-reversed QJT is given by |ψ̄t 〉 = |ψτ−t 〉.

(which is Hermitian and hence Mα = M̃α if � = I ) with
A = {1,2, . . . ,d}, where n labels classical states. In general,
however, we should distinguish between Mα and M̃α . The
quantum Jarzynski equality can also be reproduced by setting
|A| = 1, i.e., A = {α} contains only a single outcome, and
Mα = I , which leads to ηQJT = 1.

A simple but important corollary of Eq. (15) is that
〈e−β(W−�F )〉 = ηQJT �

∑
α Tr[M̃†

αM̃α] = Tr[I ] = d. By us-
ing Jensen’s inequality 〈ex〉 � e〈x〉, we obtain

−〈W 〉 � −〈�F 〉 + β−1 ln d. (16)

This inequality implies that the upper bound of the extractable
work in a quantum feedback control process cannot exceed
the classical one (notice that the Landauer bound [68]
corresponds to the special case with �F = 0 and d = 2).
We note that a similar conclusion has been drawn for the
efficiency of quantum Carnot engines [69]. However, quantum
enhancement of thermodynamic performance does exist for
finite-time processes [13].

Experimentally, ηQJT can be measured as follows: (i) for a
fixed TR driving associated with α and from the equilibrium
state, we statistically estimate the probability to observe
outcome α for the measurement MBα

performed at t̄m, and
denote the obtained probability by p̃α after repeating the same
process many times; (ii) we change the TR driving, estimate p̃α

for all α ∈ A, and finally sum them up. One can see that such
a scheme does not require any knowledge about the details of
the microscopic dynamics. This observation is very similar to
the classical counterpart [6,8].

B. Second main result

The information content corresponding to Eq. (1) is found
to be (see Appendix D 3 for the derivation)

IQJT[ψt,α] = ln
∣∣∣∣M̃α

∣∣ψ̄t̄−m

〉∣∣∣∣2 − ln pα, (17)

which is the relevant information gain, whose meaning will
be explained latter. Here |ψ̄t 〉 is the state at time t in the
TR QJT and uniquely determined by the forward QJT, and
pα = Tr[M†

αMαρt−m ] is the probability of the outcome α being
observed for measurement MA. We note that for rank-1
measurements IQJT can take on large negative values for

quantum rare events. For example, in a two-level system with
states e and g, the detection of the g → e jump can occur after
a short time interval of coherent driving conditioned on the
initial energy projective outcome e [see Fig. 3(a)]. Such a rare
event is a genuine quantum effect due to the fact that the system
is brought into quantum superposition by coherent driving.
Then the relevant information takes on a large negative value,
reflecting our great surprise. Experimentally, IQJT can straight-
forwardly be evaluated if we know the full details of the system.
Otherwise, in principle it is still measurable, but in practice the
measurement will be highly nontrivial (see Appendix D 3).

Interestingly, when MA is a unital channel (i.e.,∑
α MαM†

α = ∑
α M†

αMα = I ), ‖M̃α|ψ̄t̄−m 〉‖2 is the probability
of the outcome α, which is determined by the Bayesian
inference based on the results of continuous monitoring after
tm in a single realization [70], which is called retrodiction [71]
or retrofiltering [72]. A bad retrodiction ensues from a quantum
rare event. A simple interpretation for the emergence of the
retrodiction probability rather than the usual prediction prob-
ability ‖Mα|ψt−m 〉‖2 is that, retrodiction naturally encodes the
effect of measurement backaction whereas prediction does not.

The ensemble-averaged relevant information

〈IQJT〉 =
∑

α

pαIC
(
ρα

t+m
: λα

τ MJtm<t<τ |α
)

− IC
(
ρt−m : λA

τ MJtm<t<τ |AMA
)

(18)

gives a Holevo boundlike quantity (see Appendix D 4 for
details). Here IC(ρ : MX) ≡ H (pMX

ρ ||pMX
ρu

), which we call
the relevant information of ρ with respect to a general
measurement MX [73–75], is the classical relative entropy [59]
between the MX outcome probability distribution of ρ (denoted
by pMX

ρ ) and that of ρu ≡ I/d; MJtm<t<τ |α is the effective
continuous measurement on the system generated by Lα

t .
Unlike the Shannon entropy of the outcomes (known as the
Ingarden-Urbanik entropy [75–77]), which measures their
uncertainty, IC measures the extent to which we can specify
the quantum state based on the outcomes [74]. Hence, 〈IQJT〉
measures the difference of our (average) knowledge on the
selective postmeasurement states ρα

t+m
= Mαρt−m M†

α/pα and the
premeasurement state ρt−m acquired from all the outcomes after
t−m . It is worth mentioning that IC was first mathematically
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TABLE I. Trajectory probability P[ψt,α], probability of a measurement outcome pα , premeasurement state in the time-reversed QJT |ψ̄t̄−m 〉,
relevant information IQJT[ψt,α] and work W [ψt,α] along all the eight possible QJTs in the minimal model. Here p↑θ0

= p
eq
↑ cos2 θ0

2 + p
eq
↓ sin2 θ0

2

and p↓θ0
= p

eq
↑ sin2 θ0

2 + p
eq
↓ cos2 θ0

2 are respectively the probabilities to observe ↑θ0
and ↓θ0

when starting from ρ0 = p
eq
↑ |↑〉〈↑| + p

eq
↓ |↓〉〈↓|.

Initial Feedback Final P[ψt,α] pα |ψ̄t̄−m 〉 IQJT[ψt,α] W [ψt,α]

↑θ1
p

eq
↑ cos2 θ0

2 cos2 θ0−θ1
2 |↑θ1

〉 ln
(

cos2 θ0−θ1
2

/
p↑θ0

)
μ(−B1 + B0)

↑θ0
p↑θ0↓θ1

p
eq
↑ cos2 θ0

2 sin2 θ0−θ1
2 |↓θ1

〉 ln
(

sin2 θ0−θ1
2

/
p↑θ0

)
μ(B1 + B0)

↑
↑θ1

p
eq
↑ sin2 θ0

2 cos2 θ0−θ1
2 |↓θ1

〉 ln
(

cos2 θ0−θ1
2

/
p↓θ0

)
μ(−B1 + B0)

↓θ0
p↓θ0↓θ1

p
eq
↑ sin2 θ0

2 sin2 θ0−θ1
2 |↑θ1

〉 ln
(

sin2 θ0−θ1
2

/
p↓θ0

)
μ(B1 + B0)

↑θ1
p

eq
↓ sin2 θ0

2 cos2 θ0−θ1
2 |↑θ1

〉 ln
(

cos2 θ0−θ1
2

/
p↑θ0

)
μ(−B1 − B0)

↑θ0
p↑θ0↓θ1

p
eq
↓ sin2 θ0

2 sin2 θ0−θ1
2 |↓θ1

〉 ln
(

sin2 θ0−θ1
2

/
p↑θ0

)
μ(B1 − B0)

↓
↑θ1

p
eq
↓ cos2 θ0

2 cos2 θ0−θ1
2 |↓θ1

〉 ln
(

cos2 θ0−θ1
2

/
p↓θ0

)
μ(−B1 − B0)

↓θ0
p↓θ0↓θ1

p
eq
↓ cos2 θ0

2 sin2 θ0−θ1
2 |↑θ1

〉 ln
(

sin2 θ0−θ1
2

/
p↓θ0

)
μ(B1 − B0)

introduced in Ref. [73], and has enjoyed renewed interest
recently in quantum information [75]. The applicability of
IC to continuous measurements with |X| = ∞ is based on the
fact that IC(ρ : MX) � S(ρ||ρu) ≡ IQ(ρ), where S(·||·) is the
quantum relative entropy [59].

Replacing all IC in Eq. (18) by IQ, we obtain another upper
bound of −β〈Wdiss〉 which is called the quantum-classical
(QC)-mutual information IQC [10], where 〈Wdiss〉 ≡ 〈W 〉 −
〈�F 〉 is the dissipated work. While there is no magnitude
relation between IQC and 〈IQJT〉, as we will see in the next
section, the latter (former) is expected to give a tighter (looser)
bound, since it is (not) protocol dependent and can be negative
(is positive definite) if we carry out a bad feedback control.
Nevertheless, the IQC bound can be obtained from a fluctuation
theorem for a different process with the same 〈Wdiss〉 (see
Appendix D 5), and both 〈IQJT〉 and IQC reproduce the same
classical mutual information [6] in the classical limit.

VI. EXAMPLES

A. Isolated two-level system

We first consider a minimal model that demonstrates a
quantum feedback control process: a pseudospin (so that � =
I ) subjected to an effective magnetic field B = B(cos θez +
sin θex) confined in the x-z plane and isolated from any heat
bath (adiabatic limit). The Hamiltonian of the system reads

H (B) = −μ · B = −μB(cos θσz + sin θσx), (19)

where μ is the effective magnetic moment of the system. The
initial state of the system is chosen to be the equilibrium state
under the work parameter B0 = B0ez. After the initial PM,
the system is purified to be either |↑〉 or |↓〉, an eigenstate
of σz, with probability p

eq
↑ = eβμB0/(2 cosh βμB0) or p

eq
↓ =

e−βμB0/(2 cosh βμB0). Right after the initial PM, we perform
a PM in the eigenbasis of σz cos θ0 + σx sin θ0. If the outcome
is ↑θ0

(↓θ0
), we (first apply a π pulse and) quickly switch B0

to B1 = B1(cos θ1ez + sin θ1ex), and immediately perform the
final PM. All the eight possible QJTs are listed in Table I. It
is tedious but straightforward to check the validity of the two
generalized quantum Jarzynski equalities (1) analytically.

After a few analytical calculations, we obtain the following
expressions of 〈IQJT〉 and IQC

〈IQJT〉 = H2
(
p↑θ0

)− H2

(
cos2 θ0 − θ1

2

)
,

IQC = H2(peq
↑ ), (20)

where p↑θ0
= p

eq
↑ cos2 θ0

2 + p
eq
↓ sin2 θ0

2 and H2(x) ≡
−x ln x − (1 − x) ln(1 − x). For a special case with
p

eq
↑ = 0.8, we draw the curved surface of 〈IQJT〉 with respect

to θ1,2 in Fig. 4 (left), which turns out to be larger than
IQC (less than 0) in some regions. Thus, there is no general
magnitude relation between 〈IQJT〉 and IQC (0).

Besides the absence of a universal magnitude relation,
the model also shows that the upper bound β−1〈IQJT〉 for
the minus dissipated work −〈Wdiss〉 ≡ −〈W 〉 + 〈�F 〉 is not
globally achievable (unless p

eq
↑ = 0.5). By minimizing 〈W 〉

(maximizing −〈W 〉) for given p
eq
↑ , θ0 and θ1, we obtain

− β〈Wdiss〉min = H2(peq
↑ ) − H2

(
cos2 θ0 − θ1

2

)
. (21)

FIG. 4. 〈IQJT〉/ ln 2 (left) and (〈IQJT〉 + β〈Wdiss〉min/ ln 2) (right)
in the θ0-θ1 parameter space. In the left figure, the green and blue
planes respectively correspond to the QC-mutual information IQC and
0, where p

eq
↑ is fixed to be 0.8. In the right figure, the green curved

surface refers to IQC (overestimation from the exact −β〈Wdiss〉min),
while the remaining yellow ones show 〈IQJT〉 for different equilibrium
initial states (peq

↑ = 0.5,0.8,0.9,0.999 from the lowest to the highest).
Note that 〈IQJT〉 + β〈Wdiss〉min oscillates in the θ0 direction, while
IQC + β〈Wdiss〉min oscillates in the θ0 = −θ1 direction.
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FIG. 5. Feedback control of a dissipative two-level system based
on the initial projective measurement. The strength of the coherent
driving ε is tuned to be smaller (larger) if the outcome is the ground
state (excited state). The inclusive driving protocol ωt = ω0 + �ωt/τ

and the coupling strength to the heat bath are the same.

For p
eq
↑ = 0.5,0.8,0.9,0.999, we draw the difference be-

tween the bound given by 〈IQJT〉 (or IQC) and the exact
−β〈Wdiss〉min (21) in Fig. 4 (right). For p

eq
↓ = 0.5, 〈IQJT〉

coincides with the exact bound (lowest plane). As the initial
entropy decreases, the estimation of 〈IQJT〉 becomes worse,
while IQC + β〈Wdiss〉min = H2{cos2[(θ0 − θ1)/2]} is indepen-
dent of p

eq
↑ (green curved surface). Generally speaking, 〈IQJT〉

is a better bound than IQC, since it involves the information of
the concrete feedback control protocols.

B. Dissipative two-level system

Since our findings are generally applicable to open quantum
systems, let us consider a dissipative two-level system under
coherent driving, where the equation of motion reads (see
Appendix E 1)

ρ̇t = − i

2
[ωtσz + εσx cos ωdt,ρt ] +

∑
j=±

γj (ωt )D[σj ]ρt . (22)

Here the unitary part consists of the inclusive Hamil-
tonian H (ω) = �ωσz/2 and the exclusive driving ht =
εσx cos ωdt/2 � H (ω), σ± ≡ (σx ± iσy)/2 is the excitation
(deexcitation) jump operator, and the corresponding transition
rate γ±(ω) = κω[coth(β�ω/2) ∓ 1]/2 ensures the detailed
balance condition. To perform feedback control, we perform
the initial error-free PM, and then apply a weaker (stronger)
external perturbation if the outcome is the ground (excited)
state (see Fig. 5). In this way, we can suppress (enhance) the
probability of no jump events from the initial ground (excited)

state to the final excited (ground) state. These events greatly
contribute positive (negative) work values. Here, we choose
a linear protocol ωt = ω0 + �ωt/τ and a driving frequency
ωd = 0.1π with ω0 = 0.3, �ω = 0.1, and τ = 2000. The
driving strength is tuned to be ε = 0.002 (0.008)� ω0 for
the ground (excited) initial state. The inverse temperature
and the coupling strength are fixed at β = 5 and κ = 0.001,
respectively. Here � ≡ 1 is assumed.

We numerically evaluate (see Appendix E 2) the probability
density functions (PDFs) of work, β−1IQJT and their sum as
shown in Figs. 6(b)–6(d). For comparison, the work statistics
of the corresponding ordinary driving process, with the same
protocol ωt but a fixed ε = 0.0031, is shown in Fig. 6(a).
Qualitatively, we observe both continuous parts (described by
the probability density) and δ-type peaks (described by the
probability) in the work distributions, including the δ peaks
caused by coherent driving, showing a combined nature of
the work statistics in classical and isolated quantum systems.
Comparing Fig. 6(b) with Fig. 6(a), we find that the rightmost
(leftmost) δ-type peak, corresponding to the QJTs connecting
the initial ground (excited) state to the final excited (ground)
state with no jumps, is considerably suppressed (enhanced).
Quantitatively, we verify Eq. (1) with reasonable accuracy.
At the ensemble level, the mean dissipated work 〈Wdiss〉 =
−0.0139 (0.0244) for the feedback control (ordinary) process,
implying an apparent violation (the validity) of the second law.
On the other hand, −〈Wdiss〉 is far from saturating the upper
bound β−1〈IQJT〉 = 0.0448 (much tighter than β−1IQC =
0.0950), indicating a highly nonequilibrium process.

In fact, we have chosen the parameters that are experi-
mentally accessible in a superconducting qubit system [78]
such as a Cooper-pair box with a SQUID geometry, where ω

can be tuned by varying the gate voltage, while the coherent
driving is achievable by a rapidly oscillating magnetic flux
through the SQUID [79]. Superconducting qubits operate
in a highly controllable way, especially a measurement can
be performed very fast. Also, quantum jumps have been
observed via coupling to a readout device [21], which may
simultaneously serve as an effective heat bath [80]. Therefore,
despite the fact that measuring quantum work and heat
statistics are still challenging [81,82], superconducting qubit
systems should provide an ideal playground to investigate
quantum information thermodynamics at the trajectory level.
We note that there is an experimental proposal to study the
energy fluctuations in a superconducting qubit, where only the
technique of PM is required [83].
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FIG. 6. Numerical verification of the generalized quantum Jarzynski equalities in a dissipative two-level system under coherent driving (22).
Work distributions (a) without and (b) with feedback control. The distributions of (c) IQJT (17), and (d) the composite variable W + β−1IQJT

for the feedback control process. Insets show the probabilities of the divergent δ-type peaks.
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VII. CONCLUSIONS

We have developed a general framework to study the
thermodynamics of open quantum systems with discrete
feedback control at the level of individual QJTs. In particular,
we have derived the generalized quantum Jarzynski equalities,
which qualitatively differ from the classical counterparts
due to quantum coherence and measurement backaction.
We have proposed a minimal model of a two-level isolated
system to analyze the performance of the new information
content compared with the QC-mutual information. We have
also numerically computed explicit work distributions in a
dissipative two-level system driven out of equilibrium as a
simple, nontrivial, and experimentally accessible model, to
verify the derived fluctuation theorems.
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APPENDIX A: EXPLICIT EXPRESSION OF THE
LINDBALD MASTER EQUATION (2)

The fundamental equation of motion (2) in the main text is
a mixture of the perturbative Lindblad master equation (LME)
and the adiabatic LME. The conventional perturbative LME is
obtained if we simply add the perturbative term into the unitary
part of a LME with a time-independent generator, which
is reasonable as long as the system-heat bath interaction is
almost unaffected by the small (and usually rapidly oscillating)
perturbation [42,84,85]. Owing to the same argument, this
straightforward modification should also be applicable to the
cases with instantaneous disturbance (no longer perturbative)
and/or slow variations of the work parameter in the adiabatic
regime. Therefore, under appropriate conditions, we can
straightforwardly write down the explicit expression of Eq. (2)
for a given ht once we know the underlying adiabatic
LME. We emphasize that this simple modification cannot be
applied to the cases with strong driving fields [ht ∼ H (λt )]
[86,87].

A detailed derivation of a general adiabatic LME starting
from the Schrödinger equation alone is given in Ref. [54].
Here we just present the main result and show how it
can be transformed into Eq. (2) in the main text. Let
us consider a general small-system + large-environment
Hamiltonian:

Htot(t) = HS(λt ) ⊗ IB + IS ⊗ HB + g
∑

α

Aα ⊗ Bα, (A1)

where HS(λt ) and HB are respectively the bare Hamiltonians of
the system and the heat bath, Aα and Bα are all dimensionless

Hermitian operators, and g is the coupling strength with the di-
mension of energy. The typical energy gap of HS(λ) is denoted
by �(λ), and the typical decay time of the correlation function
of the heat bath Bαβ(t) ≡ Tr[Bα(t)Bβ(0)ρeq

B ], namely the
memory time of the heat bath, is denoted by τB, where we in-
troduce Bα(t) ≡ eiHBt/�Bαe−iHBt/� and ρ

eq
B ≡ e−βHB/ZB with

ZB ≡ Tr[e−βHB ]. Defining q(λ) ≡ maxa �=b |〈aλ|∂λHS(λ)|bλ〉|
[|aλ〉 or |bλ〉 is an eigenstate of H (λ)], we impose the following
conditions for the whole process for t ∈ [0,τ ]:

τB

�(λt )
q(λt )λ̇t � min

{
�(λt )τB

�
,

�

�(λt )τB

}
,

gτB

�
� min

{
1,

�(λt )

g

}
, (A2)

which provide an appropriate separation of time scales. Under
such conditions, after the standard Born-Markov1 and the
rotating-wave approximations, the following adiabatic LME
can be derived:

ρ̇t = − i

�
[HS(λt ) + HLS(λt ),ρt ]

+
∑

α,β,a �=b

γαβ

(
ω

λt

ba

)[
Lab,β (λt )ρtL

†
ab,α(λt )

− 1

2
{L†

ab,α(λt )Lab,β (λt ),ρt }
]

+
∑

α,β,a,b

γαβ(0)

[
Laa,β(λt )ρtL

†
bb,α(λt )

− 1

2
{L†

aa,α(λt )Lbb,β (λt ),ρt }
]
, (A3)

where �ωλ
ba = Eλ

b − Eλ
a is the energy difference between the

bth and the ath energy levels of the system, Lab,α(λ) =
Aab,α(λ)|aλ〉〈bλ| with Aab,α(λ) ≡ 〈aλ|Aα|bλ〉, γαβ(ω) =
g2

�2

∫∞
−∞ dteiωtBαβ(t) is Hermitian and satisfies the detailed

balance condition γαβ(−ω) = e−β�ωγβα(ω), and HLS(λ) =∑
Eb

LS(λ)|bλ〉〈bλ| describes the Lamb shift Hamiltonian reads,
where

Eb
LS(λ) =

∑
α,β,a

A∗
ab,α(λ)Sαβ

(
ωλ

ba

)
Aab,β (λ),

Sαβ(ω) =
∫ ∞

−∞

dω′

2π
P γαβ(ω′)

ω − ω′ , (A4)

with P denoting the principal value. The first summation in
Eq. (A3) can be simplified as∑

a �=b

[
Lab(λ)ρtL

†
ab(λ) − 1

2
{L†

ab(λ)Lab(λ),ρt }
]

=
∑
a �=b

D[Lab(λ)]ρt , (A5)

1The heat bath is assumed to be always at equilibrium in the Born
approximation, i.e., the total density operator is assumed to be ρt ⊗
ρ

eq
B , ρ

eq
B ≡ e−βHB/ZB during the whole process. This is the origin of

the detailed balance condition.
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where

Lab(λ) =
√

wba(λ)|aλ〉〈bλ|,
wba(λ) =

∑
α,β

A∗
ab,α(λ)γαβ

(
ωλ

ba

)
Aab,β (λ). (A6)

The jump operators Lab(λ), satisfying [Lab(λ),HS(λ)] =
�ωλ

baLab(λ), L
†
ba(λ) = Lab(λ)e−β�ωλ

ba/2,2 are related to dis-
sipation (i.e., nonzero energy exchange with the heat bath),
where wba(λ) is real and positive, and can be interpreted as
the transition rate from the bth eigenstate to the ath one. The
second sum in Eq. (A3) can be simplified as

∑
σ

[
Lσ (λ)ρtL

†
σ (λ) − 1

2
{L†

σ (λ)Lσ (λ),ρt }
]

=
∑

σ

D[Lσ (λ)]ρt , (A7)

where

Lσ (λ) =
√

γσ (0)
∑
a,α

oσαAaa,α(λ)|aλ〉〈aλ|,

γαβ(0) =
∑

σ

oσαoσβγσ (0), (A8)

with oαβ’s being the elements of the orthogonal matrix that
diagonalize the real symmetric and positive definite matrix
γαβ(0).3 These jump operators, satisfying [Lσ (λ),HS(λ)] = 0,
L†

σ (λ) = Lσ (λ), are related to pure dephasing with no energy
relation. After further simplification, we have

ρ̇t = − i

�
[H (λt ),ρt ] +

∑
j

D[Lj (λt )]ρt , (A9)

where H (λ) = HS(λ) + HLS(λ), and Lj (λ) (j = ab or
j = σ ) satisfies [Lj (λ),HS(λ)] = �j (λ)Lj (λ) and L

†
j ′(λ) =

Lj (λ)e−β�j (λ)/2, with �j the energy change of the j th quantum
jump. Since HLS(λ) is usually negligible compared with HS(λ),
we simply neglect it and treat H (λ) identically as HS(λ).4 As
mentioned in the beginning, the mixed LME (2) in the main
text is obtained from the adiabatic LME (A9) if we simply add
the perturbation ht into the unitary part.

2Notice that wba(λ) = ∑
α,β A∗

ba,α(λ)γαβ (ωλ
ab)Aba,β (λ) = ∑

α,β

Aab,α(λ)γβα(ωλ
ba)e−β�ωλ

ba A∗
ab,β (λ) = wba(λ)e−β�ωλ

ba , and Lab(λ) =√
wba(λ)|aλ〉〈bλ|.

3This is due to the Hermitian property of γαβ (ω), i.e., γ ∗
βα(ω) =

γαβ (ω), as well as the detailed balance condition γαβ (−ω) =
γβα(ω)e−β�ω. Here γαβ (ω) is also positive definite, which ensures
wba(λ) to be positive, and can be proved by using the Lehmann
representation.

4Though such an approximation is made in many textbooks and
research papers, as is highlighted in Ref. [54], the Lamb shift may
considerably modify the long time dynamics of the system, because
it is typically of the same order of magnitude as the state transition
rates. However, to avoid a subtle problem of whether the Lamb shift
Hamiltonian should be identified as inclusive or exclusive, we simply
ignore it here.

APPENDIX B: REMARKS ON QUANTUM TRAJECTORY
THERMODYNAMICS

In the weak-coupling regime, we can always interpret heat
(work) as the energy exchange between the system and the
heat bath (the total energy increment) [29]. However, even in
this regime, addressing work and heat is highly nontrivial for
quantum systems and at the trajectory level, because a quantum
system can generally be a superposition of energy eigenstates,
and we cannot have an objective concept of trajectory
[88].

Fortunately, for isolated quantum systems, work coincides
with the energy change, and a consensus has been achieved that
the two-time energy measurement (TTEM) [50–52] gives the
most reasonable definition of quantum work. Here a trajectory
can be specified by the two outcomes Eλ0

a and E
λτ

b of the
TTEM and the work is simply their subtraction W = E

λτ

b −
Eλ0

a . The TTEM definition implies the Jarzynski equality (and
hence the second law) and is experimentally relevant [81,82].
Theoretically, the consistency between the TTEM definition
of work and the classical counterpart has been proved for
one-dimensional systems [89].

Combining the idea of TTEM with the Hamiltonian
formalism of classical nonequilibrium thermodynamics [90],
the joint TTEM approach was proposed to define work and
heat for open quantum systems [28,29], where a trajectory is
specified by the initial and final eigenenergies of the system
Eλ0

a ,E
λτ

b , and those of the heat bath EB
i ,EB

j , with the work

and heat being respectively W = EB
j + E

λτ

b − EB
i − Eλ0

a and
Q = EB

j − EB
i . To obtain stochastic thermodynamics from the

deterministic Hamiltonian formalism, the detailed information
of the heat bath should be traced out, as is done in the classical
case [91]. Using the characteristic function approach [52], one
can encode the statistics of work [85] and heat [28] into a
generalized quantum master equation after the standard Born-
Markov approximation and the rotating-wave approximation.
Under such coarse graining, the statistics of work and that of
heat turn out to be consistent with the formalism in the main
text [37,92].

Therefore, the QJT-based definition naturally emerges from
the two facts that (i) heat (work) is the energy change
of the heat bath (the system and the heat bath) and that
(ii) the energy change is quantified by the TTEM. While
deriving the QJT-based definition from the TTEM approach
is rather technical, the work and heat along a QJT per se
can be explained intuitively. According to the interpretation
(continuous monitoring) of a QJT, if the j th QJ is detected
at time t , an energy quanta equal to �j (λt ) is transferred
from the system to the heat bath; thus the accumulated heat
should increase by �j (λt ). For example, in a photodetection
experiment where a two-level atom with a constant energy gap
� interacts with the photon field in an optical cavity, the heat
along a QJT is the net number of the photons emitted by the
atom multiplied by � in a single experimental realization [39].
Once the heat along a QJT is obtained, the work can be
determined by the first law of thermodynamics, as mentioned
in the main text.

The continuous monitoring interpretation of a QJT
can be heuristically shown as follows. A QJ operator
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Lab(λt ) with a nonzero energy effect, which corresponds to
a state transition, is actually the sum of all the operators
〈ej |e− i

�
Htot(t)δt |ei〉e−βEB

i /(δtZB) in Ref. [36] with the same
energy difference EB

j − EB
i = E

λt

b − Eλt
a �= 0 (HB|ej 〉 =

EB
j |ej 〉) in the first-order perturbation theory, namely Fermi’s

golden rule. This connection is clear in the Lehmann represen-
tation of wba(λ) in Eq. (A6):

wba(λ) = 2πg2

�

∑
i,j

∣∣∣∣∣〈aλ,ej |
∑

α

Aα ⊗ Bα|bλ,ei〉
∣∣∣∣∣
2

× e−βEB
i

ZB
δ
(
EB

j + Eλ
a − EB

i − Eλ
b

)
. (B1)

More accurately, to achieve the summation
∑

i,j in a sin-
gle experimental realization, we should apply the so-called
generalized quantum measurement [93] instead of the usual
two-time projective measurement approach [29]. On the other
hand, the detection of a dephasing QJ Lσ (λ) seems hard to
be implemented even in principle, since there is no energy
exchange between the system and the heat bath, which makes
no difference from each other or from the nonunitary evolution.
For mathematical reasons,5 and to be consistent with the
generalized master equation approach [28,85,92] and the
quantum Feynman-Kac formula-based [42,94,95] definitions
of work and heat distributions, we treat Lσ (λ) in the same
manner as Lab(λ) in the general formalism. However, this
is controversial. For example, Ref. [43] treated Lσ (λt ) as a
QJ, while in Ref. [83] it is unraveled as quantum diffusion.
To avoid the ambiguity in an experiment-relevant model, we
choose an example in which all the diagonal (in the energy
representation) matrix elements of Aα and Bα vanish so that
there is no dephasing QJ, as in Refs. [38,39].

Finally, it is worth comparing our formalism with a
different quantum trajectory-based framework for stochastic
thermodynamics established quite recently [45,67]. In that
framework, the change in the energy expectation due to the
deterministic (stochastic) part of the change of the state ρ̃t in
a single realization, which is not necessarily pure due to the
imperfect continuous monitoring, is identified as work (heat),
namely

W [ρ̃t ] =
∫ τ

0
dtλ̇tTr[∂λH (λt )ρ̃t ],

Q[ρ̃t ] = Tr[H (λ0)ρ̃0] − Tr[H (λτ )ρ̃τ ]

+
∫ τ

0
dtλ̇tTr[∂λH (λt )ρ̃t ]. (B2)

5Actually the LME ρ̇t = − i

�
[Ht,ρt ] +∑

j D[Lj
t ]ρt can be rewrit-

ten as ρ̇t = − i

�
[Ht,ρt ] +∑

j D[L�j
t ]ρt for an arbitrary unitary trans-

formation between the jump operators L
�j
t = ∑

k ujk(t)Lk
t . However,

an instantaneously detailed-balanced LME always has a set of
privileged jump operators L

j
t satisfying [Lj

t , ln πt ] = �
j
t L

j
t , with πt

being the instantaneous equilibrium state and �
j
t ’s being c numbers

(see Refs. [40,44] and the references therein). Therefore, from a
mathematical point of view, it is natural to treat Lσ (λt ) and Lab(λt )
identically, since they constitute such a privileged set.

This formalism also allows intuitive physical interpretation,
and it is clearly consistent with quantum thermodynamics at
the ensemble level. Moreover, this formalism is applicable
to any kind of unraveling, such as the quantum diffusion
mentioned before [67], while our formalism no longer works
for the systems where the rotating-wave approximation is
invalid (e.g., quantum Brownian motion [55,56]). On the other
hand, this formalism cannot reproduce the widely accepted
TTEM definition in the adiabatic limit, and, as a result, does
not imply the fluctuation theorems or the second law [67].
In contrast, several fluctuation theorems have been derived
within our framework [38–40]. Therefore, in the context of
nonequilibrium fluctuation theory, our framework should be
the better choice.

APPENDIX C: CONSISTENCY AT THE ENSEMBLE
LEVEL AND IN THE CLASSICAL OR ADIABATIC LIMIT

1. Ensemble level

We first consider the case without feedback control.
Consider a small time interval [t,t + dt] during which the
probability that the j th quantum jump occurs at the ensemble
level is

E
[
dN

j
t

] = E[〈ψt |L†
j (λt )Lj (λt )|ψt 〉dt]

= Tr[L†
j (λt )Lj (λt )E[|ψt 〉〈ψt |]dt]

= Tr[L†
j (λt )Lj (λt )ρt ]dt, (C1)

which is accompanied by a heat generation by the amount of
�j . By multiplying the heat generation �j due to this quantum
jump and then summing up all the dissipation and dephasing
channel indexes j , we obtain the averaged heat accumulated
during such a small time interval as

d〈Q〉t =
∑

j

Tr[Lj (λt )ρtL
†
j (λt )]�j (λt )dt

=
∑

j

Tr[L†
j (λt )[H (λt ) + �j (λt )]Lj (λt )ρt

−H (λt )Lj (λt )ρtL
†
j (λt )]dt

=
∑

j

Tr[H (λt )[L
†
j (λt )Lj (λt )ρt − Lj (λt )ρtL

†
j (λt )]]dt

= −Tr[H (λt )
∑

j

D[Lj (λt )]ρt ]dt

= −Tr

[
H (λt )

(
i

�
[H (λt ) + ht ,ρt ] + ρ̇t

)]
dt

= −Tr[H (λt )ρ̇t ]dt − i

�
Tr[H (λt )[ht ,ρt ]]dt. (C2)

Here we have used [Lj (λ),H (λ)] = �j (λ)Lj (λ) (so that
[L†

j (λ)Lj (λ),H (λ)] = 0), Tr[AB] = Tr[BA] and the LME (2).
By using the first law of thermodynamics at the ensemble level,
we finally obtain

d〈W 〉t = d〈H (λt )〉t + d〈Q〉t
= Tr[∂λH (λt )ρt ]λ̇t dt + i

�
Tr[[ht ,H (λt )]ρt ]dt. (C3)
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Therefore, the total averaged heat and work during the process
are given by Eq. (4).

In the present of feedback control, to carefully identify
the energy effect of the measurement, we had better start
from the original definition of the heat at the trajectory level,
instead of inadvertently applying Eq. (4). We can easily
find the problem that the averaged heat production δ〈Q〉m =∑

j Tr[Lj (λtm )ρtmL
†
j (λtm )]�j (λtm )δtm during [tm − δtm/

2,tm + δtm/2] is ill defined, because ρtm is indeterminable.

This problem arises from the idealized assumption that the
measurement takes place instantaneously, and thus can be
solved by quantifying the Hamiltonians of the measurement
device and its interaction with the system for a finite δtm.
Nevertheless, δ〈Q〉m should be of the order of O(δtm/τ )
compared with the total averaged heat, since δ〈Q〉m is roughly
proportional to the density operator (always bounded) rather
than its time derivative. Therefore, we can safely neglect
δ〈Q〉m in the δtm → 0 limit and evaluate the total heat as

〈Q〉 = −
∑

α

pα

∫ τ

t+m
dt

(
Tr
[
H
(
λα

t

)
ρ̇α

t

]+ 1

i�
Tr

[[
hα

t ,H
(
λα

t

)]
ρα

t

]
)

−
∫ t−m

0
dt

(
Tr[H (λt )ρ̇t ] + 1

i�
Tr[[ht ,H (λt )]ρt ]

)
, (C4)

where ρα
t (t > tm) is the solution to

ρ̇t = − i

�

[
H
(
λα

t

)+ hα
t ,ρt

]+
∑

j

D
[
Lj

(
λα

t

)]
ρt (C5)

for the initial condition ρα
t+m

= Mαρt−m M†
α/pα , pα = Tr[M†

αMαρt−m ] corresponding to the selective postmeasurement state.
Accordingly, the total averaged work 〈W 〉 = 〈H (λα

τ )〉τ,α − 〈H (λ0)〉0 + 〈Q〉 reads

〈W 〉 =
∑

α

pα

∫ τ

t+m
dt

(
λ̇α

t Tr
[
∂λH

(
λα

t

)
ρα

t

]− 1

i�
Tr

[[
hα

t ,H
(
λα

t

)]
ρα

t

]
)

+
∫ t−m

0
dt

(
λ̇tTr[∂λH (λt )ρ̇t ] − 1

i�
Tr[[ht ,H (λt )]ρt ]

)
+ Tr

[
H
(
λtm

)(
ρt+m − ρt−m

)]
, (C6)

where ρt+m = ∑
α Mαρt−m M†

α = ∑
α pαρα

t+m
is the nonselective

postmeasurement state. One can see that the last term in
Eq. (C6) corresponds to the energy change of the system
induced by the measurement backaction. Thus, we have
confirmed that the quantum trajectory thermodynamics does
reduce to the conventional quantum thermodynamics at the
ensemble level irrespective of the presence of feedback control.

2. Classical limit

A LME with a time-independent generator can be decou-
pled to a classical Markovian (Pauli) master equation of the
diagonal elements of the density matrix, and a set of indepen-
dent dephasing equations of the off-diagonal elements [55].
While in the time-dependent case, the noncommutativity of
H (λ) with different work parameters λ and that with ht

lead to quantum tunneling between different instantaneous
eigenstates, thereby coupling the time evolution of the diagonal
and the off-diagonal density matrix elements. This makes the
dynamics, and consequently thermodynamics, very compli-
cated. However, if the noncommutativity is negligible, which
we call the classical limit and is achievable for an extremely
slow driving or for a special kind of H (λ) whose eigenstates are
independent of λ, the system becomes classical and the dynam-
ics is described by the time-dependent Pauli master equation

ṗb(t) =
∑

a

[wab(λt )pa(t) − wba(λt )pb(t)], (C7)

where pa(t) ≡ 〈aλt |ρt |aλt 〉. Equation (C7) should be sufficient
for the description of the dynamics as long as the initial state
only has nonzero diagonal elements (e.g., the equilibrium
state). We will show that the quantum trajectory thermody-

namics reproduces the well-established classical stochastic
thermodynamics in the Pauli master equation formalism [61].

For simplicity, we arrive at the classical limit by
assuming [H (λ),H (λ′)] = [H (λ),ht ] = 0, so that H (λ) =∑

n En(λ)|n〉〈n| with |n〉 being λ independent. The system
undergoes (nonunitary) quantum adiabatic evolution, no mat-
ter how sensitively En(λ) depends on λ during any two QJs.
In this case, a QJT ψt with a nonzero probability must be like

ψt : m0

d
m0
j01

(λt01 )
−−−−→ m0

d
m0
j02

(λt02 )
−−−−→ m0 . . . m0

d
m0
j0r0

(λt0r0
)

−−−−−→

m0
wm0m1 (λt1 )−−−−−→ m1

d
m1
j11

(λt11 )
−−−−→ m1 . . . m1

d
m1
j1r1

(λt1r1
)

−−−−−→ m1

wm1m2 (λt2 )−−−−−→ m2 . . . mM−1
wmM−1mM

(λtM
)−−−−−−−−→ mM

d
mM
jM1

(λtM1 )
−−−−−→ mM . . . mM

d
mM
jMrM

(λtMrM
)

−−−−−−−→ mM, (C8)

where only QJs are presented, with wmpmp+1 (λtp ) [d
mp

jpq
(λtpq

)]
denoting a state transition (dephasing) QJ with nonzero (zero)
heat production. Owing to the quantum adiabatic evolution
that maintains the quantum number, such a QJT is very similar
to a classical one except for the dephasing QJs. The heat
(work) along this QJT are completely determined by the state
transition QJs and the initial and the final state energies:

Q[ψt ] =
M−1∑
k=0

(
E

λtk+1
mk

− E
λtk+1
mk+1

)
,

W [ψt ] =
M∑

k=0

(
E

λtk+1
mk

− E
λtk
mk

)
, (C9)

where t0 ≡ 0 and tM+1 ≡ τ .
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In fact, we can figure out the exact probability of a classical
trajectory if we sum over all the QJTs with the same classical
reduction. To do this, we first define the classical reduction mt

of a QJT ψt (C8) as follows:

mt = Re[ψt ] : m0
wm0m1 (λt1 )−−−−−→ m1

wm1m2 (λt2 )−−−−−→ m2 . . .

mM−1
wmM−1mM

(λtM
)−−−−−−−−→ mM, (C10)

where only the state transition QJs are retained. Such a defini-
tion is reasonable because the classical work and heat along the
reduced classical trajectory (C10) are defined by Eq. (C9) [3].
For convenience but without the loss of generality, we denote
L1(λ),L2(λ), . . . ,LJ1 (λ) as all the dephasing jump operators,
each of which takes the form Lj (λ) = ∑

n dn
j (λ)|n〉〈n| (since

[Lj (λ),H (λ)] = 0). The remaining state transition jump oper-
ators must take the form of Lab(λ) = √

wba(λ)|a〉〈b|. Now we
write down the conditional probability of the QJT ψt as

P[ψt |ψ0] =
M−1∏
p=0

wmpmp+1

(
λtp+1

)
dtp+1 ×

M∏
p=0

e− ∫ tp+1
tp

dt[wmp (λt )+Dmp (λt )]
rp∏

q=1

∣∣dmp

jpq

(
λtpq

)∣∣2dtpq, (C11)

where t0 ≡ 0, tM+1 ≡ τ , jpq ∈ {1,2, . . . ,J1}, wn(λ) ≡ ∑
m�=n wnm(λ) and Dn(λ) ≡ ∑J1

j=1 |dn
j (λ)|2. Then we sum up the

conditional probabilities of all the ψt corresponding to the same mt , leading to

P[mt |m0] =
∫

{ψt :Re[ψt ]=mt }
D[ψt ]P[ψt |ψ0] =

M−1∏
p=0

wmpmp+1

(
λtp+1

)
dtp+1 ·

M∏
p=0

e− ∫ tp+1
tp

dt[wmp (λt )+Dmp (λt )]

×
+∞∑
rp=0

∫ tp+1

tp

dtprp
. . .

∫ tp3

tp

dtp2

∫ tp2

tp

dtp1

rp∏
q=1

⎛
⎝ J1∑

jpq=1

∣∣dmp

jpq

(
λtpq

)∣∣2
⎞
⎠. (C12)

By using the identity e
∫ t ′′
t ′ dtf (t) = ∑+∞

r=0

∫ t ′′

t ′ dtr . . .
∫ t3
t ′ dt2

∫ t2
t ′ dt1

∏r
q=1 f (tq), we finally obtain

P[mt |m0] = e
− ∫ τ

tM
dtwmM

(λt )
M−1∏
p=0

wmpmp+1

(
λtp+1

)
dtp+1e

− ∫ tp+1
tp

dtwmp (λt ), (C13)

which turns out to be consistent with the conditional proba-
bility of a classical trajectory [96]. The generalization to the
case with feedback control is straightforward, since there is no
measurement backaction in the classical case.

It is worth mentioning that if ht generates a sudden
permutation operation between different classical states, the
exclusive driving can stay classical but perform nonzero work.
Such an operation routinely occurs in a classical computer as
in the reversible classical logic gate operation of classical bits.

3. Adiabatic limit

To reach the adiabatic limit, we only have to set g =
0, so the system is dissipation-free and undergoes unitary
evolution governed by the Liouville-von Neumann equation
ρ̇t = − i

�
[H (λt ) + ht ,ρt ]. The QJT in this case is very simple:

it only consists of the initial and final PM outcomes, while
no QJ occurs, leading to Q[ψt ] = 0 and W [ψt ] = E

λτ

b − Eλ0
a ,

which is the widely accepted two-time PM definition of
quantum work in isolated quantum systems [51]. When there is
feedback, the energy change contributed by the measurement
backaction is identified as work because 〈W 〉 = 〈�E〉 and
Q[ψt ] always vanishes.

APPENDIX D: DERIVATIONS AND DISCUSSIONS OF THE
GENERALIZED JARZYNSKI EQUALITIES

1. Derivation of Eq. (14)

A QJT in a feedback control process can be completely
characterized by a discrete set of outcomes a and b of the
initial and the final PMs, the outcome α of the measurement
MA, the total number of QJs K , and the time tk and the type
jk of the kth QJ. Given these parameters and a set of time
resolutions dtk , the probability of this forward QJT ψt follows
the stochastic Schrödinger equation (10) and is given by

P[ψt,α] =
∣∣∣∣∣〈bλα

τ

∣∣[ K∏
k=Km+1

Uα
eff(tk+1,tk)Ljk

(
λα

tk

)]
Uα

eff

(
tKm+1,tm

)
MαUeff

(
tm,tKm

)[Km∏
k=1

Ljk

(
λtk

)
Ueff(tk,tk−1)

]
|aλ0〉

∣∣∣∣∣
2

peq
a (λ0)

K∏
k=1

dtk,

(D1)

where p
eq
a (λ) ≡ e−βEλ

a /Zλ is the probability that the system at the ath eigenstate for the canonical ensemble with work parameter
λ, and Ueff(t,t ′) [Uα

eff(t,t
′)] is the nonunitary effective time-evolution operator generated by Heff(t) [Hα

eff(t)]. Based on the
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definition of the corresponding time-reversed QJT ψ̄t (see Fig. 1 in the main text), we can write down its probability as

P̄[ψ̄t ,α] =
∣∣∣∣∣∣
〈
aλ̄τ

∣∣�†

⎡
⎣ K∏

k=K̄m+1

Ūeff(t̄k+1,t̄k)L̄j̄k

(
λ̄t̄k

)⎤⎦Ūeff
(
t̄K̄m+1,t̄m

)

×M̃αŪα
eff

(
t̄m,t̄K̄m

)⎡⎣ K̄m∏
k=1

L̄j̄k

(
λ̄α

t̄k

)
Ūα

eff(t̄k,t̄k−1)

⎤
⎦�

∣∣bλ̄α
0
〉∣∣∣∣∣∣

2

p
eq
b

(
λ̄α

0

)
JK

K∏
k=1

dt̄k, (D2)

where JK = (−)K is the Jacobian ∂(t1,t2, . . . ,tK )/∂(t̄1,t̄2, . . . ,t̄K ), t0 ≡ 0, tK+1 ≡ τ , λ̄t ≡ λτ−t (λ̄α
t ≡ λα

τ−t ), t̄k ≡ τ − tK+1−k ,
t̄m ≡ τ − tm, K̄m ≡ K − Km, j̄k ≡ j ′

K+1−k (we recall that j ′ is uniquely determined by �j ′ (λ) = −�j (λ) if �j (λ) �= 0 and

j ′ = j otherwise), M̃α = �M†
α�† and Ūeff(t,t ′) is generated by H̄eff(t) = H̄ (λ̄t ) + h̄t −∑

j i�L̄
†
j (λ̄t )L̄j (λ̄t )/2, with Ō ≡ �O�†

(Ōt ≡ �Oτ−t�
†) if O is not explicitly time-dependent (if O has a time argument). One can show H̄eff(t) = �H

†
eff(τ − t)�†,

which leads to Ūeff(t,t ′) = �U
†
eff(τ − t ′,τ − t)�† [Ūα

eff(t,t
′) = �U

α†
eff (τ − t ′,τ − t)�†] [40]. By substituting all these expressions

into P̄[ψ̄t ,α], we obtain

P̄[ψ̄t ,α] =
∣∣∣∣∣〈aλ0

∣∣[ K∏
k=K−Km+1

U
†
eff(τ − t̄k,τ − t̄k+1)Lj ′

K−k+1

(
λτ−t̄k

)]
U

†
eff(τ − t̄m,τ − t̄K−Km+1)

×M†
αU

α†
eff (τ − t̄K−Km ,τ − t̄m)

[
K−Km∏
k=1

Lj ′
K−k+1

(
λα

τ−t̄k

)
U

α†
eff (τ − t̄k−1,τ − t̄k)

]∣∣bλα
τ

〉∣∣∣∣∣
2

p
eq
b

(
λα

τ

)
JK

K∏
k=1

dt̄k

=
∣∣∣∣∣〈aλα

τ

∣∣[ K∏
k=K−Km+1

U
†
eff(tK−k+1,tK−k)L†

jK−k+1

(
λtK−k+1

)
e− 1

2 β�jK−k+1 (λtK−k+1 )

]
U

†
eff

(
tm,tKm

)
M†

α

×U
α†
eff

(
tKm+1,tm

)[K−Km∏
k=1

L
†
jK−k+1

(
λα

tK−k+1

)
e
− 1

2 β�jK−k+1 (λα
tK−k+1

)
U

α†
eff (tK−k+2,tK−k+1)

]∣∣bλ0
〉∣∣∣∣∣

2

p
eq
b

(
λα

τ

) K∏
k=1

dtk

=
∣∣∣∣∣〈aλα

τ

∣∣[ 1∏
k=Km

U
†
eff(tk,tk−1)L†

jk

(
λtk

)
e− 1

2 β�jk
(λtk

)

]
U

†
eff

(
tm,tKm

)
M†

αU
α†
eff

(
tKm+1,tm

)

×
[

Km+1∏
k=K

L
†
jk

(
λα

tk

)
e
− 1

2 β�jk
(λα

tk
)
U

α†
eff (tk+1,tk)

]
|bλ0〉

∣∣∣∣∣
2

p
eq
b

(
λα

τ

) K∏
k=1

dtk

= e
−β[Eλα

τ
b −E

λ0
a +∑K

k=1 �jk
(λα

tk
)−�Fα ]

∣∣∣∣∣〈bλα
τ

∣∣[ K∏
k=Km+1

Uα
eff(tk+1,tk)Ljk

(
λα

tk

)]
Uα

eff

(
tKm+1,tm

)
Mα e

×Ueff
(
tm,tKm

)[Km∏
k=1

Ljk

(
λtk

)
Ueff(tk,tk−1)

]
|aλ0〉

∣∣∣∣∣
2

peq
a (λ0)

K∏
k=1

dtk = e−β(W [ψt ,α]−�Fα )P[ψt,α], (D3)

where λα
t ≡ λt for t < tm. Thus we have completed the proof of Eq. (14) in the main text

P̄[ψ̄t ,α] = e−β(W [ψt ,α]−�Fα )P[ψt,α]. (D4)

2. Derivation of the efficacy of feedback control (15)

Using Eq. (D4), we have

〈e−β(W−�F )〉 =
∑

α

∫
D[ψt ]P[ψt,α]e−β(W [ψt ,α]−�Fα ) =

∑
α

∫
D[ψ̄t ]P̄[ψ̄t ,α], (D5)

where ∫
D[ψt ] ≡

∑
a,b

∞∑
K=0

∑
{jk :1�k�K}

K∏
k=1

∫ tk+1

0
(with respect to dtk),

∫
D[ψ̄t ] ≡

∑
b,a

∞∑
K=0

∑
{j̄k :1�k�K}

K∏
k=1

∫ t̄k+1

0
J−1

K (with respect to dt̄k). (D6)
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Then we calculate the path integral involved on the right-hand side of Eq. (D5) for a given α

∫
D[ψ̄t ]P̄[ψ̄t ,α]=

∑
b,a

∞∑
K̄m=0

∞∑
K=K̄m

∑
{j̄k :1�k�K}

⎡
⎣ K∏

k=K̄m+1

∫ t̄k+1

t̄m

dt̄k

⎤
⎦∫ t̄m

0
dt̄K̄m

K̄m−1∏
k=1

∫ t̄k+1

0
dt̄k p

eq
b

(
λ̄α

0

)

×
∣∣∣∣∣∣〈aλ̄τ |�†

⎡
⎣ K∏

k=K̄m+1

Ūeff(t̄k+1,t̄k)L̄j̄k

(
λ̄t̄k

)⎤⎦Ūeff
(
t̄K̄m+1,t̄m

)
M̃αŪα

eff

(
t̄m,t̄K̄m

)⎡⎣K̄m∏
k=1

L̄j̄k

(
λ̄α

t̄k

)
Ūα

eff(t̄k,t̄k−1)

⎤
⎦�

∣∣bλ̄α
0
〉∣∣∣∣∣∣

2

= Tr
[
T+e

∫ τ

t̄m
dtL̄t M̃α

[
T+e

∫ t̄m
0 dtL̄α

t ρ̄eq
(
λα

τ

)]
M̃†

α

] = Tr
[
M̃†

αM̃αρ̄α
t̄−m

]
, (D7)

where ρ̄α
t is the solution to ρ̇t = L̄α

t ρt starting from the equi-
librium state ρ̄eq(λα

τ ) = e−βH̄ (λα
τ )/Zλα

τ , and several properties
have been used, including the trace-preserving property of
Lt and the path integral representation of the time evolution
generated by a general time-dependent Lindblad-form super-
operator Lt = − i

�
[Ht,·] +∑

j D[Lj
t ]·

T+e
∫ t ′′
t ′ dtLt =

∞∑
L=0

∑
{jl :1�l�L}

L∏
l=1

∫ tl+1

t ′
dtlUeff(t

′′,tL)

×
[

L∏
l=1

Jjl
(tl)Ueff(tl,tl−1)

]
, (D8)

where t0 ≡ t ′ and tL+1 ≡ t ′′ for each summation term
with definite L, and Jj (t)ρ ≡ L

j
t ρL

j†
t and Ueff(t,t ′)ρ =

Ueff(t,t ′)ρU
†
eff(t,t

′) are the jump superoperator and the effec-
tive time-evolution superoperator, respectively. After substi-
tuting Eq. (D7) into Eq. (D5), we finally come up with the first
generalized Jarzynski equality:

〈e−β(W−�F )〉 =
∑

α

Tr
[
M̃†

αM̃αρ̄α
t̄−m

] = ηQJT. (D9)

The existence of a measurement MBα
that involves M̃α

can be understood in the following manner. Based on ei-
ther the picture of the system-measurement device interac-
tion or a rigorous mathematical conclusion [97], we can
express Mα as Mα = 〈αM|USM|ψM〉, and therefore M̃α =
�〈ψM|U †

SM|αM〉�†. Starting from any given |ψM〉, we can
always find out another D − 1 state vectors |φj

M〉, which
can be made to satisfy 〈φj

M|φk
M〉 = δjk and 〈φj

M|ψM〉 = 0
(j,k = 1,2, . . . ,D − 1) through the Schmidt orthogonaliza-
tion process. Therefore, M̃α and �〈φj

M|U †
SM|αM〉�† constitute

a measurement MBα
. Here D gives both the Hilbert-space

dimension of the measurement device and the number of the
measurement outcomes.

The consistency of ηQJT and the classical counterpart ηC [6]
in the classical limit can be understood as follows: due to
the absence of quantum coherence, ρ̄α

t̄−m
is diagonalized in

the energy representation, i.e., ρ̄α
t̄−m

= ∑
n∗ p̄α

n∗ (t̄m)�|n〉〈n|�†.
Recalling that a general classical measurement opera-
tor takes the form Mα = ∑

n

√
pα|n|n〉〈n|, so that M̃α =∑

n

√
pα|n�|n〉〈n|�† and

ηQJT =
∑
α,n

pα|npα
n∗ (t̄m) =

∑
α

p̃α∗|α = ηC, (D10)

where pα∗|α ≡ ∑
n pα∗|npα

n (t̄m) and the symmetry pα∗|n∗ =
pα|n has been assumed. Also, the system is assumed to be
time-reversal invariant so that

∑
n = ∑

n∗ ; however, it may
have the Kramers degeneracy.

3. Derivation of the relevant information gain (17)

To derive the second generalized Jarzynski equality, we
again make use of Eq. (D4). Based on the definition IQJT =
ln ‖M̃α|ψ̄t̄−m 〉‖2 − ln pα , we have

〈e−β(W−�F )−IQJT〉
=
∑

α

∫
D[ψt ]P[ψt,α]e−β(W [ψt ,α]−�Fα )−IQJT[ψt ,α]

=
∑

α

pα

∫
D[ψ̄t ]

P̄[ψ̄t ,α]∥∥M̃α

∣∣ψ̄t̄−m

〉∥∥2 . (D11)

Each path integral
∫

D[ψ̄t ]
P̄[ψ̄t ,α]

‖M̃α |ψ̄
t̄
−
m

〉‖2 on the last part of the

above equation turns out to be unity (we set t̄K̄m+1 ≡ t̄m here
for convenience):

∑
b

∞∑
K̄m=0

∑
{j̄k :1�k�K̄m}

K̄m∏
k=1

∫ t̄k+1

0
dt̄k p

eq
b

(
λ̄α

0

)∥∥M̃αŪα
eff

(
t̄m,t̄K̄m

)[∏K̄m
k=1 L̄j̄k

(
λ̄α

t̄k

)
Ūα

eff(t̄k,t̄k−1)
]
�
∣∣bλ̄α

0
〉∥∥2

∥∥M̃α

∣∣ψ̄t̄−m

〉∥∥2

=
∑

b

∞∑
K̄m=0

∑
{j̄k :1�k�K̄m}

K̄m∏
k=1

∫ t̄k+1

0
dt̄k p

eq
b

(
λ̄α

0

)∥∥∥∥∥∥Ūα
eff

(
t̄m,t̄K̄m

)⎡⎣ K̄m∏
k=1

L̄j̄k

(
λ̄α

t̄k

)
Ūα

eff(t̄k,t̄k−1)

⎤
⎦�

∣∣bλ̄α
0
〉∥∥∥∥∥∥

2

= Tr
[
T+e

∫ t̄m
0 dtL̄α

t ρ̄eq(λα
τ

)] = 1. (D12)
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Hence, we obtain

〈e−β(W−�F )−IQJT〉 =
∑

α

pα = 1. (D13)

Here the explicit expression of |ψ̄t̄−m 〉

∣∣ψ̄t̄−m

〉 = Ūα
eff

(
t̄m,t̄K̄m

)[∏K̄m
k=1 L̄j̄k

(
λ̄α

t̄k

)
Ūα

eff(t̄k,t̄k−1)
]
�
∣∣bλ̄α

0
〉

∥∥Ūα
eff

(
t̄m,t̄K̄m

)[∏K̄m
k=1 L̄j̄k

(
λ̄α

t̄k

)
Ūα

eff(t̄k,t̄k−1)
]
�
∣∣bλ̄α

0
〉∥∥ (D14)

has been used. Accordingly, the ket can be expressed in terms of the measurement outcomes in the forward QJT:

〈
ψ̄t̄−m

∣∣ =
〈
bλ̄α

0
∣∣�†[∏1

k=K̄m
Ū

α†
eff (t̄k,t̄k−1)L̄†

j̄k

(
λ̄α

t̄k

)]
Ū

α†
eff

(
t̄m,t̄K̄m

)
∥∥〈bλ̄α

0

∣∣�†
[∏1

k=K̄m
Ū

α†
eff (t̄k,t̄k−1)L̄†

j̄k

(
λ̄α

t̄k

)]
Ū

α†
eff

(
t̄m,t̄K̄m

)∥∥
=
〈
bλα

τ

∣∣[∏K
k=Km+1 Uα

eff(tk+1,tk)Ljk

(
λα

tk

)]
Uα

eff

(
tKm+1,tm

)
�†∥∥〈bλα

τ

∣∣[∏K
k=Km+1 Uα

eff(tk+1,tk)Ljk

(
λα

tk

)]
Uα

eff(tKm+1,tm)
∥∥ , (D15)

where L
†
j̄k

(λ̄t̄k ) ∝ LjK+1−k
(λtK+1−k

) has been used. One can see
that generally all the measurement outcomes after tm should
be used to determine |ψ̄t̄−m 〉, which usually differs from �|ψt+m 〉.
One can also see that the validity of the second generalized
Jarzynski equality only requires

∑
α pα = 1, so they are

not necessarily the real probabilities of the measurement
outcomes. However, to minimize the averaged value 〈IQJT〉,
which gives an upper bound of −β〈Wdiss〉, the real probabilities
are the optimal choice. Another advantage is that 〈IQJT〉 has a
Holevo boundlike expression under such a choice.

To measure IQJT, we have to measure both ‖M̃α|ψ̄t̄−m 〉‖2

and pα . The latter is straightforward since we have only to
count the number of all the possible measurement outcomes,
and then perform the statistical estimation after many repeats
of the feedback control experiment. On the other hand,
measuring ‖M̃α|ψ̄t̄−m 〉‖2 is, though in principle feasible, much
more involved: for given α, we should prepare a sufficiently
large number of realizations of the time-reversed processes to
observe, in a certain coarse graining of time, all the possible
outcomes dN

j
t from monitoring the heat bath. Conditioned

on each sequence of outcomes, we perform the measurement
MBα

to statistically determine the conditional probability
‖M̃α|ψ̄t̄−m 〉‖2, which again requires many repetitions. Fortu-
nately, if there are only state transition QJs, we can simplify
the above process into the following procedure: for given α,
we start from the bth instantaneous energy eigenstate of H̄ (λt )
at different times t > tm and apply the time-reversed driving

protocols λ̄α
t and h̄α

t . We then perform the measurement MBα

to estimate the conditional probability p̃α|b,t of that outcome
α being observed for those QJTs with no QJ after t − tm.
The probability p̃α|b,t has already covered all the possible
‖M̃α|ψ̄t̄−m 〉‖2. This fact may be accounted for by the completely
destructive nature of a state-transition QJ (or a PM performed
at the final stage) that makes all measurement outcomes after
this QJ irrelevant to estimate the quantum state at t+m , and
this fact has been used in our numerical calculations. One
can also see that the knowledge of the microscopic details
about the system and the measurement is not needed in a real
experiment—we only have to deal with the classical outcomes.

The consistency between IQJT and the classical mutual
information IC at the trajectory level is transparent: in the
classical limit, we have |ψ̄t̄−m 〉 = �|ψtm〉 with |ψtm〉 being a
certain eigenstate |nt 〉. Recalling the general classical form of
Mα , we have

IQJT[ψt,α] = ln ‖�Mα|nt 〉‖2 − ln pα

= ln pα|nt
− ln pα = IC[nt ,α]. (D16)

4. Derivation of Eq. (18) and the properties
of relevant information

By definition, the average value of IQJT should be

〈IQJT〉 =
∑

α

∫
D[ψt ]P[ψt,α]IQJT[ψt,α]

=
∑
α,b

∞∑
K=Km

∑
{jk :Km<k�K}

K∏
k=Km+1

∫ tk+1

tm

dtk

∥∥∥∥∥〈bλα
τ

∣∣[ K∏
k=Km+1

Uα
eff(tk+1,tk)Ljk

(
λα

tk

)]
Uα

eff

(
tKm+1,tm

)
Mα

√
ρt−m

∥∥∥∥∥
2

× ln

∥∥〈bλα
τ

∣∣[∏K
k=Km+1 Uα

eff(tk+1,tk)Ljk

(
λα

tk

)]
Uα

eff

(
tKm+1,tm

)
Mα

∥∥2

pα

∥∥〈bλα
τ

∣∣[∏K
k=Km+1 Uα

eff(tk+1,tk)Ljk

(
λα

tk

)]
Uα

eff

(
tKm+1,tm

)∥∥2 . (D17)
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Based on the definition IC(ρ : MX) ≡ H (pMX
ρ ||pMX

ρu
), we can write down

IC
(
ρα

t+m
: λα

τ MJtm<t<τ |α
)

=
∑

b

∞∑
K=Km

∑
{jk :Km<k�K}

K∏
k=Km+1

∫ tk+1

tm

dtk

∥∥∥∥∥〈bλα
τ

∣∣[ K∏
k=Km+1

Uα
eff(tk+1,tk)Ljk

(
λα

tk

)]
Uα

eff

(
tKm+1,tm

)√
ρα

t+m

∥∥∥∥∥
2

× ln

∥∥〈bλα
τ

∣∣[∏K
k=Km+1 Uα

eff(tk+1,tk)Ljk

(
λα

tk

)]
Uα

eff

(
tKm+1,tm

)√
ρα

t+m

∥∥2

∥∥〈bλα
τ

∣∣[∏K
k=Km+1 Uα

eff(tk+1,tk)Ljk

(
λα

tk

)]
Uα

eff

(
tKm+1,tm

)√
ρu

∥∥2 ,

IC
(
ρt−m : λA

τ MJtm<t<τ |A MA
)

=
∑
α,b

∞∑
K=Km

∑
{jk :Km<k�K}

K∏
k=Km+1

∫ tk+1

tm

dtk

∥∥∥∥∥〈bλα
τ

∣∣[ K∏
k=Km+1

Uα
eff(tk+1,tk)Ljk

(
λα

tk

)]
Uα

eff

(
tKm+1,tm

)
Mα

√
ρt−m

∥∥∥∥∥
2

× ln

∥∥〈bλα
τ

∣∣[∏K
k=Km+1 Uα

eff(tk+1,tk)Ljk

(
λα

tk

)]
Uα

eff

(
tKm+1,tm

)
Mα

√
ρt−m

∥∥2∥∥〈bλα
τ

∣∣[∏K
k=Km+1 Uα

eff(tk+1,tk)Ljk

(
λα

tk

)]
Uα

eff

(
tKm+1,tm

)
Mα

√
ρu

∥∥2 . (D18)

Combining Eq. (D18) with Eq. (D17), using ρα
t+m

≡
Mαρt−m M†

α/pα , we finally obtain

〈IQJT〉 =
∑

α

pαIC
(
ρα

t+m
: λα

τ MJtm<t<τ |α
)

− IC
(
ρt−m : λA

τ MJtm<t<τ |A MA
)
. (D19)

The fact that IC is always bounded by IQ can be understood
physically as follows: IQ(ρ) is the intrinsic information that
the quantum state ρ carries, while IC(ρ : MX) is the available
information content extracted from the classical outcomes by a
measurement MX performed on ρ. This result can be obtained
from the following relation [98]:

S(ρ||σ ) � S

(⊕
x

MxρM†
x ||
⊕

x

MxσM†
x

)

= H
(
pMX

ρ

∥∥pMX
σ

)+
∑

x

px
ρS(ρx ||σx)

� H
(
pMX

ρ

∥∥pMX
σ

)
, (D20)

where ρx ≡ MxρM
†
x/p

x
ρ and px

ρ = Tr[MxρM
†
x] for x ∈ X.

Another good property of IC is that it increases monotonically
when performing subsequent measurements, namely IC(ρ :
MYMX) � IC(ρ : MX). This is a result of the chain rule of the
classical relative entropy [99]:

H
(
pMYMX

ρ

∥∥pMYMX
σ

)
= H

(
pMX

ρ

∥∥pMX
σ

)+
∑

x

px
ρH

(
pMY

ρx

∥∥pMY
σx

)
� H

(
pMX

ρ ‖pMX
σ

)
. (D21)

From the above result we can also find that IC(ρ :
MZMYMX) = IC(ρ : MYMX) once MY is a projective mea-
surement, no matter how complex MZ or MX is (e.g., a
combination of MXk

).

5. Other fluctuation theorems

In a real quantum feedback control experiment, we only
perform the initial and the final PMs to determine the
energy change, a general measurement MA for feedback,
and the continuous monitoring of the heat bath to determine
the heat along a single trajectory. Our results in the main
text are fully compatible with such an experiment, and the
correction term I [ψt,α] is, in principle, measurable. However,
if we only concern the ensemble average, we can insert
arbitrary numbers of nondemolition PMs6 at arbitrary time
points while keeping 〈W 〉 (〈Q〉 or 〈�s〉) unchanged, since a
nondemolition PM preserves the density operator and costs no
work (but does affect the work and heat fluctuations). Such
a technique was used in Ref. [27] to construct a classical
trajectory (C10)-like quantum trajectory where nondemolition
PMs are continuously performed on the system, though the
experimental realization is difficult. Particularly, if we insert
two nondemolition PMs right before and after MA, we can
still construct the same second-type generalized Jarzynski
equality (D13) in form by redefining the correction term IQJT

as [16]

Iba = ln pl|α − ln pk, (D22)

where ρt−m = ∑
k pk|k〉〈k| and ρα

t+m
= ∑

l pl|α|lα〉〈lα|. After
taking the ensemble average, we obtain the QC-mutual
information [10]:

〈Iba〉 =
∑

α

pαIQ
(
ρα

t+m

)− IQ(ρt−m ) = IQC. (D23)

Although the feedback control process compatible with Iba

is somehow artificial, IQC indeed gives an upper bound for

6By a nondemolition PM on ρ, we mean that the basis of the PM is
the eigenbasis of ρ. Therefore, such a “nondemolition” PM actually
disturbes the system at the EP -ensemble level [55] and thus affects the
work or heat distributions, despite the fact that it has no backaction
at the Eρ-ensemble level and thus preserves 〈W 〉 or 〈Q〉.
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−β〈Wdiss〉 in real experiments (without the need of the two
nondemolition PMs) at the ensemble level.

In fact, we have two other second-type generalized Jarzyn-
ski equalities, which correspond to the feedback control
processes with only one nondemolition PM just before MA

and those after MA. To put it concretely, for the case of a PM
immediately before MA, we define Ib as

Ib = ln
〈
ψ̄t̄−m

∣∣�ρα
t+m

�†∣∣ψ̄t̄−m

〉− ln pk, (D24)

for which the ensemble average is

〈Ib〉 =
∑

α

pαIC
(
ρα

t+m
: τ |αMJtm<t<τ |α

)− IQ
(
ρt−m

)
. (D25)

Recalling that IC is always bounded by IQ, this bound is
always tighter than both 〈IQJT〉 and IQC. If we want to saturate
〈Ib〉 to IQC, the only chance for it seems to first quench
the Hamiltonian so as to commute with ρt+m followed by a
quasistatic process, as proposed in Ref. [100]. For the case of
a PM just after MA, we define Ia as

Ia = ln ‖M†
α|lα〉‖2 − ln pα, (D26)

for which the ensemble average is

〈Ia〉 =
∑

α

pαIQ
(
ρα

t+m

)− IC
(
ρt−m : nd

t+m |AMA
)
, (D27)

where nd
t+m |α ≡ {|lα〉〈lα| : l = 1,2, . . . ,d} is the nondemolition

PM with respect to ρα
t+m

. This bound is the loosest compared
with the other three bounds.

APPENDIX E: DETAILS OF THE EXAMPLE

1. Equation of motion (22)

The equation of motion used in Sec. VI B, with the external
driving turned off, can be obtained from the following standard
total Hamiltonian [55,56]:

Htot(t) = 1

2
�ωtσz ⊗ IB + IS ⊗

∑
k

�ωkb
†
kbk

+ gσx ⊗
∑

k

(ckb
†
k + c∗

kbk), (E1)

where a two-level system is coupled to a noninteracting many-
boson heat bath. The first condition in Eq. (A2) holds true due
to q(ω) ≡ 0 [here H (ω) = �ωσz/2]. When the heat bath is at
equilibrium, the correlation function can be obtained as

B(t) =
∑

k

|ck|2[〈nk〉eiωk t + (〈nk〉 + 1)e−iωk t ], (E2)

where 〈nk〉 = (eβ�ωk − 1)−1 and the Fourier transform ofB(t),
denoted by �(ω) = ∫ +∞

−∞ dteiωtB(t), reads

�(ω) = 1

1 − e−β�ω
[J (ω) − J (−ω)], (E3)

where J (ω) ≡ 2π
∑

k |ck|2δ(ω − ωk) is the spectral function.
After assuming an Ohmic spectrum J (ω) = κ0ωθ (ω) [θ (ω):
the Heaviside unit-step function], we find that the only
two nonvanishing jump operators are L±(ωt ) = √

γ±(ωt )σ±,

where σ± = (σx ± iσy)/2, and the transition rates read

γ±(ω) = g2

�2
�(∓ω) = 1

2
κω

(
coth

β�ω

2
∓ 1

)
, (E4)

with κ ≡ κ0
g2

�2 . The memory time τB is of the order of
β� [54], so the second condition in Eq. (A2) becomes βg � 1
and βg2 � min0�t�τ �ωt , which is well satisfied for the
parameters we use (β = 5,g = 0.001, κ0 = 103 and ω0 =
0.3). If we neglect the Lamb shift, we obtain the following
adiabatic Lindblad equation

ρ̇t = − i

2
[ωtσz,ρt ] +

∑
j=±

γj (ωt )D[σj ]ρt , (E5)

which gives Eq. (22) in the main text by further adding the
perturbative driving term εσx cos ωdt .

2. Numerical simulations

We apply the standard stochastic wave function ap-
proach [34], as was used in Ref. [39]. We analyze a total
of 106 individual QJTs. For the feedback control process
in a single realization, we first generate a random number
X, which distributes uniformly over [0,1] (X ∼ U [0,1])

for initialization. If X < pe(ω0) = e− β�ω0
2 /(2 cosh β�ω0

2 ), we
initialize the system as |ψ0〉 = |e〉, record the initial energy
Ei = �ω0/2 and set the strength of coherent driving to be ε =
0.008. Otherwise, we set |ψ0〉 = |g〉, Ei = −�ω0/2 and ε =
0.002 (σz|e〉 = |e〉 and σz|g〉 = −|g〉). For the corresponding
ordinary process (without feedback control), we always set
ε = 0.008pe(ω0) + 0.002pg(ω0) = 0.0031 whatever the ini-
tial state is. The accumulated heat Q is initialized to 0.

We discretize the time interval [0,τ = 2000] into 20000
identical parts,7 each with length �t = 0.1. For each time
step, we use e− i

�
Heff (t+�t/2)�t to approximate the effective time-

evolution operator Ueff(t + �t,t), where

Heff(t) = �

2
(ωtσz + εσx cos ωdt)

− i�

4
κωt

(
σz + coth

β�ωt

2

)
. (E6)

Suppose that the state of the system is |ψt 〉 = ce(t)|e〉 +
cg(t)|g〉 at time t . To determine the state at t + �t , we should
first calculate

�p = 1 − ∥∥e− i
�

Heff (t+�t/2)�t |ψt 〉
∥∥2

, (E7)

which is the probability that a QJ occurs. To make the event
probabilistic, we generate a random number Yt ∼ U [0,1]. If
Yt > �p, the time evolution is determined by

|ψt+�t 〉 = e− i
�

Heff (t)�t |ψt 〉√
1 − �p

. (E8)

Otherwise, one of the two possible QJs occurs. The ratio
of the probabilities between a deexcitation QJ and an ex-
citation QJ is |ce(t)|2γ−(ωt )/|cg(t)|2γ+(ωt ). Therefore, we

7The results are almost unchanged even if we double the total
number of steps. Similar observations have been highlighted in
Ref. [39].
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independently generate another random variable Zt ∼ U [0,1].
If Zt <

|ce(t)|2γ−(ωt )
|ce(t)|2γ−(ωt )+|cg (t)|2γ+(ωt )

, a deexcitation QJ occurs, so
that

|ψt+�t 〉 = |g〉, (E9)

and the accumulated heat increases by dQ = �ωt . Otherwise,
an excitation QJ occurs, so that

|ψt+�t 〉 = |e〉, (E10)

and dQ = −�ωt . Finally, we projectively measure |ψτ−〉 in
the basis {|e〉,|g〉}, with probability |〈e|ψτ−〉|2 (|〈g|ψτ−〉|2) to
observe outcome e (g). To this end, we generate a random
variable X′ ∼ U [0,1]. If X′ < |〈e|ψτ−〉|2, we record the final
energy Ef = �ωτ/2. Otherwise, we have Ef = −�ωτ/2. The
work during this single run can be evaluated as

W = Ef − Ei + Q. (E11)

Now ηQJT is obtained by numerically solving the time-
reversed LME in the σz representation

d

dt

⎡
⎢⎢⎢⎣

ρee(t)

ρgg(t)

ρeg(t)

ρge(t)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

−γ−(ω̄t ) γ+(ω̄t ) i
2ε cos ωdt − i

2ε cos ωdt

γ−(ω̄t ) −γ+(ω̄t ) − i
2ε cos ωdt

i
2ε cos ωdt

i
2ε cos ωdt − i

2ε cos ωdt − γ+(ω̄t )+γ−(ω̄t )
2 − iω̄t 0

− i
2ε cos ωdt

i
2ε cos ωdt 0 − γ+(ω̄t )+γ−(ω̄t )

2 + iω̄t

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

ρee(t)

ρgg(t)

ρeg(t)

ρge(t)

⎤
⎥⎥⎥⎦,

where ω̄t = ωτ−t = ωτ − �ωt/τ , ωτ = ω0 + �ω and the
symmetry hτ−t = ht has been used. The initial condi-
tion is the equilibrium state at ω = ωτ , i.e., ρee(0) =
e− β�ωτ

2 /(2 cosh β�ωτ

2 ) = 1 − ρgg(0) and ρeg(0) = ρge(0) = 0.
For α = g (α = e), we solve the above equation with ε =
0.002 (ε = 0.008) to obtain the final density matrix, so
that p̃e = ρee(τ ) [p̃g = ρgg(τ )]. Finally, we obtain ηQJT =
p̃e + p̃g .

As mentioned in Appendix D 3, the two ingredients to
determine IQJT are pα and ‖M̃α|ψ̄t̄−m 〉‖2. Here pα simply equals
the initial canonical distribution of state α (e or g). While it is
generally difficult to calculate ‖M̃α|ψ̄t̄−m 〉‖2, without dephasing

QJs, it can be obtained from (i) the information about the
channel index and time of the first QJ after tm, or (ii) the final
PM outcome if no QJ occurs during [tm,τ ]. In particular, in our
two-level model with tm = 0, given the initial PM outcome α

and the first QJ from the state x (either e or g) to the other state
at t1 = τ − t̄K , we have

∥∥M̃α

∣∣ψ̄t̄−m

〉∥∥2 = |〈α|Ūeff(τ,t̄K )|x〉|2
‖Ūeff(τ,t̄K )|x〉‖2

, (E12)

where Ueff(t2,t1) = T+e
− i

�

∫ t2
t1

Heff (τ−t)dt with Heff(t) given by
Eq. (E6). Finally, 〈IQJT〉 is obtained by taking the average over
all these IQJT data (106 in total).
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