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Decoherence effects in the Stern-Gerlach experiment using matrix Wigner functions
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We analyze the Stern-Gerlach experiment in phase space with the help of the matrix Wigner function, which
includes the spin degree of freedom. Such analysis allows for an intuitive visualization of the quantum dynamics
of the device. We include the interaction with the environment, as described by the Caldeira-Leggett model. The
diagonal terms of the matrix provide us with information about the two components of the state that arise from
interaction with the magnetic field gradient. In particular, from the marginals of these components, we obtain an
analytical formula for the position and momentum probability distributions in the presence of decoherence that
shows a diffusive behavior for large values of the decoherence parameter. These features limit the dynamics of
the present model. We also observe the decay of the nondiagonal terms with time and use this fact to quantify the
amount of decoherence from the norm of those terms in phase space. From here, we can define a decoherence
time scale, which differs from previous results that make use of the same model. We analyze a typical experiment
and show that, for that setup, the decoherence time is much smaller than the characteristic time scale for the
separation of the two beams, implying that they can be described as an incoherent mixture of atoms traveling
in the up and down directions with opposite values of the spin projection. Therefore, entanglement is quickly
destroyed in the setup we analyzed.
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I. INTRODUCTION

The Stern-Gerlach (SG) experiment is a cornerstone in
quantum mechanics. It showed, for the first time, direct
evidence for the discretization of the spin states of the
electron by analyzing the motion of silver atoms through a
magnetic field gradient [1]. Most textbooks make continuous
use of the SG as a simple way to illustrate the quantum
measurement process, since the electron spin involves only
a two-dimensional Hilbert space.

A consistent description of the SG experiment needs,
obviously, to be quantum, even though one can make an
introduction based on a semiclassical description using a
spin-dependent force that gives rise to a “trajectory” which
depends on the initial spin state. The full quantum treatment
reveals a richer dynamics, as it leads to entanglement between
the spin and spatial degrees of freedom [2–6].

In this paper, we perform a phase-space analysis of the
SG device, including the interaction with the environment.
This interaction will be described by the Caldeira-Leggett
model [7]. In this respect, the starting point is similar to
the analysis in [8]. However, our description is based on
the use of the Wigner function (WF) [9]. Wigner functions
have proven to be a powerful tool in physics and can be
used as an alternative formulation of quantum phenomena,
including their dynamics. The particular features of the phase-
space description make it particularly advantageous in some
situations, for instance, recognizing the quantum features of
states, or dealing with decoherence scenarios. In the WF,
interference effects manifest in a clear way [10–12].

In order to include the spin degree of freedom, one needs to
extend the usual definition of the WF. A common prescription
in the literature is the use of a matrix valued WF [13], where the
spin indices give rise to the matrix elements. Such a description
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has some advantages when dealing with a particle subject
to a spin-dependent force, since some effects like the spin
precession, or motion that depends on the spin component, are
better visualized with respect to a fixed spin basis. Examples of
this description are a previous analysis of the SG experiment
without including decoherence effects [14,15], the study of
entangled vibronic quantum states of a trapped atom [13], or
the reconstruction of the fully entangled quantum state for
the cyclotron and spin degrees of freedom of an electron in a
Penning trap [16].

As we will show, the phase-space description provides
a clear visualization of the SG phenomenology. First, the
diagonal terms show the motion of the two components of
the quantum state (corresponding to spin up or down along the
gradient direction). By considering an initial Gaussian state
with arbitrary spin direction, we can obtain the marginals from
the WF which describe the appropriate probability distribution
function (PDF) of position or momentum [17]. Each of these
PDFs have a Gaussian shape with a center and width which
are modified by the interaction with the environment and
give valuable information about the state evolution. On the
other hand, the out-of-diagonal terms can be used to describe
the effect of decoherence, which manifest into a damping
of the norm associated to these terms. We use this norm
as a figure of merit to quantify the amount of decoherence
experienced by the system as a function of the parameter γ that
quantifies the strength of the coupling with the environment.
As a result, we obtain a decoherence time which scales as
γ −1/5, in contrast with previous results that claimed a γ 1/3

scaling [8]. We argue that our result is more realistic, as it
implies that a larger decoherence parameter manifests into a
shorter decoherence time scale. After considering a typical
experiment, we show that, for such a setup, the decoherence
time is much smaller than the characteristic time scale for
the separation of the two beams, thus implying that these two
beams can be described as an incoherent mixture of atoms
traveling in the up and down direction with opposite values
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of the spin projection. Therefore, entanglement is quickly
destroyed in the experiment.

The rest of this paper is organized as follows. In Sec. II,
we solve the equations that govern the evolution of the matrix
WF for the SG device when the master equation based on the
Caldeira-Leggett model is introduced to describe the environ-
ment. By evaluating the marginals of the diagonal elements, we
obtain the position and momentum PDFs, and we analyze some
limiting situations. Section III is devoted to the analysis of our
results in a standard setup of the SG experiment. In particular,
we study the damping of the off-diagonal terms and make use
of this to define a decoherence time scale. Our conclusions
are presented in Sec. IV, while some cumbersome expressions
and extra calculations have been relegated to the Appendixes.

II. DYNAMICS OF MATRIX WIGNER FUNCTIONS
INCLUDING INTERACTION WITH THE ENVIRONMENT

The behavior of a spin-1/2 neutral particle under the
action of a magnetic field gradient, including the influence of
decoherence effects, will be studied in this section. Particles
entering the SG apparatus will move initially along the tube,
defined as the x axis. The geometry of the magnetic field can
be described by a dependence of the form

�B(x,y,z) = ηy �j + (B0 − ηz) �k, (1)

which contains a uniform part B0 and a gradient of magnitude
η on the plane orthogonal to the x axis. Notice that both
position-dependent terms in the latter equation are necessary
in order to satisfy �∇ · �B = 0 and �∇ × �B = 0. However, it can
be shown that the effect of the magnetic field contribution
along the y direction causes fast oscillations due to Larmor
precession, which can be averaged out. Following [18],
we neglect this contribution (see also [6]). In this way, in
absence of decoherence effects, the problem can be effectively
factorized as the free propagation along the x and y axis, and
the nontrivial motion corresponding to the z coordinate, which
can be described by the Hamiltonian

H = p2

2m
+ 2λ

�
(B0 − ηz)Sz, (2)

where p is the canonical conjugate momentum for z, Sz is
the third component of the spin operator, λ = gsμB/2, and m

and gs are the mass and gyromagnetic ratio of the particle,
respectively. Finally, μB is the Bohr magneton.

In order to account for decoherence effects, we assume
that they are described by the Caldeira-Leggett master equa-
tion [19], which accounts for those effects in the system via
collisions with a thermal bath of particles. In the position
and spin representation, with the Hamiltonian (2), the master
equation can be written as [8]

∂ραβ(z,z′,t)
∂t

=
[

i�

2m

(
∂2

∂z2
− ∂2

∂z′2

)
+ iλB0

�
(α − β)

− iηλ

�
(αz − βz′) − γ (z − z′)

(
∂

∂z
− ∂

∂z′

)

− D

�2
(z − z′)2

]
ραβ (z,z′,t). (3)

In the latter equation, ραβ(z,z′,t) ≡ 〈z,α|ρ(t)|z′,β〉 are the
matrix elements of the density operator ρ(t) representing
the particle state, at a given time t , on the basis {|z,α〉 ≡
|z〉 ⊗ |α〉}, where |z〉/z ∈ R is the eigenbasis of the po-
sition operator and {|α〉} is a fixed basis in spin space.
We find it convenient to choose the eigenstates of Sz

(|Sz = +�/2〉 = |+〉, |Sz = −�/2〉 = |−〉) as the spin basis.
Finally, γ is the damping rate of the system in the environment.
The coefficient D is defined as D = 2mγkBT , with kB

the Boltzmann’s constant and T the temperature of the
environment.

As discussed in the Introduction, the analysis of the
dynamics of this model will be presented on phase space,
with the help of WF matrices

Wαβ(z,p,t) = 1

2π�

∫ ∞

−∞
ds e−i

p·s
�

〈
z + s

2
,α|ρ(t)|z − s

2
,β

〉
,

(4)

where Wαβ(z,p) are the spin matrix elements of the WF in the
above-mentioned Sz base. The matrix WF has, among others,
the following properties:

(1) One has

Wβα(z,p,t) = W ∗
αβ(z,p,t), (5)

which implies that the matrix WF is Hermitian.
(2) The normalization condition becomes∑

α

∫ ∞

−∞

∫ ∞

−∞
Wαα(z,p,t)dzdp = 1. (6)

(3) The marginal distributions of (4) are related to matrix
elements of the density operator. In particular, for the diagonal
components we have∫ ∞

−∞
Wαα(z,p,t)dp = 〈z,α|ρ(t)|z,α〉 ≡ f (±)(z,t), (7)

with α = ±, where f (±)(z,t) represents the position PDF for
the particle. In a similar way, the marginal over the position
variable∫ ∞

−∞
Wαα(z,p,t)dz = 〈p,α|ρ(t)|p,α〉 ≡ g(±)(p,t) (8)

represents the momentum PDF, with |p,α〉 ≡ |p〉 ⊗ |α〉,
{|p〉/p ∈ R} being the eigenstates of the momentum
operator.

Using the definition Eq. (4) and the dynamics of the
density matrix Eq. (3), one can obtain the corresponding
differential equations for the WF matrix elements, given as
follows:

∂W
(±)
d (z,p,t)

∂t
= − p

m

∂W
(±)
d (z,p,t)

∂z
+ D

∂2W
(±)
d (z,p,t)

∂p2

+ γ
∂(pW

(±)
d (z,p,t))

∂p

∓ ηλ
∂W

(±)
d (z,p,t)

∂p
, (9)
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∂Wod (z,p,t)

∂t
= − p

m

∂Wod (z,p,t)

∂z
+ D

∂2Wod (z,p,t)

∂p2

+ γ
∂(pWod (z,p,t))

∂p

± 2iλ(B0 + ηz)Wod (z,p,t)

�
, (10)

where W
(±)
d (z,p,t) stands for the diagonal elements of the

WF, with the upper sign corresponding to W++(z,p,t) and
the lower sign to W−−(z,p,t). We also defined Wod (z,p,t) ≡
W+−(z,p,t), which implies that W−+(z,p,t) = W ∗

od (z,p,t),
according to property 1 above.

A. General solution of the differential equations

To solve the system of equations (9) and (10), a Fourier
transform is performed over both z and p [8]. The resulting
equations can be solved with the help of the characteristics
method [20]. Then, the WFs are retrieved by performing the
inverse Fourier transform.

Assuming that the incident particles are described by a
product state, consisting on a spatial Gaussian part, and a
spin state |n〉 = a|+〉 + b|−〉 (with |a|2 + |b|2 = 1), the initial
density operator ρ(0) can be written as

ρ(0) = |ψ〉〈ψ | ⊗ |n〉〈n|, (11)

with the wave function that represents the initial state |ψ〉 in
position space defined as

ψ(z) = 1

(πσ 2)1/4
e
− z2

2σ2 . (12)

From the initial state Eq. (11) one obtains the matrix WF at
t = 0, which can be written as

W (z,p,0) =
(|a|2 ab∗

a∗b |b|2
)

Wi(z,p), (13)

where

Wi(z,p) = e
− σ2p2

�2 − z2

σ2

π�
(14)

represents the WF for a spinless Gaussian state, and σ is the
Gaussian width of the particle’s spatial PDF.

Solving the differential equation (9) by the method com-
mented above, with the help of the initial condition (14), one
finds the general solution for the diagonal elements. After some
algebra, they can be written as follows:

W
(±)
d (z,p,t) = γ 2mσ

π
√

G(τ )
e
− F (z,p,τ )

G(τ ) , (15)

and we have defined the new variable τ ≡ γ t . The functions
F (z,p,τ ) and G(τ ) are defined in Appendix A. In these
functions we introduced the notations

zc = ηλ(τ + e−τ − 1)

γ 2m
, (16)

pc = ηλ(1 − e−τ )

γ
. (17)

The role played by zc and pc will be discussed in the next
section.

Using the same procedure for the differential equation (10),
the solution for the off-diagonal elements is also found. The
resulting expression is lengthy so that, in order to express it
in a more compact way, we introduced the functions Ci(τ )
(i = 1,2,3,4,5,6) that can be found in Appendix A. The off-
diagonal elements can finally be written as

Wod (z,p,t) = e
[ 2iB0λt

�
+C1− (−2C2C3�+C4C5�−iC5z�+2iC3p)2

4C3�2(4C6C3−C2
5 )

+ (z+iC4)2

4C3
]

2π�

√(
4C3C6 − C2

5

) ,

(18)

where we have omitted, for simplicity, the dependence of
Ci(τ ) on the variable τ . The matrix WF takes the following
form:

W (z,p,t) =
(

|a|2 W
(+)
d (z,p,t) ab∗ Wod (z,p,t)

a∗b W ∗
od (z,p,t) |b|2 W

(−)
d (z,p,t)

)
. (19)

As we discuss below, the diagonal terms in W (z,p,t) describe
the behavior of the particles in phase space, and the off-
diagonal terms represent the coherence of the state.

B. Marginals of the Wigner function:
Position and momentum PDFs

The WF (for a spinless particle) cannot be associated with a
probability distribution in phase space. In fact, it is referred to
as a quasiprobability distribution and may even take negative
values. This had to be expected from first principles, given the
incompatibility of the position and momentum observables
in quantum mechanics. One can, however, obtain the PDF
corresponding to the particle position by integrating over
the momentum variable, and vice versa, as described in the
previous section. Equation (7) can be integrated, with the result

f (±)(z,t) = e
− (z∓zc )2

σ2
z√

πσz

, (20)

where

σ 2
z = 2D(2τ + 4e−τ − e−2τ − 3)

γ 3m2
+ �

2(1 − e−τ )2

γ 2m2σ 2
+ σ 2

(21)

is the squared width of the position distribution. Integration in
Eq. (8) leads to the momentum PDF:

g(±)(p,t) = e
− (p∓pc )2

σ2
p

√
πσp

, (22)

with

σ 2
p = 2D(1 − e−2τ )

γ
+ �

2e−2τ

σ 2
(23)

giving the squared width of the momentum distribution.
The above results for the marginals, Eqs. (20) and (22),

clearly show that the diagonal components of the Wigner
matrix correspond to Gaussian distributions in phase space
(z,p) which center (±zc,±pc) and width depend both on time,
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and on the rest of the parameters of the problem, including the
decoherence constants γ and D.

Let us notice the following properties of these quantities:
(1) By differentiating Eqs. (16) and (17) one readily

obtains
dzc

dt
= pc

m
, (24)

dpc

dt
= ηλ − γpc, (25)

which can be easily identified as the classical equations of
motion for a particle subject to a constant force, plus a friction
term. These equations allow us to describe the motion of the
center of the two Gaussians using a semiclassical framework
(especially if we neglect the interaction with the environment,
as done in most textbooks).

(2) Let us consider the limit γ t � 1. Performing a Taylor
expansion gives

zc � ηλt2

2m
, σz � σ + �

2

2m2σ 3
t2, (26)

pc � ηλt, σp � �

σ
+ �

σ

(
2Dσ 2

γ �2
− 1

)
γ t. (27)

If we further neglect the last term in Eq. (27), the above
results can be easily interpreted as the action of a constant
force on the particle and agree with the ones expected for the
experiment in a decoherence-free environment [18].

(3) In the opposite limit (i.e., when γ t � 1) we can
approximate

zc � ηλ

γm
t, σz �

√
8kBT t

γm
, (28)

pc � ηλ

γ
, σp � σ∞

p ≡ 2D

γ
=

√
4mkBT , (29)

which leads to a limiting value of the momentum center
(and width as well). This is a well-known effect in classical
mechanics that appears under the action of a friction force and
will play an important role in our analysis when large values of
γ are assumed. We also obtain σz ∝ √

t , i.e., the characteristic
behavior of a diffusive regime. Figure 1 features the evolution
in time of the center of the PDF (both in position and momen-
tum) using the values of the parameters as defined in the next
section. For low values of γ , the center zc of the position PDF
first grows quadratically and then it grows linearly. The growth
time scale is dictated by γ −1, so that for very large values of
this parameter zc remains close to zero. On the other hand, the
center pc of the momentum PDF grows linearly for moderate
values of γ but approaches a constant value as γ is increased,
the asymptotic limit being inversely proportional to the deco-
herence parameter. In Fig. 2 we have plotted the width of the
position and momentum distributions as a function of time. The
position width σz grows quadratically for small values of t (as
compared to γ −1), whereas the regime σz ∝ √

t corresponds
to late times. The transition can only be seen for γ = 1 on this
figure, given the γ −1 scaling. As for the plots representing σp,
one can check that the ratio 2Dσ 2

γ �2 is of the order ∼1013. (Notice
that this ratio is independent of γ .) Equation (27) then predicts
a fast increase of σp even at early times, as it is clearly observed
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FIG. 1. Plots of the center of the position (up) and momentum
(down) PDFs, as given by Eqs. (16) and (17), respectively, for three
values of the parameter γ .

from these plots. This magnitude will then reach the asymptotic
value σ∞

p also on the same γ −1 time scale, which can only be
appreciated, in that figure, for the γ = 1010 s−1 case.

III. APPLICATION TO THE STERN-GERLACH
EXPERIMENT

The study of a realistic SG experiment setup with decoher-
ence effects will be the core of this section. First, parameters for
the setup will be introduced. Then the evolution of the system
will be pictured in phase space, using the results from the
previous section. To conclude, the characteristic decoherence
time of the system will be studied through the damping of the
off-diagonal elements of the WF as the system evolves.

A. Experiment parameters

We assume an incident beam of silver atoms (m = 1.8 ×
10−25 kg, gs � 2) starting in the |Sx = �/2〉 = 1√

2
|+〉 +

1√
2
|−〉 spin state, with an average speed v = 500 m/s and

a beam width σ = 10−5 m. The SG apparatus parameters are
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FIG. 2. Plots of the width of the position (up) and momentum
(down) PDFs, for three values of the parameter γ .

based on the realistic ones used in a previous work [21]. In this
setup, the applied magnetic field is B0 = 5 T and the gradient
η = 1000 T/m. The longitude of the tube is l = 0.2 m, which
implies a flight time of around 0.4 ms for the above silver
atom speed. This is, therefore, the characteristic time scale
for the system dynamics. The operational temperature of the
tube is around T � 300 K, i.e., the laboratory temperature.
The typical value for the pressure of the beam pipe is around
P � 10−4 Pa [22].

The Langevin equation relates the damping rate γ of the
Caldeira-Leggett master equation with the sum of viscous
forces proportional to the silver’s atom velocity vz [23],

Fdrag = −ζvz, (30)

where ζ is the so-called friction coefficient, from which γ can
be obtained as

γ = ζ

2m
. (31)

In order to calculate the drag force we need to calculate first
the Knudsen number [24],

Kn(P,T ) = 2λa(P,T )

Ds

, (32)

P (Pa)
10-4 10-2 100 102 104 106

γ
 (

s-1
)

100

102

104

106

108

1010

FIG. 3. Plot of the damping rate (γ ), as defined by Eqs. (31)
and (B1), as a function of the pressure, for a temperature T = 300 K.

where λa(P,T ) = kBT√
2πD2

aP
is the mean free path in the air, and

Ds = 288 pm is the diameter of the silver atom. Assuming
that the composition of the residual gas molecules in the beam
pipe is similar to that of air at atmospheric pressure, we can
estimate the diameter of the air molecule Da � 0.4 nm and its
mass ma � 5.610−26 kg.

We are interested in the pressure range from 10−4 to 105 Pa,
for which we obtain that the Knudsen number ranges from 1011

to 103, respectively. For this high-Knudsen-number regime, we
found that the best-suited framework to obtain the drag force
on a silver atom is the one described in [25]. In their work, these
authors develop a theory to calculate the motion of nonrigid
spherical particles in low-density gases with Knudsen number
Kn � 1.

The details of these calculations are discussed in Ap-
pendix B. From these results one can obtain, using Eq. (31),
the damping rate as a function of the pressure in the beam pipe.
The resulting γ values are plotted in Fig. 3. One observes that
the damping rate can be well described as a linear function
of the pressure for a fixed temperature (300 K), ranging from
3.7 s−1 at 10−4 Pa (the pressure at a typical SG experiment
beam pipe) to 3.7 × 109 s−1 at 106 Pa (atmospheric pressure).

B. Phase-space representation

In this section we illustrate the behavior of the SG
experiment in a decoherent environment by showing some
plots of the WF using the parameters defined in Sec. III A for
different values of the damping rate γ .

Three representative values, for three different regimes,
will be considered: γ = 1 s−1 for the high-vacuum regime
(∼10−4 Pa), γ = 103 s−1 for the low-vacuum regime (∼1 Pa),
and γ = 1010 s−1 for the atmospheric regime (∼106 Pa).

1. Diagonal elements

In order to represent the phase-space distribution of the par-
ticle, the trace of the matrix WF is plotted for γ = 1, 103, 1010

s−1 in Figs. 4, 5, and 6, respectively. The trace allows us to show
the total quasiprobability distribution, thus putting on the same
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FIG. 4. Contour plots of the trace of the matrix WF with γ = 1 s−1. The left panel corresponds to the initial (t = 0) state, while the middle
panel shows the situation at t = 100 μs, and the right panel is for t = 200 μs.

plot both spin components. Figure 4 (γ = 1 s−1) shows how the
incoming state splits into two separating components within
the experiment time scale (<1 ms). At t = 100 μs both terms
start to split, and at t = 200 μs they are visibly separated. We
observe the distortion of the original shape of the WF, caused
by the different evolution in z and p, that appears even when
the interaction with the environment is not included (see [14]).
Note also that friction with the environment quickly broadens
the spatial width, from the initial value σ = 10−5 m to the
millimeter scale in just t = 200 μs. The same behavior can be
observed for the momentum width.

As can be seen in Fig. 5 (γ = 103 s−1), a higher value of
the friction force quickly limits the momentum of the peak
centers and causes the growth of the distribution widths. The
influence of the SG apparatus is still visible in the shape of the
beam, but due to the speed limit and the continuous growth of
the width, the two components of the beam do not separate.
An even larger value of the friction force (Fig. 6) causes the
distribution peak centers to remain at the origin, and the width
of the momentum distribution quickly grows, thus completely
masking all the effects of the apparatus.

2. Off-diagonal elements

To study the off-diagonal WF, two three-dimensional (3D)
plots of the real part of Wod (z,p,t), corresponding to γ =
1, 1010 s−1, are drawn in order to see how the value of
the damping constant affects the decoherence rate. At t = 0
(Fig. 7) this amounts to representing the initial Gaussian
distribution Eq. (14).

As time goes on, Figs. 8 and 9 show how the real part
of Wod (z,p,t) evolves from a Gaussian distribution to an
oscillatory pattern. We also observe that these oscillations
are damped due to the interaction with the environment. By
comparing both figures, we immediately see that a larger
value of γ increases the oscillation frequency and reduces
the amplitude of the oscillations, thus leading to a faster
decoherence.

C. Decoherence time

In order to quantify the loss of coherence in the system we
choose, as a figure of merit, the norm �(t) of Wod (z,p,t) at a
given t , defined as

�(t) ≡
∫ ∞

−∞

∫ ∞

−∞
|Wod (z,p,t)| dz dp. (33)

This quantity provides the total volume, in phase space,
occupied by the coherent term of the WF. Taking the module,
instead of the function itself, avoids cancellations due to the
oscillatory nature of this term. In Fig. 10 we have plotted �(t)
for different values of γ . As expected, decoherence effects
manifest in a decrease of �(t) with time. In fact, the approach
to zero appears at earlier times as one considers larger values
of γ , clearly indicating a faster decoherence process.

In view of this result, we can introduce a decoherence time
td as the time it takes for �(t) to reduce its initial value by
a factor e. From the above data, we can obtain td for a given
value of γ . These data are collected in Fig. 11.

FIG. 5. Same as Fig. 4, for a value γ = 103 s−1.
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FIG. 6. Same as Fig. 4, using γ = 1010 s−1.

Performing a numerical fit to the curve td (γ ), we find that
the decoherence time can be approximated by the formula
td = a γ b, with a = (0.497 ± 0.002) μs, and b = −0.198 ±
0.001, pointing to a behavior as td ∝ γ −1/5. This result is at
variance with the one discussed in [8], where a decoherence

time given by ( 3�
2m2γ 2

4Dη2λ2 )
1/3

was claimed, which translates

into a dependence of the form td ∝ γ 1/3, i.e., the larger the
decoherence parameter γ , the later the system experiences
decoherence. In our opinion, such a result is unrealistic, as one
expects the opposite behavior: decoherence should take place
faster as γ is increased, in accordance to our results.

This discrepancy arises from the criteria used to compute
td . On the one hand, in [8] the solution found for the
off-diagonal terms in the density matrix takes the form
ρod = e−(At+Bt2+Ct3). It is then assumed that the term e−Ct3

is the one that drives the coherence to zero. In this case, td is
defined from the condition that the value of ρod is reduced by
a factor e, which implies td ∼ C−1/3. On the other hand, in our
calculations we computed the value of the norm’s integral of
Wod (z,p,t) and we identified td as the time when the value of
the integral decreases by an e factor, i.e., �(td ) = e−1�(0).

In both cases td is defined as the time it takes the coherence
to drop by a factor e. However, while it is true that the term
e−Ct3

will dominate in the limit t → ∞, our results indicate
that, in a realistic setup, other terms drive the coherence to
zero before that term becomes relevant.

Returning to our results, as we obtain that the damping rate
in our theoretical setup is around 3.7 s−1, the decoherence time
according to our fit would be td = 0.38 μs. At that time, we
expect the centers of the Gaussian packets to be separated by

FIG. 7. 3D plot of the real part of Wod (z,p,t) at t = 0.

zc = 3.7 nm, with a Gaussian width σz = 10 μm, implying
that in a typical Stern-Gerlach experiment, coherence is lost
long before the separation of the Gaussian packages becomes
measurable. This fact has important consequences concerning
the interpretation of the experiment, at least for the setup
adopted in our discussion. In fact, after a short time (given
by the decoherence time), the WF will be approximated by

W (z,p,t) �
(

|a|2 W
(+)
d (z,p,t) 0

0 |b|2 W
(−)
d (z,p,t)

)
, (34)

which can be interpreted as describing an incoherent mixture
of up-moving atoms with spin-up and down-moving atoms
with spin down. This in turn implies that, although the
spin-dependent interaction described by Eq. (2) tends to
create an entangled state between spatial and spin degrees

FIG. 8. 3D plot of the real part of Wod (z,p,t) at t = 0.005 μs
(up) and t = 0.1 μs (down), for γ = 1 s−1.
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FIG. 9. Same as Fig. 8, for γ = 1010 s−1.

of freedom [2–6], decoherence will quickly degrade the built
entanglement.

Our calculations are based on a model for which the
system-environment interaction is spin independent. One
might wonder if our conclusions can be substantially altered
by the inclusion of a spin dependence on the damping rate γ

and the diffusion rate D. While this would require to repeat
all calculations starting from a different model, the following
argument suggests that it may be very difficult to modify the

t (μs)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Δ
(t

)

0
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0.1

0.15
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0.25
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0.35

0.4

0.45

0.5
γ = 108 s-1

γ = 106 s-1

γ = 104 s-1

γ = 102 s-1

γ = 1 s-1

FIG. 10. Plot of �(t), as defined by Eq. (33), for different
values γ = 1,102,104,106,and 108 s−1 (curves from right to left) as
a function of time.
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Data
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FIG. 11. Red points show the decoherence time td for the same
values of γ used in Fig. 10. The bar indicates the imprecision that
originates from the data. The solid curve is our fit td = a γ b (see the
text for explanation).

present model such that the above results are dramatically
changed.

Consider an alternative model where γ and D are still
related by D = 2mγkBT , but γ shows an extra dependence on
the spin direction. To simplify, we assume that this dependence
takes the form of the spin operator Sx such that Eqs. (9)
and (10) adopt the same form but with γ replaced by a different
value γ ′ (and D by D′ = 2mγ ′kBT ) in (10). This implies that
all equations concerning the dynamics of the position and
momentum PDFs obtained in Sec. II B remain unchanged,
while the discussion about decoherence effects developed in
Sec. III C has to be recast in terms of γ ′ so that the decoherence
time is parametrized as td � 0.5 γ ′−1/5μs. Since γ , which
controls the dynamics of the diagonal components, is now
independent of γ ′, we may wonder whether it is possible that
the decoherence time becomes comparable to the time scale
of the experiment, while keeping a similar value γ ∼ 1 s−1, so
that the separation of both spin-up and spin-down components
is visible. The characteristic flight time on the pipe is of
the order ∼0.4 ms, from which one immediately obtains
the condition γ ′ � 10−15 s−1. Such value is, therefore, many
orders of magnitude lower than the ones found for γ in
a typical experiment, which makes it very unlikely that a
spin-dependent damping rate could substantially modify the
above results. However, such spin-dependent effects might
be relevant, within the model used along this work, for an
improved setup in which γ is considerably lower, such that td
becomes comparable to the flight time.

IV. CONCLUSIONS

In this paper, we have studied the SG experiment
with environmental-induced decoherence described by the
Caldeira-Leggett model. Our description is done on the phase
space, making use of WFs, with the additional spin degrees of
freedom. Our goal was to describe the kinematics of the atoms
traversing the magnetic field gradient and interacting with a
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thermal bath of particles, leading to Brownian motion and
decoherence. We solved the differential equations for the WF
corresponding to the model, starting from an initial product
state, with a Gaussian shape in space, and an arbitrary spin
direction. The diagonal terms on the Sz basis have a simple
interpretation in terms of the two separating states of the
apparatus. By calculating the marginals over momentum or
position for each of the diagonal terms of the WF, we obtain the
probability distribution for the conjugate variable. Each of the
obtained diagonal distributions conserve the initial Gaussian
shape, both in position and in space, in spite of the interaction
with the environment, and allow for a clear description in terms
of the center and width of the corresponding Gaussian, which
bear a close analogy with the classical Brownian motion of
a particle. In particular, at large times the particle reaches a
limit velocity, a feature which is particularly important for
the description of the SG experiment inside a gas tube. We
also showed that our results agree with the nondecoherence
expressions in the appropriate limit.

By adopting realistic parameters for the SG experiment,
along with recent calculations for the interaction with atoms
with a high-vacuum gas, we plotted the diagonal and off-
diagonal elements of the WF. We observe that for low values
of the decoherence parameter γ associated to high vacuum,
the initial state separates into two components, corresponding
to the up and down spin, as expected. The off-diagonal terms
provide us information about decoherence, as a consequence
of the interaction with the environment, that manifests in
the damping of these terms as time evolves. In order to
quantify the effect of decoherence, we evaluate the norm of
the off-diagonal element over the whole phase space. The
characteristic decoherence time scale td is defined as the instant
when the initial norm is reduced by a factor e. By obtaining
td for different values of γ , we find a relation that is well
described by a power law td ∝ γ −1/5. Our finding differs from
previous results, where a dependence td ∝ γ 1/3 was claimed
instead. We argue that such dependence is counterintuitive, as
it would imply that a larger value of γ makes decoherence
effects to appear later. In contrast, we obtain that a stronger
value of γ implies a shorter decoherence time, which seems
more reasonable.

The initial state for the silver atoms was assumed to
be a product in spin and position. Under the effect of the
Hamiltonian, one expects that entanglement between spatial
and spin degrees of freedom will appear [2–6] at the beginning.
However, given the values of parameters corresponding to the
setup discussed in Sec. III A, we arrive at a characteristic
decoherence time td ∼ 0.4 μs, which implies that, due to
interaction with the environment, coherence is lost long before
the separation of the Gaussian packets becomes measurable.
As a consequence, the silver atom beam in the experiment is
better described as an incoherent mixture of up-moving atoms
with spin-up and down-moving atoms with spin down, so that
entanglement, which is thought to be the fundamental resource
in quantum information tasks, will inevitably be lost.

This conclusion, of course, does not prevent us from
designing different setups where the decoherence time would
be of the order (or perhaps larger) of the characteristic dy-
namical scale. Under such circumstances, one should observe
the initial buildup of entanglement, followed by a transition
towards an incoherent mixture. The observation of this kind
of evolution is, thus, of potential interest for understanding
the quantum-to-classical transition and will be the subject of a
future study.
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APPENDIX A: AUXILIARY FORMULAS FOR THE
DIAGONAL AND OFF-DIAGONAL WIGNER FUNCTION

In this Appendix, we give explicit expressions for the
auxiliary functions that define both the diagonal and off-
diagonal terms of the matrix WF. The functions F (z,p,τ ) and
G(τ ) that enter in the diagonal part, Eq. (15), are defined as

F (z,p,τ ) = 2γDσ 2({γ 2m2(1 − e−2τ )z′2 − 2γmp′(1 − e−τ )2z′ + p′2[−(2 − e−τ )2 + 2τ + 1]}
+ γ 4m2p′2σ 4 + γ 2

�
2[p′(1 − e−τ ) − γme−τ z′]2), (A1)

G(τ ) = 8D2σ 2(1 − e−τ )[(e−τ + 1)τ − 2(1 − e−τ )] + 2γD{γ 2m2σ 4(1 − e−2τ )

+ [e−2τ (2τ + 3) − 4e−τ + 1]�2} + γ 4m2σ 2e−2τ
�

2, (A2)

where z′ = z ∓ zc, p′ = p ∓ pc. The magnitudes zc and pc are given in Eqs. (16) and (17), respectively.
For the off-diagonal term defined in Eq. (18) we introduced the following definitions:

C1(τ ) = η2λ2{σ 2[−2D(2τ 3 − 6τ 2 + 6τ + 3) + 6De−2τ + 24De−τ τ − 3γ 3m2σ 2τ 2] − 3γ (1 − τ − e−τ )2
�

2}
3γ 5m2σ 2�2

, (A3)

C2(τ ) = ηλ[γ �
2(e−τ − e−τ τ − e−2τ ) − 2Dσ 2(1 − 2e−τ τ − e−2τ )]

γ 3�2mσ 2
, (A4)

C3(τ ) = σ 2[2De−2τ − 8De−τ − D(4τ − 6) − γ 3m2σ 2] − γ �
2(1 − e−τ )2

4γ 3m2σ 2
, (A5)
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C4(τ ) = ηλ[γ (1 − e−τ )(1 − τ − e−τ )�2 − σ 2(2D(τ + e−τ − 1)2 + γ 3m2σ 2τ )]

γ 4m2σ 2�
, (A6)

C5(τ ) = (e−τ − 1)[γ e−τ
�

2 + 2Dσ 2(1 − e−τ )]

2γ 2mσ 2�
, (A7)

C6(τ ) = γ e−2τ
�

2 + 2Dσ 2(1 − e−2τ )

4γ σ 2�2
. (A8)

APPENDIX B: CALCULATION OF THE DAMPING RATE
IN ULTRALOW PRESSURE

In this Appendix, we describe a state-of-the-art calculation
of γ for the conditions of our theoretical setup (P � 10−4 −
105 Pa, T = 300 K), for pressures ranging from the beam pipe
to atmospheric pressure. For this calculation, we start from the
generalized formula of the drag force in the free-molecular
regime discussed in [25] (see also [26]).

In their work, the authors find a generalization of the drag
force for the free-molecular regime, using the kinetic theory,
and obtain a formulation consistent with the Chapman-Enskog
theory of molecular diffusion. Also, instead of assuming that
the particles are rigid spheres moving through the gas, they
assume a van der Waals interaction between the particles and
the gas molecules. This van der Waals force includes forces
among permanent dipoles, instantaneously induced dipoles,
and permanent and induced dipoles. These forces are modeled
through the Lennard-Jones potential.

These two features (agreement with the Chapman-Enskog
theory, and use of the van der Waals interactions) make this
theory best suited to calculate the drag force for a particle as
small as an atom in low-density gases with Knudsen number
Kn � 1. The resulting formula found for ζ can be written as

ζ = 2

3

√
2πmrkBT ND2

s �avg, (B1)

where mr = m ma

m+ma
is the reduced mass, N = P

kBT
is the

numerical density of residual air particles, and �avg = ϕ�d +
(1 − ϕ)�s is the effective reduced collision integral, which
represents an average of the reduced collision integrals cor-
responding to diffusive and specular scattering, respectively,
weighted by the momentum accommodation coefficient ϕ.

These reduced collision integrals account for the influence
of the interaction potential among the silver atoms and air
molecules. They can be finally parametrized as [27]

�d = 1 + π

8
+

(
1.072 + 2.078

T ∗1/4
+ 1.261

T ∗1/2

)
σ ′

+
(

3.285 − 8.872

T ∗1/4
+ 5.225

T ∗1/2

)
σ ′2, (B2)

�s = 1 +
(

0.316 + 1.47

T ∗1/4
+ 0.476

T ∗1/2

)
σ ′

+
(

1.53 − 5.013

T ∗1/4
+ 4.025

T ∗1/2

)
σ ′2, (B3)

�avg =
�d + Kn(0.9�d + 0.1�s) − 0.9Kn(�d−�s )

1+
(

Ds
5

)15

1 + Kn
, (B4)

where T ∗ = kBT
ε′ is the reduced temperature, and σ ′ = 2σ

Ds
is

the collision diameter. The effective well depth of the Lennard-
Jones potential is defined as ε′ = 2πεσ 3

3V
, where ε = √

εaεs ,
σ = σa+σs

2 , and V = m
ρs

is the volume of a silver atom. The
values of the Lennard-Jones potential parameters for air and
silver are εa/kB = 98.4 K, εs/kB = 3995.4 K, σa = 365.2
pm, and σs = 254 pm. We use the value ρs = 10 500 kg/m3

for the density of the silver atom.
From the above data one can calculate the reduced collision

integrals through Eqs. (B2) and (B3), obtaining �d = 32.2
and �s = 29.6 for a temperature of 300 K. The average of
the collision integrals depends on the pressure through the
Knudsen number. Using these results in Eq. (B1), we obtain
the damping rate as a function of the pressure in the beam pipe.
The results are plotted in Fig. 3.
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