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We study a one-dimensional (1D) two-component atomic Fermi gas with an infinite intercomponent contact
repulsion. It is found that adding an attractive nearly resonant odd-wave interaction breaking the rotational
symmetry one can make the ground state ferromagnetic. A promising system for the observation of this itinerant
ferromagnetic state is a 1D gas of 40K atoms, where three dimensional s-wave and p-wave Feshbach resonances
are very close to each other and the 1D confinement significantly reduces the inelastic decay.
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Itinerant ferromagnetism of degenerate spin-1/2 fermions
is an intriguing problem promoting our understanding of
strongly correlated systems [1]. Ultracold atomic gases attract
a great interest for studying itinerant ferromagnetism because
they are highly controllable and are tunable with respect
to interactions. The origin of such ferromagnetic states is
deeply rooted in quantum mechanics. In contrast to ultracold
bosons, degenerate fermions try to avoid the ferromagnetic
state because it requires them to have a significantly higher
kinetic energy than in nonferromagnetic states. Ultracold gases
of atomic fermions that are in two internal states can be mapped
onto spin-1/2 fermions treating the internal energy levels as
pseudospin states. The ferromagnetic phase is the one where
all atoms are in the same superposition of the two internal
states and one has a system of identical fermions. The kinetic
energy is then higher than, for example, in the paramagnetic
phase, which represents a statistical mixture of the two spin
components.

Itinerant ferromagnetism for fermions has been studied
since the 1930s, when the Stoner criterion for ferromagnetism
in a free electron gas was introduced [2,3]. According to
this criterion, in three dimensions (3D) the ground state
can be ferromagnetic if there is a strong intercomponent
repulsion in the paramagnetic state, which compensates for
the large difference in the kinetic energies of these states.
Developments in condensed matter physics [4,5] found that
itinerant ferromagnetism is responsible for some of the
properties of transition metals, such as cobalt, iron, and nickel.
Theoretical studies were concentrated on the Hubbard model
with strong contact interactions (spin independent with next
to nearest neighbor hopping [6,7] or generic multiorbital
on-site interactions [8]) and on the closely related quantum
rotor model [9]. Except for the original Stoner model, such
interactions are hard to be realized with ultracold atomic gases.
The Stoner mechanism in Fermi gases was discussed in a
number of papers [10], and Monte Carlo calculations [11,12]
found an instability on approach to the strongly interacting
regime. The efforts to stabilize the ferromagnetic state ex-
perimentally did not succeed [13,14]. In three dimensions a
large intercomponent repulsion corresponds to a very large

and positive s-wave scattering length and there is a weakly
bound dimer of two fermions belonging to different internal
states. In this situation atom loss by dimer formation is very
fast at typical densities [13–15]. At the same time, the studies
including the momentum dependence of the s-wave interaction
(finite effective range) found that this process can be reduced
near a narrow Feshbach resonance [16].

In one and two dimensions the difference in the kinetic
energies of the ferro- and nonferromagnetic states is even larger
than in 3D. Therefore, it looks like that in low dimensions
making the ground state ferromagnetic is harder than in
3D [17]. However, in this paper we reveal that this can be
done in a 1D Fermi gas. We use interactions that go far beyond
the Stoner model and show that they can be realized with
cold atoms, where one has a remarkable system of 40K. It
is characterized by a proximity of the s-wave (even wave in
1D) Feshbach resonance for the intercomponent interaction
and p-wave (odd wave in 1D) resonance for one of the
intracomponent interactions. Thus one can have simultane-
ously a strong or even infinite intercomponent repulsion and a
significant momentum-dependent odd-wave interaction in one
of the components. It is the latter one that drastically changes
the situation and makes the ground state ferromagnetic.

The case of 40K is really a “present from nature.” The
s-wave resonance for the interaction between 9/2,−7/2 and
9/2,−9/2 states occurs at a magnetic field of 202.1 G, and is
very close to the p-wave resonance for the interaction between
two 9/2,−7/2 atoms at 198.8 G [18,19]. In the fields between
198.8 and 202.1 G the p-wave interaction is attractive, and the
s-wave interaction is repulsive and can be made very strong by
using a confinement-induced resonance in 1D. Moreover, the
reduction of dimensionality to 1D decreases the inelastic decay
even not far from the resonances, which is very promising for
achieving itinerant ferromagnetism in a 1D gas of 40K.

The odd-wave scattering of identical fermions occurs in the
triplet spin channel, where the spin part of the wave function
is symmetric and the coordinate part antisymmetric. If the
odd-wave interaction is the same in all triplet states, and the
even-wave repulsion (occurring in the singlet spin channel)
is infinitely strong, then the problem is exactly solvable and
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can be mapped onto two-component bosons with SU(2) spin
rotation symmetry. For the latter case the ground state is
ferromagnetic [20–22]. However, the spin rotation symmetry
breaks if the odd-wave interaction is nearly resonant, since it
then depends on the spin projections of colliding particles. In
this regime the exact solution is no longer available and we
have to employ many-body perturbation theory.

We consider a 1D Fermi gas in free space and assume that
the intercomponent contact interaction is infinitely repulsive. It
takes place between two particles with zero total (pseudo)spin
and is present only in the nonferromagnetic phases. Therefore,
omitting the odd-wave interaction, the ferromagnetic phase
represents an ideal single-component Fermi gas, with the
Fermi momentum kF = πn. The total energy Ef is equal to
the kinetic energy Ekin = EF N/3, where n is the 1D density,
N is the total number of particles, m is the particle mass, and
EF = �

2k2
F /2m is the Fermi energy. The nonferromagnetic

phases in this case are described by the exactly solvable
Yang-Gaudin model [23,24]. A finite contact repulsion leads to
the antiferromagnetic ground state, which is a singlet-pair cor-
related phase. For an infinite repulsion all spin configurations
are degenerate with the energy equal to Ekin [23–25].

We are interested in the regime where the odd-wave
interaction is nearly resonant. Since for the most important
case of 40K atoms the resonance in the odd-wave channel
is present only between two atoms in the 9/2,−7/2 states
we confine ourselves to the odd-wave interaction between
these states. Below the state 9/2,−7/2 is denoted as spin-↑,
and the state 9/2,−9/2 as spin-↓. Moreover, we assume that
although the odd-wave interaction is nearly resonant, it is not
too strong (a more precise condition will be given later), and
still can be treated as perturbation. The fact that one can use
a perturbative approach in a 1D odd-wave interacting system
(in contrast to the even-wave interaction) finds its origin in
the absence of a weakly bound state in a sufficiently shallow
attractive potential. For the ferromagnetic many-body system
our perturbative results perfectly agree with the existing Bethe
ansatz solution [26].

Thus, to zero order the kinetic energy Ekin is the same in
any spin configuration (as a consequence of the infinite even
repulsion) and gives the main contribution to the total energy
E of the system, while the odd-wave interaction provides a
small correction, which we derive up to the second order
in perturbation theory. For the nonferromagnetic phases we
employ the single-component momentum distribution func-
tions N↑(k) and N↓(k) that we obtain by solving numerically
the Bethe ansatz equations for the Yang-Gaudin model at an
infinite intercomponent repulsion [27]. Considering equally
populated ↑ and ↓ internal states, N↑(k) = N↓(k) = N(k), we
have

∫ +∞
−∞ N (k)dk/2π = n/2 and

∫ +∞

−∞

Ldk

2π

�
2k2

2m
N (k) = Ekin/2 = π2

�
2n2

12m
N, (1)

with L being the size of the system. For the ferromagnetic
phase we use the Fermi step momentum distribution N(k) =
θ (kF − |k|)/2.

In order to develop many-body perturbation theory we
follow the method used in Refs. [28,29]. We define the off-shell

scattering amplitude as

f (k′,k) =
∫ ∞

−∞
dx e−ik′x V (x) ψk(x), (2)

where V (x) is the interaction potential, ψk(x) is the true wave
function of the relative motion with momentum k = (k1 −
k2)/2, with k1, k2 and k′

1, k′
2 being the particle momenta in the

incoming and outgoing channels. For |k′| = |k′
1 − k′

2|/2 = |k|
we have the on-shell amplitude. The total energy is E = Ekin +
Ẽ(1) + Ẽ(2), where the first- and second-order corrections are
given by [27]

Ẽ(1) = 1

L

∑
k1,k2

f̃odd(k)N (k1)N (k2), (3)

Ẽ(2) = − 1

L2

∑
k1,k2,k

′
1

4m

�2

f̃odd(k′,k)f̃odd(k,k′)
k2

1 + k2
2 − k

′2
1 − k

′2
2

×N (k1) N (k2) N (k′
1), (4)

with k1 + k2 = k′
1 + k′

2. The amplitude f̃odd is different from
the odd-wave part of (2) by the absence of the imaginary term
in the denominator [27]. The terms Ẽ(1) and Ẽ(2) are the two-
body (mean-field) and the many-body, or beyond mean-field,
contributions to the interaction energy. As the 1D regime is
obtained by tightly confining the motion of particles in two
directions to zero point oscillations, the odd-wave off-shell
scattering amplitude in the vicinity of the resonance is given
by [27,30]

f̃odd(k′,k) = 2�
2

m

k′k lp

1 + ξplp k2
, (5)

where the parameters lp and ξp of the 1D odd-wave scattering
can be expressed through the parameters of the 3D p-wave
scattering as lp = 3a⊥/(a3

⊥/w1 + 0.88); ξp = α1 a2
⊥/3, where

w1 and α1 are the 3D scattering volume and effective range,
and a⊥ = √

�/(mω⊥) is the extension of the wave function in
the directions tightly (harmonically) confined with frequency
ω⊥. For 40K atoms near the p-wave Feshbach resonance the
magnetic field dependence of w1 and α1 has been measured
in the JILA experiments [31]. Near the resonance in 3D
the scattering volume w1 changes from infinitely negative
to infinitely positive, whereas the effective range α1 remains
practically constant and equal to 4 × 106 cm−1. On the positive
side of the resonance (w1 > 0) in 3D one has the formation of
rapidly decaying p-wave molecules [19,32–35], and a similar
phenomenon is expected in 1D. The issue of inelastic losses is
discussed in more detail below, but in what follows we consider
only the case of attractive odd-wave interaction, i.e., lp < 0.
The energy corrections (3) and (4) can be rewritten as [27]

Ẽ(1) = −Ekin

{
1

2π
η + 3

16π
κ η2 I(Q)

}
, (6)

Ẽ(2) = 3

4π2
η2J (Q)Ekin, (7)

where η = kF |lp|, κ = kF ξp, Q = ηκ , and we took into ac-
count that in any spin configuration the momentum distribution
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FIG. 1. Momentum distributions in the ferro-, antiferro-, and
paramagnetic phases. The latter two are for the Yang-Gaudin model
at an infinite repulsion.

is a universal function of k/kF . The integrals I(Q) and J (Q)
are given by

I(Q) = P
∫ +∞

−∞
dx1dx2N (x1)N (x2)

(x1 − x2)4

1 − Q

4 (x1 − x2)2
, (8)

J (Q) = P
∫ +∞

−∞
dx1dx2dx3

N (x1)N (x2)N (x3)

x1 − x3

× (x1 − x2)2[
1 − Q

4 (x1 − x2)2
] x1 + x2 − 2x3[

1 − Q

4 (x1 + x2 − 2x3)2
] ,

(9)

with xi = ki/kF being a dimensionless momentum, and
the symbol P denoting the principal value of the inte-
gral. The choice of a particular spin configuration is encoded
in the momentum distribution N(k/kF ), and from Eqs. (6)–(9)
it is evident that the odd-wave interaction splits the energies
of different phases only if κ �= 0. The unperturbed momentum
distributions for the ferro-, antiferro-, and paramagnetic states
are displayed in Fig. 1. At k 	 kF the momentum distributions
in the nonferromagnetic states behave as N(k) → C/k4,
where C is Tan’s contact [36,37]. In the antiferromagnetic
phase we have C/k4

F = 2 ln(2)/3π2 ≈ 0.047 [37], and in the
paramagnetic phase we obtain C/k4

F ≈ 0.016.
For Q → 0 we haveJ = 1/2 andI = 2(1 + 3D)/3, where

D = ∫ ∞
−∞ dx[N (x)x4 − C/k4

F ]. For a finite Q we calculate the
integrals (8) and (9) numerically.

Realization of the 1D regime requires the Fermi energy
to be much smaller than the tight confinement frequency.
For realistic confinement frequencies ω⊥ in the range from
50 to 150 kHz, the condition EF � �ω⊥ requires the Fermi
momentum kF � 105 cm−1 (which corresponds to densities
n � 3×104 cm−1 and EF � 1 μK). The confinement length
a⊥ for such frequencies is from 400 to 700 Å. Then, taking the
potassium value α1  4×106 cm−1 we see that the parameter
κ = πnα1a

2
⊥/3 ranges from 1 to 10. In the perturbative regime

we require η/π = n|lp| � 1, i.e., one should not be too close
to the resonance, and in order to stay within the limits of
perturbation theory we put η < 0.8.

We then calculate the total energy of the gas up to the
second order in perturbation theory for the ferro-, para-, and
antiferromagnetic phases. The results are presented in Fig. 2
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FIG. 2. The total energy (in units of Ekin = EF N/3) versus η in
the ferro-, antiferro- and paramagnetic state for κ = 3, κ = 4, and
κ = 5.

and can be explained as follows. The main contribution to
the interaction energy comes from the first order correction
given by Eq. (6). There is a characteristic momentum k̃ =
1/

√|lp|ξp = kF /
√

ηκ above which the odd-wave interaction
turns from attractive to repulsive. For sufficiently small η

(large k̃) only momenta k � k̃ contribute to the interaction
energy, the term ξplpk2 in the denominator of the interaction
amplitude (5) is not important and all states have the same
energy (left part in Fig. 2). For η such that k̃ is close to kF , the
main contribution to the interaction energy comes from k ∼ k̃.
In the ferromagnetic phase the interaction remains attractive
if k̃ > kF and becomes repulsive only in a narrow momentum
interval k̃ < k < kF if k̃ < kF . On the contrary, in the non-
ferromagnetic phases the distribution function N (k) extends
essentially to momenta k greater than k̃ ∼ kF . This makes the
repulsive contribution to the interaction energy larger than in
the ferromagnetic phase, and the latter becomes the ground
state (central part of Fig. 2). For k̃ significantly smaller than
kF , achieved for example by increasing η, the contribution of
repulsive interactions dominates. It is the largest at momenta in
the interval kF /2 � |k| � kF where the distribution function
N (k) in the ferromagnetic state is larger than in nonferromag-
netic phases. This makes the ferromagnetic energy the highest
(right part of Fig. 2).

For a gas of 40K atoms with a density n ≈ 3×104 cm−1

(EF ≈ 540 nK) under the transverse confinement with fre-
quency ω⊥ ≈ 100 kHz we have κ ≈ 3.1, and at fields slightly
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lower than 199 G we obtain η ≈ 0.36. Then the ferromagnetic
state has the lowest energy, and the energies of nonferromag-
netic states are close to each other. The energy difference
(Ep − Ef )/N is about 0.03EF or 16 nK. For ω⊥ ≈ 120 kHz
we obtain κ ≈ 2.6, and with η ≈ 0.43 at B ≈ 199 G the energy
difference is (Ep − Ef )/N ≈ 20 nK. Thus, the ferromagnetic
state can be observed at temperatures below 20 nK.

The regimes described above ensure that the even repulsion
is infinitely strong, even though the corresponding magnetic
fields are not too close to the s-wave resonance. However, in
the 1D geometry obtained by tightly confining particles in two
directions, the coupling constant for the even contact interac-
tion is g1D = (2�

2a/ma⊥)/(a⊥ − 1.03a) [38]. For confining
frequencies of 100 and 150 kHz the length a⊥ is 500 and 400 Å,
respectively. In a field close to 199 G the scattering length is
a ≈ 400 Å. Thus, due to the confinement-induced resonance,
one can achieve an infinite contact repulsion g1D → ∞.

In three dimensions p-wave Feshbach resonances are
suffering rapid inelastic losses [19,32–35]. There are two types
of inelastic collisional processes. The first one is three-body
recombination, which is especially pronounced if there are
weakly bound dimer states. However, weakly bound dimer
p-wave states are expected only on the positive side of the
resonance (lp > 0), and on the negative side (lp < 0) the
three-body recombination should not be very dangerous, at
least slightly away from the resonance. The absence of weakly
bound p-wave states also prohibits the formation of dimers in
two-body collisions, where the released binding energy goes
to the creation of holes in the Fermi sea [15,39]. Another
decay process is two-body relaxation. The state 9/2,−7/2 can
undergo collisional relaxation to the 9/2,−9/2 state which has
a lower energy.

In fields slightly higher than 199 G the measured rate con-
stant of three-body recombination in 3D is α3D

rec ∼ 10−25 cm6/s
and the rate constant of two-body relaxation is α3D

rel ∼ 10−14

cm3/s [19,40]. The measurements were done at temperatures
from 1 to 3 μK, so that one expects about the same rate
constants at EF ∼ 1 μK and much lower temperatures. In

order to transform these results to 1D one should recall that
the inelastic processes occur at atomic interparticle distances.
We thus may integrate out the motion in the tightly confined
directions [41]. This leads to α1D

rel ≈ α3D
rel /2πa2

⊥ [42]. With the
above specified α3D

rel and densities n ∼ 104 or 3×104 cm−1 we
obtain a relaxation time of about a second.

For the three-body recombination of identical fermions
in 1D one has an extra suppression by a factor of EF /E∗
compared to 3D [43,44]. The quantity E∗ is a typical energy
in the molecular problem, and one has E∗ ∼ �

2/mR2
e , where

Re ∼ 50 Å is the radius of interaction between particles. So,
E∗ ∼ 1 mK and there is an extra suppression by 3 orders
of magnitude for EF ∼ 1 μK. Integrating out the particle
motion in the tightly confined direction we obtain α1D

rec ∼
α3D

rec(EF /E∗)/3π2a4
⊥ [42]. Again, for the above mentioned

parameters we obtain a decay time of about a second at 1D
densities in between 104 and 3×104 cm−1. The ferromagnetic
state can be viewed as a composition of identical fermions, and
this estimate remains valid in this phase. Thus, in 1D inelastic
decay processes are not as crucial as in 3D. In this respect
the situation is somewhat similar to the one with strongly
interacting bosons [45,46].

In conclusion, we showed that there is a realistic possibility
to find itinerant ferromagnetic states in 1D two-component
Fermi gases, and a promising system is the gas of 40K
atoms. This will require fine tuning of the interaction between
particles by varying the magnetic field and the confinement
strength. The required temperatures are about 10 to 20 nK,
which is achievable with present facilities.
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107, 230404 (2011).

011601-5

http://dx.doi.org/10.1103/PhysRevLett.106.050402
http://dx.doi.org/10.1103/PhysRevLett.106.050402
http://dx.doi.org/10.1103/PhysRevLett.106.050402
http://dx.doi.org/10.1103/PhysRevLett.106.050402
http://dx.doi.org/10.1103/PhysRevB.87.184424
http://dx.doi.org/10.1103/PhysRevB.87.184424
http://dx.doi.org/10.1103/PhysRevB.87.184424
http://dx.doi.org/10.1103/PhysRevB.87.184424
http://dx.doi.org/10.1016/j.aop.2014.09.009
http://dx.doi.org/10.1016/j.aop.2014.09.009
http://dx.doi.org/10.1016/j.aop.2014.09.009
http://dx.doi.org/10.1016/j.aop.2014.09.009
http://dx.doi.org/10.1103/PhysRevLett.111.045302
http://dx.doi.org/10.1103/PhysRevLett.111.045302
http://dx.doi.org/10.1103/PhysRevLett.111.045302
http://dx.doi.org/10.1103/PhysRevLett.111.045302
http://dx.doi.org/10.1103/PhysRevA.89.023611
http://dx.doi.org/10.1103/PhysRevA.89.023611
http://dx.doi.org/10.1103/PhysRevA.89.023611
http://dx.doi.org/10.1103/PhysRevA.89.023611
http://dx.doi.org/10.1103/PhysRevLett.88.173201
http://dx.doi.org/10.1103/PhysRevLett.88.173201
http://dx.doi.org/10.1103/PhysRevLett.88.173201
http://dx.doi.org/10.1103/PhysRevLett.88.173201
http://dx.doi.org/10.1103/PhysRevLett.90.053201
http://dx.doi.org/10.1103/PhysRevLett.90.053201
http://dx.doi.org/10.1103/PhysRevLett.90.053201
http://dx.doi.org/10.1103/PhysRevLett.90.053201
http://dx.doi.org/10.1209/epl/i2003-00183-2
http://dx.doi.org/10.1209/epl/i2003-00183-2
http://dx.doi.org/10.1209/epl/i2003-00183-2
http://dx.doi.org/10.1209/epl/i2003-00183-2
http://dx.doi.org/10.1088/1742-5468/2006/03/P03016
http://dx.doi.org/10.1088/1742-5468/2006/03/P03016
http://dx.doi.org/10.1088/1742-5468/2006/03/P03016
http://dx.doi.org/10.1103/PhysRevA.76.043617
http://dx.doi.org/10.1103/PhysRevA.76.043617
http://dx.doi.org/10.1103/PhysRevA.76.043617
http://dx.doi.org/10.1103/PhysRevA.76.043617
http://dx.doi.org/10.1016/0375-9601(67)90193-4
http://dx.doi.org/10.1016/0375-9601(67)90193-4
http://dx.doi.org/10.1016/0375-9601(67)90193-4
http://dx.doi.org/10.1016/0375-9601(67)90193-4
http://dx.doi.org/10.1103/PhysRevLett.19.1312
http://dx.doi.org/10.1103/PhysRevLett.19.1312
http://dx.doi.org/10.1103/PhysRevLett.19.1312
http://dx.doi.org/10.1103/PhysRevLett.19.1312
http://dx.doi.org/10.1103/RevModPhys.85.1633
http://dx.doi.org/10.1103/RevModPhys.85.1633
http://dx.doi.org/10.1103/RevModPhys.85.1633
http://dx.doi.org/10.1103/RevModPhys.85.1633
http://dx.doi.org/10.1103/PhysRevLett.104.040402
http://dx.doi.org/10.1103/PhysRevLett.104.040402
http://dx.doi.org/10.1103/PhysRevLett.104.040402
http://dx.doi.org/10.1103/PhysRevLett.104.040402
http://link.aps.org/supplemental/10.1103/PhysRevA.94.011601
http://dx.doi.org/10.1103/PhysRevA.85.023614
http://dx.doi.org/10.1103/PhysRevA.85.023614
http://dx.doi.org/10.1103/PhysRevA.85.023614
http://dx.doi.org/10.1103/PhysRevA.85.023614
http://dx.doi.org/10.1103/PhysRevLett.100.170404
http://dx.doi.org/10.1103/PhysRevLett.100.170404
http://dx.doi.org/10.1103/PhysRevLett.100.170404
http://dx.doi.org/10.1103/PhysRevLett.100.170404
http://dx.doi.org/10.1103/PhysRevA.69.042712
http://dx.doi.org/10.1103/PhysRevA.69.042712
http://dx.doi.org/10.1103/PhysRevA.69.042712
http://dx.doi.org/10.1103/PhysRevA.69.042712
http://dx.doi.org/10.1103/PhysRevA.71.062710
http://dx.doi.org/10.1103/PhysRevA.71.062710
http://dx.doi.org/10.1103/PhysRevA.71.062710
http://dx.doi.org/10.1103/PhysRevA.71.062710
http://dx.doi.org/10.1103/PhysRevLett.98.200403
http://dx.doi.org/10.1103/PhysRevLett.98.200403
http://dx.doi.org/10.1103/PhysRevLett.98.200403
http://dx.doi.org/10.1103/PhysRevLett.98.200403
http://dx.doi.org/10.1103/PhysRevLett.101.100401
http://dx.doi.org/10.1103/PhysRevLett.101.100401
http://dx.doi.org/10.1103/PhysRevLett.101.100401
http://dx.doi.org/10.1103/PhysRevLett.101.100401
http://dx.doi.org/10.1103/PhysRevA.77.053616
http://dx.doi.org/10.1103/PhysRevA.77.053616
http://dx.doi.org/10.1103/PhysRevA.77.053616
http://dx.doi.org/10.1103/PhysRevA.77.053616
http://dx.doi.org/10.1016/j.aop.2008.03.004
http://dx.doi.org/10.1016/j.aop.2008.03.004
http://dx.doi.org/10.1016/j.aop.2008.03.004
http://dx.doi.org/10.1016/j.aop.2008.03.004
http://dx.doi.org/10.1016/j.aop.2011.05.010
http://dx.doi.org/10.1016/j.aop.2011.05.010
http://dx.doi.org/10.1016/j.aop.2011.05.010
http://dx.doi.org/10.1016/j.aop.2011.05.010
http://dx.doi.org/10.1103/PhysRevLett.81.938
http://dx.doi.org/10.1103/PhysRevLett.81.938
http://dx.doi.org/10.1103/PhysRevLett.81.938
http://dx.doi.org/10.1103/PhysRevLett.81.938
http://dx.doi.org/10.1103/PhysRevLett.87.240403
http://dx.doi.org/10.1103/PhysRevLett.87.240403
http://dx.doi.org/10.1103/PhysRevLett.87.240403
http://dx.doi.org/10.1103/PhysRevLett.87.240403
http://dx.doi.org/10.1103/PhysRevLett.90.010401
http://dx.doi.org/10.1103/PhysRevLett.90.010401
http://dx.doi.org/10.1103/PhysRevLett.90.010401
http://dx.doi.org/10.1103/PhysRevLett.90.010401
http://dx.doi.org/10.1103/PhysRevA.76.022711
http://dx.doi.org/10.1103/PhysRevA.76.022711
http://dx.doi.org/10.1103/PhysRevA.76.022711
http://dx.doi.org/10.1103/PhysRevA.76.022711
http://dx.doi.org/10.1126/science.1175850
http://dx.doi.org/10.1126/science.1175850
http://dx.doi.org/10.1126/science.1175850
http://dx.doi.org/10.1126/science.1175850
http://dx.doi.org/10.1103/PhysRevLett.104.153203
http://dx.doi.org/10.1103/PhysRevLett.104.153203
http://dx.doi.org/10.1103/PhysRevLett.104.153203
http://dx.doi.org/10.1103/PhysRevLett.104.153203
http://dx.doi.org/10.1103/PhysRevLett.107.230404
http://dx.doi.org/10.1103/PhysRevLett.107.230404
http://dx.doi.org/10.1103/PhysRevLett.107.230404
http://dx.doi.org/10.1103/PhysRevLett.107.230404



