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Heisenberg-Weyl Observables: Bloch vectors in phase space
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We introduce a Hermitian generalization of Pauli matrices to higher dimensions which is based on Heisenberg-
Weyl operators. The complete set of Heisenberg-Weyl observables allows us to identify a real-valued Bloch
vector for an arbitrary density operator in discrete phase space, with a smooth transition to infinite dimensions.
Furthermore, we derive bounds on the sum of expectation values of any set of anticommuting observables. Such
bounds can be used in entanglement detection and we show that Heisenberg-Weyl observables provide a first
nontrivial example beyond the dichotomic case.
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Introduction. The Bloch representation is a cornerstone
of analyzing the characteristics of quantum systems. It was
first introduced for two-level systems by Bloch [1] and
has since been used in a wide variety of settings (for
comprehensive reviews consult [2–4]). It is usually defined via
a decomposition of the density matrix into a complete operator
basis. Defining quantum states via the expectation values of a
complete set of measurements gives a very practical account
of their properties. Apart from being intuitive this approach
gives convenient solutions for Hamiltonian evolutions (see,
e.g., [5]) and has found many applications in entanglement
theory [6–12].

However, there is not a unique Bloch decomposition of
a given quantum state; this fact may favor a particular
representation over another for certain tasks. The canonical
choice for a complete basis of observables is usually given
by the so-called generalized Gell-Mann matrices, generators
of the special unitary group [SU(d)]. Being a natural choice
for higher-dimensional spin representations they have been
extensively used in parametrizations of corresponding density
matrices [4,13] and in entanglement detection. Other choices,
such as the Heisenberg-Weyl (HW) operators and the non-
Hermitian generalization of the 1/2-spin Pauli operators, have
also been explored [3,14–18]. While having some convenient
properties, they are unitary, but not Hermitian matrices. Thus
the associated Bloch vector itself has imaginary entries that do
not correspond to expectation values of physical observables.
This makes both the theoretical description and experimental
realization more cumbersome and therefore requires more
effort to identify the relevant parameters.

In this Rapid Communication, we introduce a Hermitian
Bloch basis derived from HW operators. It conveniently
combines multiple desirable properties of Bloch vector
parametrizations, allowing a smooth transition to the infinite
dimensional limit. We first explore properties such as (anti-)
commutativity. We then proceed with the derivation of an
inequality which bounds sums of anticommuting observables
with which we show in exemplary cases how one can construct
powerful criteria for entanglement detection in this new

basis. Finally we present a scheme for practical experimental
acquisition through a Ramsey-type measurement.

Phase-space displacements. We start our analysis with a
short reiteration of the HW-operator basis. The operators Z =
ei2πQ/d and X = e−i2πP/d describe generalized Pauli “phase”
and “shift” operators with effect X|j 〉 = |j + 1 mod d〉 and
Z|j 〉 = ei2πj/d |j 〉. Q and P are discrete position and momen-
tum operators, respectively, describing a d × d grid. X and Z

operators are noncommutative in general and obey the relation

ZlXm = XmZlei2πlm/d . (1)

The unitaries corresponding to discrete phase-space dis-
placements for d-level systems are defined as

D(l,m) = ZlXme−iπlm/d . (2)

Displacement operators hold a number of convenient proper-
ties which will be particularly useful in our analysis. Principal
among these is the completeness of displacement operators.
That is, they form a complete non-Hermitian orthogonal basis
satisfying the orthogonality condition

Tr{D(l,m)D†(l′,m′)} = dδl,l′δm,m′ . (3)

Therefore, any bounded operator, including density operators
ρ, can be decomposed into

ρ = 1

d

d−1∑
l,m=0

Tr{ρD(l,m)}D†(l,m) ≡ 1

d
(1 + �ξ · �D†), (4)

from which the Bloch representation is already apparent.
In this formulation, however, the Bloch vector components

ξlm = Tr{ρD(l,m)} are generally complex as the displacement
operators are not Hermitian. Therefore we need to determine
(d2 − 1) complex parameters of the Bloch vector, �ξ , to fully
characterize the density operator. The obvious question here
is, can we find a minimal complete set of d2 − 1 Hermitian
operators whose expectation values with respect to the density
operator are sufficient to fully characterize the state. In the
following we develop a basis which has the above property.
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HW observable basis. The standard Hermitian gener-
alization of Pauli operators used in quantum information
theory are called generalized Gell-Mann matrices (GGM) [3].
Alternatively, here we are aiming to identify a minimal and
complete set of Hermitian operators constructed from the HW
operators, D(l,m).

Ansatz. Our attempt begins by making an ansatz solution
of the form

Q(l,m) = χD(l,m) + χ∗D†(l,m), (5)

which is Hermitian by construction. In order to form a valid
basis of observables this ansatz has to satisfy the orthogonality
condition

Tr{Q(l,m)Q(l′,m′)} = dδl,l′δm,m′ . (6)

The above condition is satisfied only for the choice (see
Supplemental Material Sec. I [19])

χ = (1 ± i)

2
. (7)

Therefore, we establish d2 − 1 orthogonal and traceless
observables which are linearly independent. The d2 − 1
observables plus identity matrix Q(0,0) = 1d form a basis
acting on a d-dimensional Hilbert space, and thus provide a
Bloch representation of an arbitrary state. This enables us to
decompose any density operator in terms of HW observables
of the form

ρ = 1

d

d−1∑
l,m=0

〈Q(l,m)〉Q(l,m). (8)

This basis simply reduces to the Pauli matrices for d = 2.
We henceforth refer to its elements as “Heisenberg-Weyl
observables.” They have distinct properties from those of the
GGM matrices which will turn out advantageous in some
tasks. First, HW observables in contrast with GGM generically
have full rank, making them more efficient in sparsely
characterizing states with a lot of coherence. Secondly, for a
suitable parametrization, strict pairwise (anti-)commutativity
relations can be obtained which can be applied to entanglement
detection and will be demonstrated later.

For continuous variable systems it is of great practical
importance to find operational discretizations for processing
quantum information [20,21]. Notably, HW observables can
be systematically extended to the continuous limit of infinite
dimensional systems, holding analogous properties and with
this also all corresponding results can be extended in this
limit, thus providing a natural path towards a discretization
of continuous variable systems.

First, let us introduce the compact notation

α ≡
√

π

d
(m + il) (9)

known as the displacement amplitude in discrete phase
space. One can also think of α as a real vector in a two-
dimensional space α := (αR,αI ). We can now write Q(α) :=

Q(
√

d
π
αI ,

√
d
π
αR) and thus

ρ = 1

d

(
1 +

∑
α∈S

〈Q(α)〉Q(α)

)
, (10)

where we used S := {α : αI = √
π
d
l,αR = √

π
d
m}.

To facilitate a smooth transition to infinite dimensions one
can consider x̂ = Q

√
2π/d and p̂ = P

√
2π/d as the position

and momentum operators. In this case, Xm ≡ e−ixp̂ indicates
position displacement by x = m

√
2π/d . Similarly Zl ≡ eipx̂

displaces the momentum by p = l
√

2π/d . Therefore Eq. (2)
can be rewritten

D(p,x) ≡ eipx̂e−ixp̂e−ixp/2. (11)

In the limit d → ∞ we recover the Heisenberg commutation
relation for position and momentum of a continuous vari-
able system, [x̂,p̂] = i. We can then use the special form
of the Baker-Campbell-Hausdorff formula for exponential
operators, i.e., eA+B = eAeBe−[A,B]/2 where [A,[A,B]] =
0 = [B,[A,B]]. Thus, the definition (11) can be written
D(p,x) = eipx̂−ixp̂, the form of which is valid only in
the infinite dimensional limit. An equivalent reformulation
of this is D(α) = eαa†−α∗a with orthogonality condition
Tr{D†(α)D(α′)} = πδ2(α − α′) where a† (a) denotes creation
(annihilation) operators of a bosonic mode and α is the
displacement amplitude. Therefore, the continuous analog
of (6) is

Tr{Q(α)Q(α′)} = πδ2(α − α′). (12)

The discrete-continuous transition is therefore identified by the
replacement 1

d

∑
α → 1

π

∫
d2α. This shows that our observ-

able basis developed for discrete systems can be systematically
extended to continuous variable systems.

Anticommutativity. The very feature of the Pauli operators is
the fact that all of them are mutually anticommuting. Amongst
other things this allows for tight bounds on uncertainty rela-
tions and can be used in entanglement detection [6–11,22–24].
Hence it will be interesting to analyze the (anti-)commutation
relations for the HW observables. From Eq. (1) it follows

D(α)D(α′) = ei2α×α′D(α′)D(α), (13)

obeyed by both discrete and continuous phase-space displace-
ment operators. Recall, Im(αα′∗) := α × α′. This allows the
convenient characterization of commutativity and anticommu-
tativity among all basis elements. From the above equation it
is obvious that any pair of displacement operators satisfying

|α × α′| = π

2
(2n + 1) � π (d − 1)2

d
, (14)

anticommutes, and so does the corresponding HW observable
pair accordingly, i.e.,

{Q(α),Q(α′)} = 0, (15)

which can be easily verified. In the discrete notation this
means |m′l − ml′| = d(2n + 1)/2 � (d − 1)2. An interesting
observation made from this condition is that anticommutativity
between HW observables cannot be achieved strictly in odd-
dimensional systems. This is because the left-hand side is
always integer, while the right-hand side can only be integer
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when d is even. The corresponding condition for achieving
commutativity is |α × α′| = πn.

Anticommutativity bound and entanglement detection with
HW observables. We proceed with presenting a theorem
bounding sums of squared expectation values, if the mutual
anticommutators of the observables are small. In Supplemental
Material Sec. IV we present a detailed proof of the theorem.
It generalizes a theorem presented in [23] (later proven differ-
ently in [25,26]) from dichotomic anticommuting observables
to observables with an arbitrary spectrum and nonvanishing
anticommutators.

Theorem 1: Let {λi}i∈I with the index set I =
{1,2, . . . ,d2} denote an orthonormal self-adjoint basis B of
a d-dimensional Hilbert space H and A ⊆ I refer to a

subset of B such that 1
2

√∑
i 
=j∈A〈{λi,λj }〉2 � K. Then the

corresponding Bloch vector components ci of any density
matrix ρ ∈ H expressed in B as ρ = ∑

i∈A ciλi + ∑
l∈Ā clλl

can be bounded by

∑
i∈A

c2
i �

maxi∈A
〈
λ2

i

〉 + K[
mini∈A Tr

(
λ2

i

)]2 . (16)

One way to detect entanglement using anticommutativity
can be accomplished by first identifying a set of nonzero
Bloch vector entries of a multipartite quantum state with
anticommuting reductions across the partition one is interested
in. That is, we are looking for a partition A|Ā and a set
β = βA ∪ βĀ with elements τβ = Tr(ρλi ⊗ λj ), where i ∈
βA, j ∈ βĀ, and λi(λj ) are arbitrary observables acting on
subsystem A(Ā). The sum of moduli of these correlations can
be bounded for states, which are product with respect to these
partitions as

Tr(ρA ⊗ ρĀλi ⊗ λj ) = Tr(ρAλi)Tr(ρĀλj ), (17)

and |〈u|v〉| � ‖u‖2‖v‖2. Now, for the sake of convenience,
let us assume that all observables λi are anticommuting (i.e.,
K = 0) and normalized [i.e., Tr(λiλi ′) = dδi,i ′ ]. Then we can
make direct use of the anticommutativity bound to assert that∑

i∈βA

|Tr(ρAλi)|2 � max
i∈βA

〈
λ2

i

〉
, (18)

and analogously for Ā. To finish we only need to point out that
the original expression, a sum of moduli of expectation values,
is convex in the space of density matrices and thus the validity
of the inequality for product states translates to a general
validity for separable states. The case of non-normalized or
only partially anticommuting observables works analogously.

For the case of HW observables the anticommutativity
bound can be simplified to∑

i∈A
〈Q(αi)〉2 � q2

max + K, (19)

where q2
max = 1 + maxn∈N sin(4πn/d) is the maximum eigen-

value of a HW observable which is the same for any Q(αj ) for

a given dimension and K � 1
2

√∑
i 
=j∈A ‖{Q(αi),Q(αj )}‖2

∞.
The case of nonvanishing anticommutators has also been stud-
ied for dichotomic observables in the context of uncertainty
relations [27]. The central quantity K is proportional to the

2-norm of the “anticommutator matrix” introduced therein.
A case of particular interest is of course given by exact
anticommutativity, i.e., K = 0. In the Supplemental Material
(Sec. IV B) we present the proof that we have identified the
maximal set of anticommuting operators in the HW basis, i.e.,
that no more than three anticommuting HW observables exist.

Example. To illustrate this method in an exemplary case let
us turn to qudit systems with the maximally entangled state
defined as

|φd〉 = 1√
d

d−1∑
j=0

|j 〉|j 〉. (20)

This important class of entangled states in quantum infor-
mation is a maximal resource for many tasks. Its Bloch
decomposition in terms of HW observables (HWOs) is simply
given by

|φd〉〈φd | = 1

d2

(
1 ⊗ 1 +

∑
α∈S

Q(α) ⊗ Q(α)∗
)

(21)

whereQ(α)∗ = Q(−α∗) denotes the complex conjugate. From
above Bloch decomposition it follows that the expectation
value of the correlations are all equal to 1, and this means
that measuring only three anticommuting local observables
for each party is sufficient to violate the upper bound and
thus detect entanglement. The violation is obviously enhanced
with three pairwise anticommuting observables whose respec-
tive amplitudes fulfill the constraint |α1 × α2| = |α2 × α3| =
|α3 × α1| = π/2(2n + 1) yielding a general recipe for finding
three pairwise anticommuting observables. In this case, the
criterion (18) may written as

3∑
i=1

〈Q(αi) ⊗ Q(αi)
∗〉 DV

� q2
max

CV
� 2, (22)

with respective upper bounds on separable states for discrete
(DV) and continuous variable (CV) cases. In the contin-
uous limit (d → ∞) the above entangled state becomes
a perfectly correlated Einstein-Podolsky-Rosen entangled
state [28] which is equal to an infinitely squeezed two-mode
squeezed state, i.e., 1√

π

∫
R dx|x〉|x〉 = 1√

π

∫
R dx|p〉|−p〉 with

continuous Bloch decomposition 1
π2

∫
dα2Q(α) ⊗ Q(α)∗. The

associated set of three pairwise anticommuting observables
in this limit is simply given by a symmetric case of three

equiangular amplitudes with equal lengths |αj | =
√

π/
√

3 �
1.34 mutually separated by an angle 2π/3. In comparison,
the corresponding correlations with respect to the generalized
Gell-Mann basis are all equal to 2/d [3]. Thus, the number of
required measurements in order to detect entanglement scales
with d making it impractical in high dimensions. This is an
example which clearly demonstrates the advantage of the HW
observables in high-dimensional entanglement detection. For
more details, see Supplemental Material Sec. IV where we give
more explicit examples that the generalized anticommutativity
bound can be used to detect entanglement even if the
observables are nondichotomic, therefore generalizing the
results obtained in [23,25,26].

While the anticommuting elements, within one local sys-
tem, are limited, tensor product bases consisting of commuting
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|

FIG. 1. A quantum circuit representing a Ramsey-type cycle
for measuring HW observables via an ancillary readout qubit. The
scheme consists of three steps. See text for details.

and anticommuting sets yield desired large sets. The product
will be again anticommuting as long as an odd number of
factors is anticommuting. Therefore, once commuting and
anticommuting local basis elements are found, extending
to larger particle numbers n is possible by straightforward
combinatorial calculations.

Measuring HW observables. One of the main advantages
of the HW observables is the fact that it is possible to
measure their mean values via dichotomic statistics of the
measurements performed on a single qubit ancilla, coupled to
the system of interest [29,30]. This is favored in some cases
where qubit state readout and sequential measurements are
efficient [31]. In this method the concept of generalized (or
sometimes called indirect) measurement procedure is used.
This type of measurement generally involves three elements.
The first element is the system of interest S, here the d-
dimensional system, from which we want to gain knowledge
about its HW observables. The second element is a probe
system, here an ancillary readout qubit. We let the two elements
interact for a certain period of time and thereby correlations
between S and qubit are built up. A measurement apparatus,
the third element, is used to read out the qubit’s state at the
end of the interaction time. The aim of this scheme is to obtain
information on the state of S via the state of the probe, encoding
the necessary information about S. This strategy can be applied
using a Ramsey-type measurement scheme, a sequence of three
essential steps (see Fig. 1):

(I) Qubit and S are initialized as ρ ⊗ |↓〉〈↓|.
(II) A fast rotation with suitable angles, Rπ/2(π/4), is

performed on the qubit. Here Rπ/2(ϕ) denote π/2 rotations
of a qubit with an adjustable phase ϕ. In the basis {|↓〉,|↑〉}
they are defined as

Rπ/2(ϕ) =
(

1 eiϕ

−e−iϕ 1

)
. (23)

Then the qubit interacts with S for a period of time generating
a conditional displacement Uα = 1 ⊗ |↓〉〈↓| + D(α) ⊗ |↑〉〈↑|
followed by the rotation Rπ/2(0). Thus the resulting evolution
of the composite system is URM = Rπ/2(0)UαRπ/2(π/4).

(III) A projective measurement on the probe qubit in the
basis {|↑〉,|↓〉} is performed. As a result of the measurement
back action, the state of S is projected onto one of the
conditioned states ρi depending on the outcome of the
measurement.

It is worth remarking that the implementation of the
associated positive operator-valued measure (POVM) ele-
ments is illustrated by Neumark’s theorem [32], where the
mean values of HW observables are obtained via two-valued
POVM elements Ej = M

†
jMj = 〈j |URM |↓〉, with j ∈ {↑,↓}

and E↑ + E↓ = 1. These POVM elements are realized by
the qubit measurement with corresponding probability pj =
Tr{ρEj }. Therefore we have

〈Z〉 ≡ p↑ − p↓ = Tr{ρE↑} − Tr{ρE↓} = Tr{ρQ(α)}√
2

.

(24)

This is a simple procedure in which the mean value of a HW
observable is equal to the mean value of the qubit observable
Z, up to a proportionality constant

√
2. More importantly, the

scheme with required length of displacement amplitudes has
already been implemented very efficiently in recent trapped
ion experiments [33].

In hybrid system settings this approach offers an alternative
procedure for experimental reconstruction of the quantum state
via measuring an ancillary qubit system where the required
interaction to implement the conditional displacement is of the
simple form (λ∗a + λa†)|↑〉〈↑|, describing a linear coupling
between the field quadrature and the qubit state with coupling
strength λ [34,35]. The other well-known scheme is based
on displaced parity measurements [36]. In this approach also
a Ramsey-type measurement is performed on an ancillary
two-level atom coupled to a field. But it is experimentally
more expensive, because in addition to the aforementioned
coupling needed for displacing the field’s state, a dispersive
interaction of the form ga†a|↑〉〈↑| is needed to implement
the parity measurement. This type of coupling is usually
hard to realize specifically for more massive systems such
as nanomechanical resonators. Therefore, state estimation via
HW observables offers an experimentally accessible procedure
to a wider range of experimental setups. It is worth adding
that, alternatively, continuous HWOs can be measured via
homodyne measurements of the field quadratures by adapting
the Vogel and Risken scheme [37,38].

Conclusions. In the present work we put forward a Hermi-
tian basis acting on d-dimensional Hilbert space. This basis
holds distinctive features from those of GGM basis making it
particularly useful in certain applications such as entanglement
detection and tomography of high-dimensional systems. We
give a thorough characterization of a number of relevant
properties of this basis, including the spectrum and (anti-
)commutativity properties. Together with a theorem bounding
the expectation value of general anticommuting observables
we furthermore demonstrate the usefulness of the HW basis
in entanglement detection by deriving a general method to
obtain linear entanglement witnesses. Interesting roads for the
future would be to investigate whether the set of observables
presented in this work can simplify the analysis stabilizer
systems defined in terms of HW operators [16]. And since our
construction of Bloch vectors is closely related to the phase-
space picture, it would be interesting to investigate applications
for significant problems where phase-space formulations are
exploited, such as finding magic states [39], determining the
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Wigner function [40,41], or the problem of finding symmetric
informationally complete POVM [42].
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[11] C. Klöckl and M. Huber, Phys. Rev. A 91, 042339 (2015).
[12] O. Gamel, Phys. Rev. A 93, 062320 (2016).
[13] C. Spengler, M. Huber, and B. C. Hiesmayr, J. Phys. A: Math.

Theor. 43, 385306 (2010).
[14] S. Massar and P. Spindel, Phys. Rev. Lett. 100, 190401 (2008).
[15] R. Namiki and Y. Tokunaga, Phys. Rev. Lett. 108, 230503

(2012).
[16] A. Asadian, C. Budroni, F. E. S. Steinhoff, P. Rabl, and O.

Gühne, Phys. Rev. Lett. 114, 250403 (2015).
[17] N. Cotfas and D. Dragoman, J. Phys. A: Math. Theor. 45, 425305

(2012).
[18] A. Vourdas, Rep. Prog. Phys. 67, 267 (2004).
[19] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevA.94.010301 for detailed proofs and explicit
matrix representations of HWOs.

[20] P. Vernaz-Gris, A. Ketterer, A. Keller, S. P. Walborn, T.
Coudreau, and P. Milman, Phys. Rev. A 89, 052311 (2014).

[21] M. Krenn, R. Fickler, M. Huber, R. Lapkiewicz, W. Plick, S.
Ramelow, and A. Zeilinger, Phys. Rev. A 87, 012326 (2013).

[22] O. Gühne and G. Toth, Phys. Rep. 474, 1 (2009).
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