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Quantum and classical phases in optomechanics
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1QOLS, Blackett Laboratory, Imperial College London, London SW7 2AZ, United Kingdom
2ITAMP, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, USA

3Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
4Clarendon Laboratory, Department of Physics, University of Oxford, OX1 3PU, United Kingdom

5Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria
6Institute for Quantum Optics and Quantum Information, Boltzmanngasse 3, 1090 Vienna, Austria

(Received 22 April 2016; published 29 June 2016)

The control of quantum systems requires the ability to change and read-out the phase of a system. The
noncommutativity of canonical conjugate operators can induce phases on quantum systems, which can be
employed for implementing phase gates and for precision measurements. Here we study the phase acquired by
a radiation field after its radiation pressure interaction with a mechanical oscillator, and compare the classical
and quantum contributions. The classical description can reproduce the nonlinearity induced by the mechanical
oscillator and the loss of correlations between mechanics and optical field at certain interaction times. Such
features alone are therefore insufficient for probing the quantum nature of the interaction. Our results thus isolate
genuine quantum contributions of the optomechanical interaction that could be probed in current experiments.
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I. INTRODUCTION

In quantum optics, single and multimode nonlinearities are
of use for quantum information processing tasks and for tests
of foundational physics. Such nonlinearities can be generated
from more readily available (linear) operations by enclosing
loops in phase or parameter space. This technique is now
utilized broadly throughout both theoretical and experimental
quantum science with one prominent example being trapped-
ion systems [1–3]. A set of simple operations is applied
in a sequence to enclose such a loop and deterministically
generate an effective nonlinearity on the other system. These
types of nonlinearities and phases, which have a geometric
interpretation, are also very valuable in optical [4,5] and
superconducting circuit [6] experiments.

Quantum optomechanics, which exploits the radiation-
pressure interaction between an optical field and a mechanical
element [7], is an emerging area of quantum science that is now
gaining increasing interest in such nonlinearities. A key goal
of the field is to explore nonclassical properties of mechanical
motion, which can be generated by enclosing loops in the phase
space of either the optical [8] or mechanical degrees [9,10] of
freedom. Indeed, the seminal works of Refs. [11,12], which
study a continuous interaction between an optical cavity field
and a mechanical element, have an implicit closed loop in the
dynamics where the mechanical oscillator undergoes a closed
pattern in phase space and the optical field picks up a nonlinear
phase. Bose et al. [13] noticed that at a certain interaction time,
the optical field state decouples from the oscillator state and
proposed to leverage this peculiarity for decoherence sensing.
This idea was further developed by Armour et al. in Ref. [14],
where a micromechanical resonator is capacitively coupled to a
Cooper-pair box and then, by Marshall et al. in Ref. [15], where
correlations between a single-photon path-entangled optical
state and a mechanical object are used to study gravitational
decoherence mechanisms [16]. In the latter scheme, the inter-
ference visibility between the two components of the optical
field is used as a witness of mechanical coherence, which

can be degraded by both standard decoherence and potential
gravitational collapse mechanisms. A key to their proposal is
observing a recovery of the interference visibility, which arises
when the light-mechanics system becomes disentangled after
the mechanics completes a closed loop in phase space. Other
optomechanical proposals consider a nonlinear phase imparted
on a qubit after the mechanical oscillator undergoes a closed
loop [17,18].

The optomechanical interaction has been studied exten-
sively in quantum mechanics. In this paper we analyze the
nonclassicality of optomechanical phases by studying the
dynamics in a fully classical picture and comparing it with
the quantum prediction. We provide a general mathematical
framework and focus our discussion on two proposals:
Refs. [9,15]. We start by considering the pulsed interaction
regime [19,20] of Ref. [9] and then discuss the continuous
interaction regime of Ref. [15] through which we explore
the evolution of interferometric visibility. We find that many
of the features which have been tacitly considered quantum
signatures in such setups can be reproduced classically.
Specifically, in the context of the pulsed regime discussed in
Ref. [9], we prove that a large amount of the quantum phase has
a classical nature. We also find that the main peculiarities of
the quantum phase have a correspondence in classical physics:
the nonlinearity induced by the mechanical oscillator and its
independence of the oscillator state at some interaction times.
Surprisingly, this is key to prove that the loss and revival of
the visibility pattern in the interferometric scheme discussed
in Ref. [15], which have been considered a quantum signature
of the system dynamics, can be explained by a completely
classical description of the model. On the other hand, we are
able to identify nonclassical components to the dynamics that
cannot be obtained classically or semiclassically.

II. THE MODEL

We consider a mechanically oscillating mirror of frequency
ω and mass m coupled to an optical field of frequency ωf
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FIG. 1. (a) Optomechanical cavity with a harmonically oscillat-
ing mirror at one end. (b) Scheme of a four displacement operation
in the phase space of the mechanical oscillator.

inside a cavity of mean length L [see Fig. 1(a)]. The effective
Hamiltonian that describes this system in a frame rotating with
the field can be written as [21,22]

Ĥ = Ĥ0 − �g0n̂x̂, (1)

where Ĥ0 = �ω
2 (x̂2 + p̂2) represents the mechanical free

energy, n̂ is the number operator of the optical field,
x̂ = (1/

√
2)(b̂† + b̂) and p̂ = (i/

√
2)(b̂† − b̂) are the mirror

quadrature operators, and g0 = ωf x0/L is the optomechanical
coupling rate for x0 = √

�/mω. In the case of the short pulsed
regime, the interaction time is much smaller than a period
of mechanical motion τ = 2π/ω and the system operates in
the bad cavity limit κ � ω where κ is the cavity amplitude
decay rate. We also require the characteristic mechanical
decoherence time to be lower than the mechanical period. In
such a regime, we can neglect the mechanical free evolution
during the light-mirror interaction. The dynamics can thus be
described using the unitary evolution operator Ûx = eiλn̂x̂ [19],
where λ = g0/κ is the dimensionless coupling strength. As in
Ref. [9] we now consider a sequence of four interactions with
the same pulse, each interaction being separated by a quarter
of a period of mechanical motion. We write this procedure as
Ûx , followed by Ûp, Û−x , and Û−p. This sequence of four
pulses generates a square loop in mechanical phase space
[see Fig. 1(b)] with a photon-number-dependent side-length.
The net interaction of the sequence can be described by
the unitary ξ̂ = eiλ2n̂2

. This effective interaction is a highly
nonlinear self-Kerr interaction. This type of nonlinearity is
central in Ref. [8] and is closely analogous to the controlled
gate operations in trapped ion qubits using the phononic mode
of the harmonic oscillator as a mediator [1–3].

III. QUANTUM VS CLASSICAL DYNAMICS

To compute the dynamics predicted quantum mechanically,
we take the field initially in a coherent state |α〉f and the
mirror in an arbitrary initial state. We apply the four-pulse
operator ξ̂ and we compute the mean value of the optical field
〈â〉 = α e−Np(1−cos 2λ2)ei(λ2+Np sin 2λ2), where Np = |α|2 is the
mean photon number. We observe that both modulus and phase
are changed by the nonlinear interaction. While the magnitude
of this expectation value is reduced due to the coherent state
spreading out in phase space [for small coupling it scales as
O(e−Npλ4

)], the mean phase shift results to be

ϕq = (λ2 + Np sin 2λ2). (2)

The fact that Eq. (2) is independent of the state of the mirror
and depends on the intensity of the optical field is going to
play a crucial role for the forthcoming considerations.

Since the phase derives from commutation rules both of
field and oscillator, we would like to explore its derivation
from a fully classical perspective without invoking quantum
operators in order to see to what extent it can be considered
an indicator of nonclassicality. The phase associated with a
single reflection of a field on a movable mirror is proportional
to the product of the field wave vector kf times the mirror
position [23,24]. A radiation-pressure kick, i.e., a pulse that
transfers a momentum I to the mechanical oscillator, can be
classically depicted as the sum of Nrt round trips of the light
inside the cavity. In the pulsed regime, where the position of the
movable mirror is essentially fixed during the Nrt reflections,
we imagine that the optical field enters the cavity, escapes after
a time equal to the inverse of the decay rate 1/κ = (2L/c)Nrt,
and then waits in an engineered loop before being injected
again. During the time between two consecutive kicks the
movable mirror freely evolves accordingly to the equation of
motion of a harmonic oscillator. For every radiation-pressure
kick the field picks up an additional phase due to the movable
mirror dynamics. We eventually have a net classical phase of

ϕc = 2kf Nrt

3∑
j=0

x(tj ), (3)

where x(tj ) are the positions of the mirror at times tj = jτ/4.
Solving the equations of motion (see Appendix A for more
details), we obtain for the classical phase

ϕc = 4kf Nrt
I

mω
, (4)

which linearly depends on the light intensity as described
by a (classical) nonlinear Kerr effect. We also note that the
classical phase does not depend on the initial conditions
of the mechanical oscillator. Hence, the two features which
are at the heart of the quantum operations recur also in
the classical picture. In order to quantitatively compare
Eq. (4) with the quantum-mechanical prediction, we substitute
the characteristic parameters of the optomechanical system
and the transferred momentum I = 2kf Nrt�Np, obtaining
ϕc = 2λ2Np. We therefore find that quantum and classical
predictions for the optical phase shift generally differ, though
for small coupling strengths this difference is mainly in the
form of a (small) offset λ2.

Reducing the waiting time between subsequent pulses, it is
possible to generalize the argument to N kicks, where loops
in the shape of N -sided polygons are enclosed in mechanical
phase space [17] (see Appendix A for more details). The limit
N → ∞ coincides with the continuous dynamics, i.e., when
light remains in the cavity for the entire mechanical period.
Even though it is impossible to tune the same experimental
apparatus to achieve this limit, still theoretically we can
correctly recover a continuous dynamics from a pulsed regime.
By explicitly solving the quantum dynamics and tracing out the
mechanical degrees of freedom, we find the reduced density
matrix of the field ρ̂f and the mean value of the optical field
〈â〉 = Tr[âρ̂f ]. The resulting optical phase shift for a closed
loop is ϕq = 2πk2 + Np sin[4πk2], where k = g0/(

√
2ω) is
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the ratio between the single photon optomechanical coupling
rate and the mechanical resonance frequency (see Appendix B
for more details on the derivation of the quantum continuous
phase). On the other hand, from a classical perspective the
continuous interaction can be depicted as a constant force
during the whole evolution, whose intensity is given by the
field energy E0. The classical Hamiltonian will then be

Hc = 1

2
mω2x2 + p2

2m
− E0

L
x, (5)

and the classical phase can be accordingly generalized to the
integral over mirror positions as

ϕc(τ ) = 2
kf

dτ̃

∫ τ

0
x(τ ′)dτ ′, (6)

with dτ̃ = 2L/c the single round trip time. By working out
the classical continuous dynamics, the value of the phase
in the case of a closed loop results ϕc = 2πωf E0/(ω3mL2)
and substituting the optomechanical parameters it reads ϕc =
4πk2Np (see Appendix B for more details on the derivation of
the classical continuous phase).

When comparing the phase predicted quantum mechan-
ically ϕq to the classical case ϕc the main difference is
an offset, which is equal to λ2 for the four-pulse case and
depends on k2 for the continuous case. We highlight that
this offset is not predicted with semiclassical descriptions
where either the light or mechanics are quantized and the
other is treated classically (see Appendix C for further details
on the semiclassical model). Experimentally observing this
offset would therefore demonstrate the quantum nature of the
interaction between the light and the mechanics. Such evidence
could be provided by measuring the phase as a function of the
photon number per pulse Np and fitting the resultant data to
obtain an estimate for the offset. Counterintuitively, we remark
that a large optomechanical coupling is not strictly necessary
for the purpose, as long as the phase can be measured with
a high precision. Indeed, uncertainty is mainly amenable to
the quantum noise of the coherent state probe, which scales
approximately as δϕq ∼ 1/

√
NpNr , where Nr is the number of

averages. We thus require δϕq < λ2 to provide a good estimate
for the quantum offset, which can be easily achieved with cur-
rent experiments (10−5 � λ � 10−1 and Np ∼ 108) [25,26].

Aside from this small phase shift that certifies the quantum
nature of the interaction, we pinpoint that, in the context of
pulsed interactions, the nonlinear phase of the optical field is
mainly due to the classical contribution. If the quantum nature
of the system is relevant for the interpretation of an experiment,
such as in Ref. [9], it might be necessary, in order to verify the
nonclassical nature of the interaction, to rely on quantum state
preparation of the mechanics, to study the nonclassical photon
statistics after the interaction, or to observe the quantum offset
discussed above.

IV. INTERFEROMETER VISIBILITIES

We have observed that for closed loops in both classical
and quantum pictures the phase does not depend on the initial
conditions of the mechanical oscillator: we will see how this
property has a nontrivial implication on the quantum-classical
comparison. Consider the Michelson interferometer depicted

in Fig. 2(a) where the end mirror of the cavity in arm 1
interacts with an incoming coherent state via the Hamilto-
nian in Eq. (1). We first compute the quantum dynamics
and assume the mirror initially prepared in a thermal state
ρ̂m = (πn̄)−1

∫
d2γ e−|γ |2/n̄|γ 〉m〈γ |, where n̄ = 1/(eβ�ω − 1)

is the average thermal occupation number and β = (kBT )−1.
By solving the Liouville equation ˙̂ρ = −(i/�)[ρ̂,Ĥ ] for the
system density matrix and tracing out the mechanical degrees
of freedom, it is possible to recover the reduced density matrix
of the field that allows us to calculate the light intensities on
detectors Da and Db. Defining Imax (Imin) as the maximum
(minimum) intensity on the detectors, the visibility is given by
the ratio ν = (Imax − Imin)/(Imax + Imin), which can be written
conveniently as νq(t) = νcor

q (t)νKerr
q (t), where

νcor
q (t) = e−k2(1−cos ωt)(2n̄+1),

νKerr
q (t) = e−Np{1−cos[2k2(ωt−sin ωt)]} (7)

[see Appendix D for more details on the derivation of Eq. (7)].
As shown in Fig. 2(b), the visibility is the composition of two
periodic functions with different frequencies that settle two
time scales, being responsible for two revivals. The short one
of period τ is due to the term νcor

q (t), while the long one of τ ′ =
τ/(2k2) is related to νKerr

q (t). For the former, the revivals of the
visibility are explained by the decoupling of field and mirror
after periods of the mechanical evolution (i.e., for closed loops
in phase space). This demonstrates the presence of correlations
between field and mirror at intermediate times. These revivals
are clearly manifested in Fig. 2(b). On the other hand, νKerr

q (t)
is due to the Kerr nonlinear interaction experienced by the field
when entering into the cavity because of Hamiltonian (1) and
it is responsible for a reduction of the interferometric pattern.
In other words, this reduction of visibility stems from the
onset of squeezing of the coherent optical state due to the Kerr
nonlinearity. As a result, even if mirror and field are completely
uncorrelated after an interaction that lasts a mechanical period,
we still cannot fully recover visibility.

We are now going to show how the visibility recovery
can be explained through a fully classical treatment, thanks
to the periodic restoration of phase independence from the
initial mechanical conditions. We assume the mirror initially
subjected to classical thermal fluctuations around the origin
described by a Maxwell-Boltzmann distribution. By using
polar coordinates (θ,�) we define the initial position and
momentum of the oscillator as

x(t = 0, θ,T ) =
√

2/(mω2)�(T ) cos θ,

p(t = 0, θ,T ) =
√

2m�(T ) sin θ,

�2(T ) = mω2

2
x2(0,θ,T ) + p2(0,θ,T )

2m
,

(8)

with �2(T ) the initial thermal energy of the oscillator at
temperature T . The phase acquired by the field after an
interaction time t will consequently depend on these initial
conditions

ϕc(�,θ,t) =
√

2χ�[cos θ sin ωt + sin θ (1 − cos ωt)]

+ ω

ωf

χ2E0(ωt − sin ωt),
(9)
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FIG. 2. (a) Michelson interferometer: A coherent field |α〉f is
split by a beam splitter (BS) into the two arms of the interferometer.
Arm 1 ends with an optomechanical cavity with a movable oscillator,
while arm 2 is composed by a phase shifter and a stationary cavity. (b)
Quantum visibilities νq (t) in Eq. (7) for T = 10−5 K (blue dotted line),
T = 10−2 K (red continuous line), and T = 1 K (green dashed line);
optomechanical coupling k = 10−2, number of photons Np = 105,
and period τ = 10−5 s. For relatively high temperature the visibility
is strongly suppressed within every single oscillating period. Instead,
in the low temperature limit visibility is slightly lowered and the
main effect is due to the Kerr nonlinearity experienced by the field.
(c) Quantum (red continuous line) and classical (blue dotted line)
visibilities in Eqs. (7) and (12) for temperature T = 5 × 10−2 K.
Other parameters are as in (b).

where χ = ωf /(ω2L
√

m) (see Appendix B for more details
on the derivation of the classical continuous phase). If we set
with I0 as the intensity of the incoming field, the intensities on
the detectors Da and Db depend on the phase between the two
arms as

I a
b (�,θ,t) = I0

2
{1 ± cos[ϕc(�,θ,t) − φ]}. (10)

By averaging over all initial mechanical states, we thus obtain

〈
I a
b (t)

〉 = β

π

∫∫
� d� dθ I a

b (�,θ,t) e−β�2

= I0

2

[
1 ± e

− χ2

β
(1−cos ωt)

× cos

(
ω

ωf

E0χ
2(ωt − sin ωt) − φ

)]
. (11)

It is then possible to derive the expression for the classical
visibility by maximizing and minimizing Eq. (11),

νc(t) = e
− χ2

β
(1−cos ωt)

, (12)

which reveals a fully classical revival after each period of the
mechanical oscillator. These revivals are due to the particular
property of the phase acquired by the field that still holds in the
classical scenario, i.e., its independence from the initial mirror
conditions after periods of the mechanical oscillator. Indeed,
the loss of visibility has to be attributed to the uncertainty on
the initial conditions due to the thermal fluctuations of the
mirror, which appear in the same form both in quantum and
classical pictures. In contrast, in the case of zero temperature,
the classical visibility will equal one at all times.

Let us now compare the classical result in Eq. (12) with the
fully quantum one νq . By using the optomechanical parameters
we get k = χ

√
�ω/2 and hence the classical visibility can be

written as νc(t) = e
− 2k2

β�ω
(1−cos ωt). First of all, we confirm that

the quantum thermal part of the visibility νcor
q (t) coincides

with the classical expression in the limit kBT � �ω. We
point out that the difference between νcor

q (which arises from
the mirror-field correlation) and the classical visibility is
negligible even at very low temperatures (at T = 10−6 K and
ω = 2π × 105 Hz we have |νcor

q − νc| � |e−2k2 − 1| ∼ 0.01
even when pushing the coupling to k = 0.1). The parameter
k is thus crucial for quantum behavior in such setups, as
also discussed in Refs. [15,27]. In the context of a single
photon source and within a hybrid framework a similar
result was observed in Ref. [28]. Moreover, our analysis
identifies additional quantum behavior in νKerr

q due to the
quantum-mechanical Kerr nonlinear interaction. As Fig. 2(c)
shows, while the classical result displays a complete revival
after every mechanical period τ , the Kerr nonlinearity lowers
the visibility giving rise to a partial revival.

Although the noise in the coherent state has an intrinsic
quantum origin, we can bring our classical model closer to the
quantum picture. Let us assume our classical coherent field
is affected by a Gaussian noise [29]: the field energy in the
classical Hamiltonian Hc could be written as E(ε) = E0(1 −
ε), where the dimensionless parameter ε is described by the

distribution P(ε) = 1/(
√

2π�)e− ε2

2�2 , �2 being the variance.
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The classical phase in Eq. (9) and the intensities in Eq. (11)
will now depend on the noise ε. By averaging Eq. (11) over
the Gaussian distribution, the classical visibility (in terms of
the optomechanical parameters) is calculated as

ν̃c(t) = νc(t)e−2k4Np(ωt−sin ωt)2
, (13)

where we used E0 = �ωf Np and �2 = 1/Np to closely
compare our Gaussian noise with the (Poissonian) quantum
noise [see Appendix E for more details on the derivation of
Eq. (13)]. Therefore, noise in the classical field allows us
to exploit the classical Kerr nonlinearity of the phase [see
Eq. (4)] to recover a further loss in the classical visibility, which
coincides in the limit k2ωt 
 1 and large intensities with the
quantum result νKerr

q in Eq. (7). However, while νKerr
q is periodic

so to cause revivals, the classical Kerr nonlinearity only lowers
the visibility. This further highlights the importance of the
parameter k for quantum behavior in optomechanical systems.

We conclude that quantum and classical visibilities display
qualitatively the same trend in the current experimental
conditions and in order to observe significant deviations
(|νq − νc| � 10−4 within a mechanical period) we need to
improve the coupling or the number of photons to k � 10−3

and Np � 106 [with all the other parameters as in Fig. 2(c)],
independently of the temperature. Indeed, while νq tends to
νc in the limit k2Np 
 n̄ and kBT � �ω, in the same limit,
the classical visibility and its quantum counterpart (for a
coherent state) coincide with the quantum visibility for a
single photon, found in Refs. [15,27]. This entails that the
visibility pattern alone is not sufficient to infer nonclassicality
of the system dynamics. For a quantum interpretation of
the results it is essential to have additional assumptions: for
instance, in Refs. [15,27] (where the entanglement between
the oscillator and the field causes the collapse of visibility) one
has to rely on a single photon and a ground state mechanical
oscillator. Classically, on the other hand, the certainty of the
mechanical position for zero effective temperature keeps the
maximum visibility without a collapse. However, since any
small deviation from zero effective temperature does cause
the classical visibility to reduce, an unambiguous proof of
quantumness requires additional measurements, such as the
verification of the entanglement between field and mechanics.

V. CONCLUSIONS

Dynamical operations that modify the phase of a system
are used in a variety of optomechanical schemes and play
a central role in optomechanics to probe the foundations of
quantum theory. Here we studied the classical and quantum
nature of such phases, showing that some key features in
recent proposals are reproduced classically. In particular, we
have seen that the two main peculiarities of the quantum phase
are reproduced classically: the nonlinear interaction induced
by the mechanical oscillator and its decoupling at certain
interaction times. These findings have further allowed us to
challenge the quantumness of the interferometric visibility,
which has been considered a quantum signature of the system
dynamics. While in the common experimental regimes of
large photon numbers and small couplings the classical and
quantum descriptions mostly coincide, we isolate genuine
quantum signatures of the interaction that appear on the phase

and the visibility. These signatures might be probed in future
optomechanical experiments, even in the weak coupling limit.
We finally remark that the classical results found here derive
from a fully classical theory in contrast to other approaches
using both quantum operators and thermal fields.

ACKNOWLEDGMENTS

The authors wish to thank Carlo Di Franco and Doug
Plato for useful discussions. M.S.K. acknowledges the Lev-
erhulme Trust (Project RPG-2014-055), the UK EPRSC
(EP/034480/1), and the Royal Society. F.A. and M.S.K.
acknowledge the Marie Curie Actions of the EU’s 7th
Framework Programme under REA (Grant No. 317232) for
their financial support. I.P. acknowledges support by the NSF
through a grant to ITAMP. C.B. acknowledges support from
the European Commission project RAQUEL (No. 323970); the
Austrian Science Fund (FWF) through the Special Research
Programme FoQuS, the Doctoral Programme CoQuS, and
Individual Project (No. 2462).

APPENDIX A: FROM THE PULSED TO THE
CONTINUOUS INTERACTION: PHASES AND

SUZUKI-TROTTER EXPANSION

In this Appendix we find the phase acquired by the
optical field in a general pulsed scheme with N field-mirror
consecutive interactions.

Quantum scheme. We define the general displacement
operator ξ̂N corresponding to a loop (in the quantum phase
space of the oscillator) shaping a regular polygon of N sides

ξ̂N =
N−1∏
j=0

eiη̂{cos(θj )x̂+sin(θj )p̂}, (A1)

where θ = 2π/N . Equation (A1) can be calculated by using
the Baker-Campbell-Hausdorff formula [30] as ξ̂N = ei�̂(η̂,N ),
where �(η,N ) = 1

4η2N cot(π/N ) without the hat is the area
mapped out by the sequence of displacement operations of
amplitude η = 〈η̂〉 in phase space. Taking the limit N → ∞
in Eq. (A1) and rescaling η → η/N we define a continuous
displacement

ξ̂cont = lim
N→∞

ξ̂N = ei
η̂2

4π , (A2)

which corresponds to a circle in the phase space with radius
η/2π . In the case of the optomechanical interaction we have
η̂ = λn̂. Applying the displacement ξ̂N to the state |ψ0〉 =
|α〉f ⊗ |φ(0)〉m, with |φ(0)〉m a generic mirror initial state, we
measure the mean value of the optical field

〈â〉 = 〈ψ0|ξ̂ †
N â ξ̂N |ψ0〉 = α e−Np(1−cos 2c)ei(c+Np sin 2c), (A3)

where c = (λ2/4)N cot(π/N ). The first exponential factor of
the right-hand side represents the change of the size of the
amplitude, while the second one gives the change of phase

ϕq = λ2

4
N cot

( π

N
)

+ Np sin

[
λ2

2
N cot

( π

N
)]

. (A4)

063862-5



FEDERICO ARMATA et al. PHYSICAL REVIEW A 93, 063862 (2016)

which in the small coupling gives

ϕq � λ2

4
N cot

( π

N
)

(1 + 2Np)

= �N2
rtk

2
f

mω
N cot

( π

N
)

(1 + 2Np), (A5)

where we used κ = c/(2LNrt) and ωf = ckf . Having closed
polygons in phase space (lasting for an entire period τ ) ensures
that the phase does not depend on the initial mirror state
[11,12].

Classical scheme. From a classical point of view we
consider a Fabry-Perot cavity with one massive rigid mirror
and one small end mirror that can vibrate in a harmonic
potential. The larger rigid cavity mirror has a lower reflectivity
than the mechanical mirror that allows the light to enter and
exit through this mirror with minimal transmission through the
movable mechanical mirror. As a result, the cavity has a finesse
F and when the field enters into the cavity, it is reflected by
the movable boundary a number of times equal to the number
of round trips inside the cavity, that is Nrt = F/π . After all
these reflections, during which the position of the movable
mirror is essentially fixed, the field transfers a momentum I
to the movable mirror (a radiation-pressure kick). The optical
field can thus escape the cavity after a time equal to 1/κ =
(2L/c)Nrt and then waits in an engineered loop before being
initialized again. During consecutive kicks the mirror freely
evolves as x(t) = x(t0) cos ωt + p(t0)/(mω) sin ωt . Following
Refs. [23,24] for every radiation-pressure kick the field picks
up an additional phase due to the movable mirror changing its
position. Without losing generality, we suppose the mirror
initially at the origin: at the first kick we have x(t0) = 0,
p(t0) = I, and consequently the position evolves as x(t) =
I/(mω) sin ωt until the second kick. The additional phase
shift of the field escaping the cavity after N light kicks on
the mirror, occurring at times tj = 2jπ/(Nω), results ϕc =
2kf Nrt

∑N−1
i=0 x(ti), where x(ti) are the classical positions

of the mirror at times ti . In Fig. 3 we show a loop in the
classical phase space of the harmonic oscillator in the case
of four and six kicks. We remark that the generalization to a
generic initial condition is straightforward by simply applying
a translation in phase space. The positions that appear ϕc can
be computed through geometric considerations and depicted in
the classical phase space of the mirror with polar coordinates
[R(ti),ϑ(ti)]. At the first kick R(t0) = 0 and ϑ(t0) = 0 while,
for the consecutive kicks, i.e., i = 1, . . . ,(N − 1), we have

R(ti) =
√

ζ 2 + 2R(ti−1)ζ cos [ϑ(ti−1)] + R(ti−1)2,

ϑ(ti) = 2π

N + arcsin

[
R(ti−1)

R(ti)
sin [ϑ(ti−1)]

]
,

(A6)

where ζ = I/(mω) quantifies the classical displacement.
Since x(ti) = R(ti) sin[ϑ(ti)], by numerically solving this
recurrence it can be shown that the sum of the oscillator
positions corresponds to (I/2mω) N cot (π/N ). Therefore,
we obtain for the classical phase

ϕc = kf Nrt
I

mω
N cot

(
π

N

)
. (A7)

FIG. 3. Phase space description of the dynamics of the light
pulse–mechanical oscillator interaction in the classical picture. (a)
Four-pulse interaction model: the oscillator is assumed at rest at the
origin of the phase space. The oscillator gains a momentum I due
to the interaction at t = t0. Then it freely evolves to the maximum
amplitude x(t1) when the second pulse happens, this causes another
momentum gain of the oscillator at time t1. At this time the oscillator
evolves to x(t2) = x(t1) where the third pulse interaction brings its
momentum to zero. Now, it evolves to x(t3) = 0 where its momentum
becomes −I. Finally, the oscillator is brought back to the origin of
the phase space by the last pulse-oscillator interaction. (b) A similar
dynamics is plotted for the six pulse interaction.

Quantum vs classical phases. The momentum transferred
at each kick to the movable mirror can be written as I =
2Nrt(E0/c). In order to compare the classical and quantum
results, we use E0 = Np�ωf . The classical phase shift is thus
rephrased as

ϕc = 2�N2
rtk

2
f Np

mω
N cot

( π

N
)
. (A8)

By comparing Eqs. (A4) and (A8) the quantum and classical
optical phases generally differ, because Eq. (A4) holds also
for strong coupling regimes: the +1 term in Eq. (A5) reveals
quantum peculiarities due to the quantization of both a field
and mechanical oscillator. Nevertheless, for the most common
experimental conditions, i.e., small coupling (λ 
 1) and
strong laser sources (Np � 1), quantum and classical phases
coincide.

Trotter-Suzuki expansion. In order to mathematically derive
the description of a continuous interaction from the discretized
one, we observe that the rescaled limit N → ∞ in Eq. (A1)
looks like Trotter’s expansion [31,32] for the evolution opera-
tor Û = e−iĤ t/�. Indeed, by algebraic manipulations we get

e− i
�

Ĥ t = lim
N→∞

(
e− i

�
Ĥ0t/N e− i

�
ĤI t/N )N

= lim
N→∞

N−1∏
j=0

(
e− i

�
Ĥ0tj/N e− i

�
ĤI t/N e− i

�
Ĥ0tj/N )

= lim
N→∞

N−1∏
j=0

eig0n̂(x̂ cos θj +p̂ sin θj ) t
N , (A9)
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where θj = ωjt/N . Considering an interaction that lasts τ and
bearing in mind that κ = ω/2π , it then follows that n̂g0τ =
n̂λ = η̂. We have thus verified that the displacement related to
the unitary operator in Eq. (A9) coincides with the circle loop
in Eq. (A2). The continuous dynamics can be recovered from
the pulsed regime: it is sufficient to keep the light inside the
cavity for an interaction time equal to τ in order to implement a
displacement ξ̂cont. Also, since we have just established the link
between a continuous displacement operation and the unitary
operator of the system, the correspondence between classical
and quantum phases is expected to hold still in the case of a
continuous interaction.

APPENDIX B: DYNAMICS OF THE SYSTEM IN CASE
OF A CONTINUOUS INTERACTION

We will assume field and mirror initially in the state
|�(0)〉 = |α〉f ⊗ |γ 〉m with |γ 〉m a coherent state of the
oscillator.

Quantum picture. The evolution of the state determined by
Û is given by [11]

|�(t)〉 = e− |α|2
2

∞∑
n=0

αn

√
n!

eik2n2(ωt−sin ωt)

× eikn[γR sin ωt+γI (1−cos ωt)]|n〉f ⊗ |�n(t)〉m, (B1)

where |n〉f is a Fock state of the cavity field and |�n(t)〉m =
|γ e−iωt + kn(1 − e−iωt )〉m is the displaced coherent state of
the mechanical oscillator. γR and γI are, respectively, the real
and imaginary part of γ . By tracing out the mechanical degrees
of freedom, we obtain the reduced density operator for the
field from which we get the mean value of the optical field
(〈â〉 = Tr[âρ̂f ]) and the acquired phase at time t ,

ϕq(γ,t) = 2k[γR sin ωt + γI (1 − cos ωt)] + k2(ωt − sin ωt)

+ Np sin[2k2(ωt − sin ωt)]. (B2)

For closed loops this result coincides with the one given in the
main text. For completeness we also derive the mean values of
the oscillator position and momentum:

〈x̂(t)〉 =
√

2γR cos ωt +
√

2γI sin ωt +
√

2Npk(1 − cos ωt),

〈p̂(t)〉 =
√

2γI cos ωt −
√

2γR sin ωt +
√

2Npk sin ωt.

(B3)

Classical picture. We verified that in the pulsed regime
quantum and classical phases coincide in certain limits. Trotter
expansion suggested this to hold also in the continuous case.
We show in detail that not only this is true for closed loops, but
also at every time of the evolution. From a classical perspective
by solving the associated Hamilton equations to Hc we obtain
the equation of motion

x(t) = x(0) cos ωt + p(0)

mω
sin ωt + E0

mω2L
(1 − cos ωt).

(B4)

By comparing Eq. (B4) with Eq. (B3) we see that the dynamics
of the mechanical oscillator is harmonic and classical and
quantum pictures coincide, even if second order momenta are
different. The classical phase shift for a continuous interaction

results to be

ϕc(x(0),p(0),t) = 2
ωf

c

1

dτ̃

∫ t

0
x(τ )dτ

= ωf

Lω

[
x(0) sin ωt + p(0)

mω
(1 − cos ωt)

]

+ ωf

ω3mL2
E0(ωt − sin ωt). (B5)

Quantum vs classical phases. By using the optomechanical
parameters and E0 = �ωf Np, we rephrase Eq. (B5) as

ϕc(x(0),p(0),t) = k

√
2mω

�

[
x(0) sin ωt + p(0)

mω
(1 − cos ωt)

]

+ 2Npk2(ωt − sin ωt). (B6)

Classical and quantum phases coincide at every time t for every
initial condition in the limit λ 
 1 and Np � 1. To completely
access the comparison, we remark that the initial displaced
Gaussian quantum state |γ 〉m corresponds to the classi-
cal boundary conditions x(0) = √

2γR

√
�/(mω) and p(0) =√

2γI

√
�mω. This equality between the classical and the quan-

tum result for the phase guarantees the same loss and revival
of classical and quantum visibilities due to thermal effect.

APPENDIX C: SEMICLASSICAL APPROACH

We first consider a quantum field and a classical oscillator.
The field Hamiltonian in a frame rotating at frequency ωf

can be written as Ĥf = εâ†âx(t), with x(t) as the classical
equation of motion of the oscillator and ε = �ωf /L as the
resulting coupling constant. If the field is initially in the
coherent state |α〉f , the field density matrix will read

ρ̂f (t) = e−|α|2 ∑
n,m

αnα∗m

√
n!m!

e− i
�

ε(n−m)
∫ t

0 x(τ )dτ |n〉f 〈m| (C1)

and the mean value of the optical field, which gives us the
acquired optical phase, is

〈â〉 = αe− i
�

ε
∫ t

0 x(τ )dτ . (C2)

If we model the classical mirror as a harmonic oscillator driven
by a constant force E0/L as in Eq. (5), we can safely substitute
the dynamics in Eq. (B4) into Eq. (C2) obtaining

〈â〉 = αe−iϕ(t), (C3)

where the phase ϕ(t) coincides with the classical phase showed
in Eq. (B5). From Eq. (C3) we deduce that when the field is
quantized and the oscillator is classical we regain the fully
classical result for the phase.

We now show that the same happens for the inverse
situation, when the field is described classically and the mirror
quantum mechanically. In this case, the phase acquired by the
optical field is given by

ϕ(t) = 2
kf

dτ̃

∫ t

0
〈x̂(τ )〉dτ, (C4)

i.e., the integral over the interaction time of the mean value of
the oscillator position. If we assume the mirror initially in a co-
herent state |�̃(0)〉 = |γR + iγI 〉, its evolution under the quan-
tum Hamiltonian Ĥm = �ωb̂†b̂ − (E0/L)

√
�/(2mω)(b̂† + b̂)
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reads

|�̃(t)〉 = eik2N2
p(ωt−sin ωt)ei2kNp[γI (1−cos ωt)+γR sin ωt]

× |γ e−iωt + kNp(1 − e−iωt )〉, (C5)

where we used kNp = E0/(Lω
√

2�mω) to express the result
in terms of the characteristic optomechanical parameters. It
can be verified that the mean value of the position operator
given by Eq. (C5) coincides with the results found in Eqs. (B3)
and (B4) within a fully quantum and/or classical description
of the interaction. Hence, the phase acquired by the optical
field in Eq. (C4) coincides with the classical result reported in
Eq. (B6). Again, in terms of optical phase shift a semiclassical
description provides the same result of the fully classical
one. We can then infer that such a semiclassical description
is insufficient to describe all features of the full interaction.
Similar considerations can be extended to the visibility.

APPENDIX D: QUANTUM VISIBILITY

In this Appendix we give all the details on the calculations
that lead to the quantum visibility measured in the interfero-
metric scheme depicted in Fig. 2(a). If the field is initially in a
coherent state and the mirror is defined by a thermal state, the
density matrix of the system at time t is

ρ̂(t) = e−|α|2 ∑
m,n

αnα∗m

√
n!m!

eik2(ωt−sin ωt)(n2−m2)

× ekn(γ b†−γ ∗b)ρ̂m(0)ekm(γ ∗b−γ b†)|n〉f 〈m|. (D1)

By tracing out the mechanical degrees of freedom, we obtain

ρ̂f (t) = e−|α|2 ∑
m,n

αnα∗m

√
n!m!

eik2(n2−m2)(ωt−sin ωt)

× e−k2(n−m)2(1−cos ωt)(2n̄+1)|n〉f 〈m|. (D2)

Michelson interferometry depicted in Fig. 2(a) corresponds
to projecting on quadrature operator eigenstates X̂φ =
(1/

√
2)[âout(1)e

−iφ + â
†
out(1)e

iφ], where âout(1) is the field oper-
ator that exits the cavity with the mobile mirror. By computing
the mean value 〈X̂φ〉 = Tr[X̂φρ̂f ] we find the intensities on
the two detectors:

I a
b (t) = I0

2

(
1 ± 〈X̂φ〉√

2

)

= I0

2

(
1 ∓ e−(k2[1−cos ωt](2n̄+1)+Np{1−cos[2k2(ωt−sin ωt)]})

× cos{k2(ωt − sin ωt)

−Np sin[2k2(ωt − sin ωt)] − φ}). (D3)

It is then straightforward to recover the expression in
Eq. (4).

APPENDIX E: CLASSICAL VISIBILITY WITH NOISE

Here we give more details on the derivation of Eq. (13).
Supposing that the energy carried by the field in the classical
hamiltonian Hc is subjected to a Gaussian noise [29] which
follows the distribution P(ε), we need to further average the
intensity obtaining

〈
I a
b (t)

〉 = I0

2

{
1 ± e

− χ2

β
(1−cos ωt)

e
− ω2

ω2
f

χ4E2
0�2(ωt−sin ωt)2

×
[

cos

(
ω

ωf

E0χ
2(ωt − sin ωt) − φ

)

− ω

ωf

χ2E0�
2(ωt − sin ωt)

× sin

(
ω

ωf

E0χ
2(ωt − sin ωt) − φ

)]}
. (E1)

By operating through the phase shifter we can make φ =
ω
ωf

E0χ
2(ωt − sin ωt), and the classical visibility will then read

like

ν̃c(t) = e
− χ2

β
(1−cos ωt)

e
− ω2

ω2
f

χ4E2
0�2(ωt−sin ωt)2

, (E2)

which exhibits also a loss due to the Kerr nonlinearity
experienced by the classical noisy field.

Quantum vs classical visibilities. Now we rephrase the
classical result for the visibility in terms of the characteristic
optomechanical parameters

ν̃c(t) = e
− 2k2

β�ω
(1−cos ωt)

e−2N2
pk4�2(ωt−sin ωt)2

, (E3)

where we have used χ = √
2/�ωk and E0 = �ωf Np. We

highlight that the field energy distribution E(ε) = E0(1 − ε)
is equivalent to the photon distribution N (ε) = Np(1 − ε)
which has variance N2

p�2. Therefore, in order to make the
classical noise closer to the Poissonian (quantum) noise we set
�2 = 1/Np, obtaining

ν̃c(t) = e
− 2k2

β�ω
(1−cos ωt)

e−2Npk4(ωt−sin ωt)2
, (E4)

which coincides with the result reported in the main
text.

We finally underline that having taken the mirror initially
at its rest position does not affect the generality of our
result in Eq. (E3), indeed we can always reconstruct the
interference in Eq. (E1) by adapting the phase shifter φ

to cancel out the extra initial contribution coming from
Eq. (B5).
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