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We introduce a family of asymmetric Laguerre-Gaussian (aLG) laser beams. The beams have been derived
via a complex-valued shift of conventional LG beams in the Cartesian plane. While propagating in a uniform
medium, the first bright ring of the aLG beam becomes less asymmetric and the energy is redistributed toward
peripheral diffraction rings. The projection of the orbital angular momentum (OAM) onto the optical axis is
calculated. The OAM is shown to grow quadratically with increasing asymmetry parameter of the aLG beam,
which equals the ratio of the shift to the waist radius. Conditions for the OAM becoming equal to the topological
charge have been derived. For aLG beams with zero radial index, we have deduced an expression to define the
intensity maximum coordinates and shown the crescent-shaped intensity pattern to rotate during propagation.
Results of the experimental generation and rotation of aLG beams agree well with theoretical predictions.

DOI: 10.1103/PhysRevA.93.063858

I. INTRODUCTION

Laguerre-Gaussian (LG) modes comprise a well-studied
class of light fields. The transverse intensity profile of these
fields is invariant to the propagation in a uniform medium
and shows a radial symmetry. The LG modes have found
use in areas such as optical micromanipulation, quantum
optics, and optical communications. Each mode of the class is
characterized by two indices—radial and azimuthal, the latter
defining the orbital angular momentum (OAM).

There is a long history and a considerable bulk of research
dealing with LG modes, and articles concerned with the study
of their properties [1–5], generation [6–8], and uses [9–14]
have been actively published.

For instance, the propagation of composite vortex beams
generated by coaxial superposition of LG beams with the
identical location and size of the waist was discussed in [1].
Fields composed of equidistant arrays of solitary or tandem
low-intensity spots located on diffractive rings have been
generated. The physical meaning of the radial index of LG
modes was looked into in [2], whereas [3] has studied in
which way the three-dimensional intensity distribution of
sharply focused LG beams depends on the homogeneous
polarization (linear and circular) and topological charge. The
polarization type was shown to have the greatest effect on the
longitudinal E-field component, with the total intensity pattern
showing the largest variations vs polarization when using the
first-order vortex phase. The nonparaxial propagation of LG
modes in the presence of an aperture was discussed in [4]. The
diffraction by the aperture was shown to essentially distort the
near-field pattern, while having an unessential effect on the
far-field intensity (unless the aperture blocked off a substantial
proportion of the beam). Properties of light fields that carried
the OAM, had no radial symmetry, and were affected by a
harmonic potential were analyzed in [5]. A technique for
generating LG modes in a cavity of a solid-state laser was
proposed in [6]. Generation of lower-order LG modes with
the ability to control the topological charge by means of a
solid-state laser was discussed in [7]. LG modes with nonzero
radial index were generated by means of spiral zone plates
in [8]. In [9] an operator was considered which was linked

with the radial index in the Laguerre-Gauss modes of a two-
dimensional harmonic oscillator in cylindrical coordinates. In
[10], the replacement of a conventional Gaussian beam with a
LG beam was shown to result in a reduced Doppler width in the
absorption spectrum of 85Rb and 87Rb atoms. The reduction
of the thermal noise effect on gravitational wave detectors
with use of the LG modes was discussed in [11]. Spin-orbital
coupling of ultracold atoms with the aid of LG beams was
reported in [12]. The interaction of a LG beam with an atom
or a diatomic molecule was studied in [13]. The transfer of
the orbital angular momentum between the mass center and
internal motion of a sufficiently cooled atom or molecule
has been shown to take place. A three-dimensional off-axis
optical trap for dielectric submicron microbeads created with
a single LG beam was described in [14]. The classical
communication by means of LG modes at a 3-km distance in a
turbulent atmosphere was demonstrated in [15]. The quantum
communication with entangled twisted photons was described
in [16]. Note that in addition to laser beams, electron beams
[17] and even neutron beams [18] can carry the OAM.

The above review of the latest publications relating to LG
beams suggests that not only do they find new applications
but also form a basis for constructing advanced light fields
that have been studied theoretically so far. Alongside looking
into the properties of various superpositions of the familiar
laser beams, it is possible to obtain novel beams of interest
by simply performing a complex-valued shift of their complex
amplitude in the Cartesian plane. It is known that if a paraxial
point source is shifted along the optical axis by an imaginary
distance, then instead of a parabolic wave, a Gaussian beam is
generated [19]. Asymmetric diffraction-free Bessel modes that
produce a crescent-shaped transverse intensity pattern have
been generated in a similar way [20]. However, Bessel beams
have infinite energy and therefore can be physically realized
only approximately. In addition, the dependence of the OAM
on the asymmetry parameter is linear for Bessel beams [20],
while for the asymmetric Laguerre-Gaussian beams under
study this dependence is parabolic.

In this work, also making use of a complex-valued shift in
the Cartesian plane, we conduct theoretical and experimental
studies of asymmetric Laguerre-Gaussian (aLG) beams. As in
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conventional LG beams—and as distinct from Bessel beams—
their transverse intensity pattern consists of a finite number of
diffraction rings, which, however, have a nonuniform intensity
distribution. As the aLG mode propagates in a uniform
medium, the intensity of the peripheral ring increases. The
OAM and power of the aLG beam is calculated analytically.
In particular, we analyze aLG beams with zero radial index
that have a crescent-shaped transverse intensity pattern. For
such beams, an analytic relation for the coordinates of
the intensity peak is derived and the diffraction pattern is
shown to rotate upon propagation in a uniform medium.
An aLG beam with zero radial index is generated using a
spatial light modulator and experimentally shown to rotate
in space during propagation. A feasibility to generate the
superposition of misaligned beams that has a near-Gaussian
intensity pattern and rotates as a whole during propagation in
space is demonstrated.

Elliptical beams [21] have been known to constitute the
most general family of paraxial laser beams. Circular beams
[22] and Ince-Gaussian beams [23] are partial cases of the
elliptical beams. At definite parameters these beams carry
a nonzero OAM, but these beams cannot be reduced to LG
modes, nor to elegant or asymmetric LG beams. In addition,
the Ince polynomials do not have a closed form, making it
difficult to derive analytical expressions for them. For example,
a closed expression for the OAM of an elliptical vortex [21]
cannot be obtained.

II. ASYMMETRIC LAGUERRE-GAUSSIAN BEAMS

The complex amplitude of a conventional LG beam in polar
coordinates in the initial plane is given by [24]

Emn(r,ϕ,z = 0) =
(√

2r

w0

)n

Ln
m

(
2r2

w2
0

)
exp

(
− r2

w2
0

+ inϕ

)
,

(1)
where (r , ϕ, z) are cylindrical coordinates, w0 is the Gaussian
beam waist, n is the topological charge of an optical vortex,
and Ln

m(x) is an adjoint Laguerre polynomial.
If the beam is shifted by x0 along the x coordinate and by

y0 along the y coordinate (x0 and y0 can take complex values),
the beam amplitude in the Cartesian coordinates takes the form

Emn(x,y,z = 0) =
(√
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where s2 = (x−x0)2 + (y−y0)2.
When propagating in free space at an arbitrary distance z,

the beam complex amplitude takes the form

Emn(x,y,z) = w(0)
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, (3)
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FIG. 1. The transverse intensity pattern of an aLG beam in
different planes for the parameters: wavelength λ = 532 nm, waist
radius w0 = 10λ, beam index (m, n) = (8, 7), transverse shifts x0 =
0 and y0 = iλ; the on-axis distances are z = 0λ (a), z = zR/4 =
25πλ (b), z = zR/2 = 50πλ (c), z = zR = 100πλ (d), z = 3zR/2 =
150πλ (e), and z = 5zR/2 = 250πλ (f).

where

w(z) = w0

√
1 +

(
z

zR

)2

,

R(z) = z

[
1 +

(
zR

z

)2
]
, (4)

ζ (z) = arctan

(
z

zR

)
.

zR = kw2
0/2 is the Rayleigh range and k = 2π/λ is the wave

number of light of wavelength λ.
If the shifts x0 and y0 are not real valued, then the

magnitudes s2, w(z), and R(z) do not have the same physical
meaning as for real x0 and y0, no more, respectively, denoting
a distance from the optical axis, a beam width, and a wavefront
curvature radius. Besides, unlike conventional LG beams, the
transverse intensity pattern of such a beam is not radially
symmetric. Figure 1 depicts simulated intensity patterns of
beam (3) at different distances for the following values of
parameters: wavelength, λ = 532 nm; waist radius, w0 = 10λ;
beam index (m, n) = (8, 7); transverse shifts x0 = 0, y0 = iλ;
and the on-axis distances are z = 0λ [Fig. 1(a)], z = zR/4 =
25πλ [Fig. 1(b)], z = zR/2 = 50πλ [Fig. 1(c)], z = zR =
100πλ [Fig. 1(d)], z = 3zR/2 = 150πλ [Fig. 1(e)], and z =
5zR/2 = 250πλ [Fig. 1(f)]. The computational domain size is
2R, where R = 60λ [Figs. 1(a) and 1(b)], 70λ [Fig. 1(c)], 80λ

[Fig. 1(d)], 100λ [Fig. 1(e)], and 150λ [Fig. 1(f)]. At the above
parameters, the Rayleigh range is zR = 100πλ.

Figure 1 suggests that upon propagation the first crescent-
shaped ring nearly turns into a ring, although this is not the
case for the peripheral rings. As the aLG beam propagates,
the energy is also seen to be redistributed from the central to
peripheral crescents.
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III. POWER OF A SHIFTED LAGUERRE-GAUSSIAN BEAM

The power of a paraxial light beam can be expressed through
both the complex amplitude E and the angular spectrum of
plane waves, A:

W =
∫ −∞

−∞

∫ +∞

−∞
E∗Edxdy = λ2

∫ −∞

−∞

∫ +∞

−∞
A∗Adαdβ,

(5)

where

A(α,β) = λ−2
∫ +∞

−∞

∫ +∞

−∞
E(x,y,0)

× exp[−ik(αx + βy)]dxdy. (6)

For an aLG beam, the power can be more conveniently
calculated in the spectral plane. First, we derive a relation for
the angular spectrum of a nonshifted beam:
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where (r , ϕ) and (ρ, θ ) are polar coordinates in the initial plane
and in the Fourier plane, respectively (ρ is a dimensionless
coordinate).

We shall make use of a reference integral ([25],
Eq. 7.421.4):∫ ∞

0
xν+1 exp(−βx2)Lν

n(αx2)Jν(xy)dx

= (β − α)nyν
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(
− y2

4β

)
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n

[
αy2

4β(α − β)

]
. (8)

In view of (8), the angular spectrum of plane waves of a LG
beam is

A(ρ,θ ) = C0ρ
nLn

m

[
(kw0ρ)2

2

]
exp

[
− (kw0ρ)2

4
+ inθ

]
, (9)

where

C0 = (−i)n(−1)m
(kw0)n+2

22+n/2π
. (10)

For the shifted beam in Eq. (2), the angular spectrum of the
plane waves takes the form

A(ρ,θ ) = C0ρ
n exp
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4
+ inθ

]

×Ln
m
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(kw0ρ)2

2

]
exp [−ikρ(x0 cos θ + y0 sin θ )].

(11)

Making use of Eq. (11), the power of the aLG beam is given
by

W = 2πλ2|C0|2
∫ ∞

0
ρ2n+1 exp

[
− (kw0ρ)2

2

]

×
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m
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2

]}2

J0(2ikD0ρ)dρ, (12)

where D0 = [(Imx0)2 + (Imy0)2]1/2.
Integral (12) can be calculated using a reference integral

(Eq. 2.9.12.14 in [26]), which, following a numerical checkup,
reads as ∫ ∞

0
x(γ+δ)/2e−cxJγ+δ(b

√
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ν(cx)dx
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4c
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μ

(
b2

4c

)
, (13)

where Rec > 0, Re(γ + δ) > −1, |argb| < π . In (13), we
change the integration variable x → x2 and set μ = m, γ =
n, δ = −n, ν = m + n, c = (kw0)2/2, and b = 2ikD0. Then,
considering the identity

L−σ
μ (x) ≡ [(μ − σ )!/μ!](−x)σLσ

μ−σ (x),

we obtain the beam power:

W = πw2
0

2

(m + n)!

m!
× exp

(
2D2

0

w2
0

)
L0

m+n

×
(

−2D2
0

w2
0

)
L0

m

(
−2D2

0

w2
0

)
. (14)

Although being proportional to the Laguerre polynomials,
the beam power cannot take negative or zero values. The reason
is that 2(D0/w0)2 � 0, whereas the Laguerre polynomials are
always positive in the nonpositive domain:

Lm(−ξ ) =
m∑

k=0

(−1)k

k!
Ck

m(−ξ )k =
m∑

k=0

Ck
m

ξk

k!

= 1 +
m∑

k=1

Ck
m

ξk

k!︸ ︷︷ ︸
�0

� 1, (15)

where Ck
m are binomial coefficients.

From (15) and the presence of the factor exp[2(D0/w0)2] in
(14), we can infer that a complex-valued shift always results
in an increased power of the beam.

In a particular case, when the beam is shifted by a real
distance, the parameter D0 takes a zero value and the power
equals [πw2

0/2][(m + n)!/m!], which is coincident with the
power of LG beams reported in [24] within a constant.

The increase in the power of the aLG beam with increasing
asymmetry has no physical meaning. However, we shall use
Eq. (14) in Sec. IV to calculate the normalized OAM.
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IV. ORBITAL ANGULAR MOMENTUM OF A SHIFTED LAGUERRE-GAUSSIAN BEAM

Let us derive a relation for the projection of the OAM of an aLG beam on the optical axis. Note that the rest of the projections
of a paraxial beam equal zero. This is also convenient to do using the angular spectrum of plane waves:

Jz = −iλ2
∫ ∞

0

∫ 2π

0
A∗ ∂A

∂θ
ρdρdθ. (16)

Substituting (11) in (16) yields

Jz = −iλ2|C0|2
∫ ∞
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We can single out a term proportional to the power:
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The inner integral is expressed through Bessel functions [27]. Then, (18) takes the form
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[
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m

[
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The integral in (19) can be calculated in a way similar to the beam power integral by expressing it as a derivative with respect
to D0:

Jz = nW − 4π2λ|C0|2 Im(x∗
0y0)
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The integral in (20) can be taken, being coincident with the power integral:

Jz = nW − 4π2λ|C0|2 Im(x∗
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After taking the derivative, the normalized OAM takes the form

Jz

W
= n + 2Im(x∗

0y0)

w2
0

⎡
⎣L1

m

(
− 2D2

0

w2
0

)
Lm

(
− 2D2

0

w2
0

) +
L1

m+n

(
− 2D2

0

w2
0

)
Lm+n

(
− 2D2

0

w2
0

) − 1

⎤
⎦. (22)

The physical meaning of the second term on the right-hand
side of Eq. (22) can be better understood at n = m = 0. In this
case, the laser beam transforms into an asymmetric Gaussian
beam. The first term in Eq. (22) is equal to zero (n = 0),
while the second one reads as 4Im(x∗

0y0)/w2
0. It means that if

the shift of the Gaussian beam is real (i.e., x0 = y0 = aw0),
then the Gaussian beam is just displaced and not deformed;
i.e., Jz/W = 0. If both shifts are purely imaginary along
both coordinates (i.e., x0 = y0 = iaw0), then the shape of the
Gaussian beam is distorted, while we still have Jz/W = 0.
Only when the shift is real along one coordinate and imaginary

along the other (i.e., ix0 = y0 = iaw0), is the Gaussian beam
then displaced, with its shape being distorted and it acquiring
the OAM: Jz/W = 4a2. This is also true for the aLG-beam at
any other values of n and m.

From (22), the normalized OAM is seen to be independent
of the wavelength and fully defined by the ratio of the shifts to
the waist radius, i.e., by x0/w0 and y0/w0.

The increase or decrease of the normalized OAM can be
shown to be fully determined by the sign of the magnitude
Im(x∗

0y0), because the expression in the square brackets in
(22) is always larger than or equal to 1.
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FIG. 2. Normalized OAM vs normalized asymmetry parameter
a(n = 5).

The normalized OAM depends simultaneously on several
parameters, namely, two indices of the Laguerre polynomial
and the real and imaginary shifts in the Cartesian coordinates.
Let us analyze a particular case of purely imaginary magnitude
x∗

0y0, whereas the complex shifts have the same absolute value.
Let x0 = aw0exp(iυ), y0 = ix0, where a is a real number (i.e.,
a = |x0/w0|). Then, the normalized OAM is given by

Jz

W
= n − ξ

[
L1

m(ξ )

Lm(ξ )
+ L1

m+n(ξ )

Lm+n(ξ )
− 1

]
, (23)

where ξ = −2a2. The a parameter can be referred to as an
asymmetry parameter of the aLG beam. Equation (23) suggests
that at |ξ | � 1 the normalized OAM approximately equals
Jz/W ≈ n−ξ , depending quadratically on the asymmetry
parameter a, as is confirmed by the graph in Fig. 2 plotted
using Eq. (23) for m = 3 and n = 5.

From Fig. 2 it is seen that as distinct from conventional LG
beams, the OAM of aLG beams varies in a continuous manner,
taking integer and fractional values.

From (22) it follows that if x∗
0y0 is a real number, in

a similar way to radially symmetric optical vortices, the
normalized OAM is coincident with the topological charge
n, although the beam has no radial symmetry (if x0 and y0

are purely imaginary). Thus, Fig. 3 depicts intensity patterns

10x
y

10x
y

10x
y

10x
y

10x
y

10x
y

(d) (e) (f)

(a) (b) (c)

FIG. 3. Intensity patterns in the plane z = 0 for the aLG beams at
the following parameters: wavelength λ = 532 nm, waist radius w =
10λ, beam index (m, n) = (3, 5); at transverse shifts x0 = 0.01wi

and y0 = 0.01wi(a), x0 = 0.05wi and y0 = 0.05wi(b), x0 = 0.1wi

and y0 = 0.1wi(c), x0 = 0.2wi and y0 = 0.2wi (d), x0 = 0.5wi and
y0 = 0.5wi(e), and x0 = 2wi and y0 = 2wi(f).

in the plane z = 0 for the aLG beams with the following
parameters: wavelength λ = 532 nm, waist radius w = 10λ,
beam index (m, n) = (3, 5), transverse shifts x0 = i0.01w

and y0 = i0.01w [Fig. 3(a)], x0 = 0.05wi and y0 = 0.05wi

[Fig. 3(b)], x0 = 0.1wi and y0 = 0.1wi [Fig. 3(c)], x0 =
0.2wi and y0 = 0.2wi [Fig. 3(d)], x0 = 0.5wi and y0 = 0.5wi

[Fig. 3(e)], and x0 = 2wi and y0 = 2wi [Fig. 3(f)]. The com-
putational domain size is 2R, where R = 50λ. Equation (22)
suggests that in all pictures in Fig. 3, the OAM should be equal
to 5. From the numerical simulation, the OAM was found to
equal 4.999 [Figs. 3(a) and 3(d)] and 4.998 [Figs. 3(e) and
3(f)].

All the beams in Fig. 3 are seen to be different in shape,
showing near-radially symmetric diffraction rings in Fig. 3(a),
an intensity crescent enclosed by peripheral rings in Figs. 3(b)
and 3(c), a crescent with disintegrated peripheral rings in
Fig. 3(d), a crescent with no peripheral rings in Fig. 3(e),
and an elliptic intensity spot in Fig. 3(f). However, despite
being different in shape, all these beams have the same OAM.

Note that although the beam in Fig. 3(f) looks like an
elliptical Gaussian beam, this beam has the index (m, n) =
(3, 5) and its OAM equals 5. For the explanation of the shape
of the beam in Fig. 3(f) we use Eq. (11). From Eq. (11)
it follows that for purely imaginary large shifts along both
coordinates (x0 = y0 = 2wi), the second exponent in Eq. (11)
grows the fastest with increasing ρ at θ = π/4. Thus, only a
proportion of the spectrum in (11) in the first quadrant near
the angle θ = π/4 gives an effective contribution to the field
of Eq. (3). Therefore, the field (3) is effectively generated only
in the fourth quadrant with its center positioned at the angle
ϕ = −π/4. Since only a small proportion of spectrum (11)
contributes to field (3), there are no narrow bright rings in
Fig. 3(f) that are seen in Fig. 3(a).

V. PARAXIAL LAGUERRE-GAUSSIAN BEAMS IN THE
FORM OF A ROTATING CRESCENT

Equation (3) is essentially simplified at m = 0, with the
diffraction pattern having a single ring. Then, the intensity
takes the form

I0n(x,y,z)

= |E|2 = w2(0)

w2(z)

[ √
2

w2(z)

]n

exp

[
2

(Imx0)2 + (Imy0)2

w2(z)

]

× [(u + Imy0)2 + (v − Imx0)2]n

× exp

{
−2(u2 + v2)

w2(z)
+ 2k[(Imx0)u + (Imy0)v]

R(z)

}
,

(24)

where u = x−Rex0, v = y−Rey0.
Considering that the intensity cannot be negative, the

intensity zeros are its minima. From (24) it is seen that
as the aLG beam propagates in a uniform space at n >

0, the central intensity minimum is observed at the point
(xmin, ymin) = (Rex0−Imy0, Rey0 + Imx0), forming a phase
singularity. Setting the partial Cartesian derivatives of intensity
(24) equal to zero, we can show that at n > 0 the location of
the intensity peak is a function of the distance z traveled and
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rotates about the minimum:

ymax − Rey0 − Imx0

xmax − Rex0 + Imy0
= (Imy0)z − (Imx0)zR

(Imx0)z + (Imy0)zR

, (25)

where (xmax, ymax) are the coordinates of the maximum
intensity point.

Let us introduce a new coordinate system which is shifted
and rotated around the initial system by an angle defined by
the distance traveled, z:(

ξ

η

)
=
(

cos ϕ sin ϕ

− sin ϕ cos ϕ

)(
x − Rex0 + Imy0

y − Rey0 − Imx0

)
, (26)

where

ϕ = arctan

[
(Imy0)z − (Imx0)zR

(Imx0)z + (Imy0)zR

]
,

cos ϕ = (Imx0)z + (Imy0)zR

D0

√
z2 + z2

R

, (27)

sin ϕ = (Imy0)z − (Imx0)zR

D0

√
z2 + z2

R

.

It follows from Eq. (27), that if Im(y0) = Im(x0), then in the
initial plane (z = 0) the light crescent is rotated by the angle
−π/4, which is confirmed by Fig. 3.

In the new coordinate system (ξ , η), intensity (24) takes the
form

I0n(ξ,η,z) = |E|2 = w2(0)

w2(z)

[ √
2

w2(z)

]n

(ξ 2 + η2)n

× exp

⎡
⎣−2(ξ 2 + η2)

w2(z)
+ 2kD0√

z2 + z2
R

ξ

⎤
⎦. (28)

Such a function can be shown to have three stationary
points. The first point is a minimum at ξ = 0, η = 0, which
corresponds to the above-mentioned point (xmin, ymin). The
second point is a maximum with the coordinates⎧⎨

⎩ξmax = 1

2

w(z)

w(0)

(
D0 +

√
D2

0 + 2nw2
0

)
ηmax = 0

, (29)

and the third one is a saddle point with the coordinates⎧⎨
⎩ξsaddle = 1

2

w(z)

w(0)

(
D0 −

√
D2

0 + 2nw2
0

)
ηsaddle = 0

, (30)

where there is an intensity maximum with respect to the
variable ξ and a minimum with respect to the variable η. The
intensity maximum with respect to ξ means that the point is
found on a bright ring, whereas the minimum with respect to
η is where the minimal intensity is found on the ring.

It follows from Eqs. (28) and (29) that the intensity
decreases from the maximum by e times in the points, which
are located on a ring at the following angles from the intensity

maximum:

θe = ±2 arcsin

⎛
⎜⎝ 1√

8n

√√√√√1 + 2n
w2

0

D2
0

− 1

⎞
⎟⎠.

This means that increasing of the asymmetry parameter
leads to decreasing of the length of the arc of the light crescent.
If D0 	 w0, then the intensity does not decrease e times on the
whole ring. If D0 � w0, then, vice versa, the intensity drops
e times at θe ≈ ±w0/(21/2D0).

From Eqs. (28) and (29) it also follows that having traveled
over a distance z, the maximum intensity drops by a factor of
1 + (z/zR)2.

In the initial coordinate system, the intensity maximum
point has the coordinates

xmax = Rex0 − Imy0

+ (Imx0)z + (Imy0)zR

2zR

(
1 +

√
1 + 2nw2

0

D2
0

)
,

(31)
ymax = Rey0 + Imx0

+ (Imy0)z − (Imx0)zR

2zR

(
1 +

√
1 + 2nw2

0

D2
0

)
.

From (31) it follows that the maximum intensity point
(xmax, ymax) is rotating about the point (xmin, ymin), making
an angle of α0 at the distance

z = zR tan (α0). (32)

Figure 4 shows transverse intensity patterns of the beam
in Eq. (3) with zero radial index m = 0 at different planes
for the following parameters: wavelength λ = 532 nm, waist
radius w0 = 5λ (with the Rayleigh range equal to zR =
25πλ), the topological charge n = 8, transverse shifts
x0 = 0.25λ = w0/20 and y0 = 0.25iλ = iw0/20, on-axis

2x
y

2x
y

2x
y

10x
y

(c) (d)

(a) (b)

FIG. 4. Transverse intensity patterns of beam (3) with zero radial
index m = 0 at different distances for the following parameters: wave-
length λ = 532 nm, waist radius w0 = 5λ, topological charge n = 8,
transverse shifts x0 = 0.25λ = w0/20 and y0 = 0.25iλ = iw0/20;
the on-axis distances are z = 0 (a), zRtan(π/12) (b), zRtan(π/4) =
zR (c), and zR tan(5π/12) (d). The computational domain size is 2R,
where R = 20λ (a), 20λ (b), 20λ (c), and 75λ (d). The black dot
shows the location of the intensity maximum derived from (31).
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distances z = 0 [Fig. 4(a)], zRtan(π/12) [Fig. 4(b)],
zRtan(π/4) = zR [Fig. 4(c)], and zRtan(5π/12) [Fig. 4(d)].
The beam center is at the origin of the coordinates:
(xmin, ymin) = (0, 0). The computational domain size is 2R,
where R = 20λ [Fig. 4(a)], 20λ [Fig. 4(b)], 20λ [Fig. 4(c)],
and 75λ [Fig. 4(d)]. The black dot marks the location of the
intensity maximum, which was calculated using (31). The
white dot marks the location of the minimal intensity or a
phase singularity point.

From (28)–(30) it follows that the ratio of the maximal
intensity on the diffraction ring to a minimal one (in the saddle
point) is defined by the relation

I0n, max

I0n,saddle
=
⎛
⎝
√

D2
0 + 2nw2

0 + D0√
D2

0 + 2nw2
0 − D0

⎞
⎠

2n

× exp

(
2D0

w2
0

√
D2

0 + 2nw2
0

)
. (33)

2
x

y

x

y

2

x

y

2

10
x

y

(c) (d)

(a) (b)

(g) (h)

(e) (f)

1.0

0.0

0.9

0.0

0.5

0.0

0.07

0.0

FIG. 5. Transverse intensity (a,c,e,g) and phase (b,d,f,h) pat-
terns of beam (3) with zero radial index m = 0 at differ-
ent distances z for the following parameters: wavelength λ =
532 nm, waist radius w0 = 5λ, topological charge n = 8, trans-
verse shifts x0 = 5λ = w0 and y0 = 5iλ = iw0; on-axis dis-
tances are z = 0 (a, b), zR tan(π/12) (c,d), zR tan(π/4) = zR (e,f),
and zR tan(5π/12) (g, h). The computational domain size is 2R,
where R = 20λ (a–f), 75λ (g, h). The black dot marks the intensity
maximum derived from (31). In the phase patterns black and white,
respectively, mark −π and +π .

f2

L

L2

L3
L4

SLM

L1

L5
D

CMOS

f1

f3
f3

f4
f4

phase function for SLM

FIG. 6. Experimental setup for generating aLG beams: L is a
solid-state laser (λ = 532 nm); L1, L2, L3, L4, and L5 are lenses with
foci f1 = 250 mm, f2 = 500 mm, f3 = 350 mm, f4 = 150 mm, and
f5 = 280 mm; SLM is a spatial light modulator PLUTO VIS (1920
× 1080 resolution and 8-µm pixels); D is a diaphragm serving as a
spatial filter; CMOS is a video camera, LOMO TC-1000 (3664 ×
2740 resolution and 1.67-µm pixels).

From (33), the asymmetry of the beam is seen to increase
with increasing shift D0. What this means is that with
increasing imaginary shifts Im(x0) and Im(y0) a disintegration
of the bright ring occurs, with the intensity pattern appearing
as an off-center bright spot rotating upon propagation about a
phase singularity point (xmin, ymin). The term “disintegration”
is in quotation marks because the intensity nowhere becomes
zero in the bright ring, as the denominator in (33) never turns
zero at n > 0.

Figure 5 depicts the simulation results for the transverse
intensity pattern and the phase of the same beam as was
depicted in Fig. 4, but with larger shifts: x0 = 5λ = w0

and y0 = 5iλ = iw0. The rest of the parameters remained
unchanged. The black dot marks the intensity maximum
calculated from (31). Color bars confirm that upon propagation
the intensity drops by a factor of 1 + (z/zR)2.

From Fig. 5, an oblong focal spot is seen to be rotated by
respective angles of π/12, π/4, and 5π/12, whereas the phase
singularity center remains at the origin of coordinates.

At m = 0, an aLG beam is similar to an asymmetric Bessel-
Gaussian (aBG) beam [28]. Both beams have the same rotation
velocity defined by (32). Note, however, that with an aBG beam
being more difficult to define analytically, only relationships
for the coordinates of intensity zeros were deduced in [28],
whereas the coordinates of intensity maxima similar to (31)
were not analytically derived. As distinct from a closed-form
relation for the OAM of an aLG beam in Eq. (22), the OAM of
an aBG beam is defined via modified Bessel functions series.
Besides, the OAM of an aLG beam is quadratically dependent
on the asymmetry parameter, whereas the OAM of an aBG
beam is described by a near-linear function [28].

VI. EXPERIMENTAL GENERATION OF AN
ASYMMETRIC LAGUERRE-GAUSSIAN BEAM USING A

SPATIAL LIGHT MODULATOR

The experimental optical setup is shown in Fig. 6. The
output beam of a solid-state laser L(λ = 532 nm) was
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(a) (b)

(e)(d)

(c)

(f)

FIG. 7. Intensity patterns for an aLG beam, generated at different
distances from the plane of lens L5: (a) 0 mm, (b) 100 mm, (c)
150 mm, (d) 200 mm, (e) 250 mm, and (f) 280 mm. The scale
size is 500 µm. Parameters are w0 = 1 mm, n = 8, x0 = 0.2w0, and
y0 = 0.2w0i.

expanded using a system composed of lenses
L1(f1 = 250 mm) and L2(f2 = 500 mm). The expanded
laser beam with radius of about 1.1 mm illuminated the
display of a spatial light modulator (SLM) (PLUTO VIS,
1920 × 1080 resolution, with 8-µm pixels). The input of the
SLM display was composed of a phase function generated by
the superposition of the encoded phase function of the initial
element used to generate the aLG beam and a linear phase
mask (see inset in Fig. 6). The aim was to separate spatially the
first and zero diffraction orders, with the nonmodulated wave
being reflected to the latter. Using lenses L3(f3 = 350 mm)
and L4(f4 = 150 mm), the laser beam reflected to the
first order was guided to a lens L5(f5 = 280 mm), which
focused the aLG beam onto a complementary metal-oxide
semiconductor (CMOS) array of the LOMO TC-1000 video
camera (3664 × 2740 resolution, 1.67-µm pixels). The CMOS
camera was mounted on an optical rail to travel along and
register the intensity pattern at different distances from lens L5.
The diaphragm D served to filter out the zero diffraction order.

Figure 7 depicts the intensity patterns registered at different
distances from the surface of lens L5. While registering the
pattern at distance 0 mm, the lens L5 was temporarily removed
from the setup. The depicted images show that the crescent-
shaped beam rotate about the axis with increasing distance
from the lens. The beam generated in the focus of lens L5 is
seen to be rotated by 90° with respect to that in the plane of
lens L5. In addition, due to focusing, the transverse size of the
beams is also reduced.

Figure 8 shows the intensity patterns calculated using
Eq. (3), with regard for the lenses, at the parameters of the
experiment. From Fig. 8, the experimental and calculated
patterns are seen to be in qualitative agreement.

VII. ROTATING SUPERPOSITIONS OF ASYMMETRIC
LAGUERRE-GAUSSIAN BEAMS

As the imaginary shifts x0 and y0 further increase, the
beam’s asymmetry increases to the extent that the intensity

187.96992lx
y

292.39766lx
y

404.8583lx
y

657.89474lx
y

1754.386lx
y

x
y

5263.1579l

(d) (e) (f)

(a) (b) (c)

FIG. 8. Intensity patterns of an aLG beam calculated using Eq. (3)
(with regard for the lenses) at the parameters used in Fig. 7.

on the ring gets concentrated near a maximum point, defined
by (31). Rather than being a crescent, the intensity pattern
looks more like a Gaussian beam, which is shifted from the
origin and rotated by an angle of π/2 upon propagation.

Actually, according to Eq. (28), in the initial plane of the
rotated coordinate system (26), the intensity is distributed by
the law

I0n(ξ,η,z = 0) =
(√

2

w2
0

)n

exp

(
2D2

0

w2
0

)
(ξ 2 + η2)n

× exp

{
− 2

w2
0

[(ξ − D0)2 + η2]

}
. (34)

In the other planes at distance z, the intensity in Eq. (34)
takes the form

I0n(ξ,η,z) = w2(0)

w2(z)

[ √
2

w2(z)

]n

exp

(
2D2

0

w2
0

)
(ξ 2 + η2)n

× exp
(

− 2

w2(z)
{[ξ − D(z)]2 + η2}

)
, (35)

where D(z)/D0 = [1 + (z/zR)2]1/2 = w(z)/w(0).
That is, at D0 � w0 the power component (ξ 2 + η2)n

weakly affects the intensity pattern, with the remaining
exponential component in (35) corresponding to the intensity
pattern of a Gaussian beam with waist radius w(z), shifted
by distance D(z) ≈ ξmax from the origin (where the phase
singularity is found). Hence, the superposition of beams (34)
with different shifts D0 will appear as misaligned Gaussian
beams, which are rotated by the same angle defined by (32)
as they propagate. Also, note that according to (35), with
increasing distance z from the initial plane, there will be
a [1 + (z/zR)2]1/2 times increase in the off-axis shift of the
intensity maxima, which is proportional to the Gaussian beam
expansion. What this means is that as they propagate, the
beams hardly interfere with each other and the diffraction
pattern remains unchanged.
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FIG. 9. Intensity (a–c) and phase (d–f) patterns of the aLG
beams (36) at the parameters (N = 2): wavelength λ = 532 nm, waist
radius w0 = 5λ, beam index (m, n) = (0, 8); the transverse shifts
x0 = 5w0, y0 = 5w0i (for the first beam) and x0 = 8w0, y0 = 8w0i

(the second beam); the on-axis distances z = 0 (a,d), z = zRtan(π/4)
(b,e), and z = zRtan(5π/12) (c,f). The computational domain size is
2R, where R = 50 λ (a,d), 60λ (b,e), and 200λ (c,f). In the phase
patterns, black and white, respectively, mark −π and +π .

Figure 9 illustrates the propagation of two aLG beams, with
their complex amplitude given by

E(x,y,z) = w(0)

w(z)

[ √
2

w(z)

]n

×
N∑

j=1

Cj [(x − x0j ) + i(y − y0j )]n

× exp

[
− s2

j

w2(z)
+ iks2

j

2R(z)
− i(n + 1)ζ (z)

]
, (36)

where N = 2 for two beams, (x0j , y0j ) are the shifts of the
j th beam, and sj = [(x−x0j )2 + (y−y0j )2]1/2. The Cj coeffi-
cients were fitted so as to attain the same maximum intensity
for all constituent beams. The rest of the parameters of the
simulation were as follows: λ = 532 nm; waist radius w0 = 5λ

(Rayleigh range zR = 25πλ); beam index (m, n) = (0, 8); the
transverse shifts of the first beam, x0 = 5w0, y0 = 5w0i, of the
second beam, x0 = 8w0, y0 = 8w0i; the on-axis distances, z =
0 [Figs. 9(a) and 9(d)], z = zRtan(π/4) [Figs. 9(b) and 9(e)],
and z = zRtan(5π/12) [Figs. 9(c) and 9(f)]. The computational
domain size was 2R, where R = 50λ [Figs. 9(a) and 9(d)], 60λ

[Figs. 9(b) and 9(e)], and 200λ [Figs. 9(c) and 9(f)].
From Fig. 9, the beam similar to the superposition of two

Gaussian beams is seen to remain nearly unchanged upon
propagation (within a scale), being rotated by an angle of π/4
[Figs. 9(b) and 9(e)] and 5π/12 [Figs. 9(c) and 9(f)].

VIII. CONCLUSION

Summing up, we have proposed a generalization of well-
studied Laguerre-Gaussian modes. Asymmetric Laguerre-
Gaussian beams have no modal properties, showing an
asymmetric intensity pattern in a plane perpendicular to the
propagation axis. As an asymmetric LG beam propagates in
a uniform space, the asymmetry of the first diffraction ring
decreases, with the energy being redistributed to peripheral
rings. The number of diffraction rings is coincident with that
of a conventional (symmetric) LG beam. The power transferred
by aLG beams and the projection of their OAM onto the
optical axis have been analytically derived. The normalized
OAM has been found to increase quadratically with increasing
asymmetry parameter, which is defined as the ratio of the
Cartesian shift to the Gaussian beam radius. Conditions for the
normalized OAM becoming equal to the topological charge (as
is the case for conventional LG beams) have been derived. A
particular case of the aLG beams with zero radial index that
have a crescent-shaped transverse intensity pattern has been
discussed. A relation to describe the coordinate of the intensity
maximum has been deduced and the intensity crescent has
been shown to rotate during propagation in space. An aLG
beam with zero radial index has been generated using a liquid-
crystal SLM. The crescent-shaped transverse intensity pattern
has been experimentally shown to rotate upon propagation.
A feasibility to generate misaligned superpositions of aLG
beams with a near-Gaussian intensity distribution that rotate
as a whole upon propagation has been demonstrated. The
crescent-shaped aLG beams can find uses for trapping and
manipulating biological objects (cells) [29], because in this
case the cell is less exposed to heat than compared with traps
based on a symmetric Gaussian beam. The aLG beams will
also be useful in quantum communications systems to form the
entanglement of the OAM states of photons. Considering that
the aLG beams can carry both integer and fractional OAM, the
latter corresponds to the entanglement of the OAM state of a
photon [30]. That is, if the aLG-beam is used as a pumping
laser beam in the spontaneous parametric downconversion,
two photons should appear with the entangled OAM.

Note that any solution of the paraxial equation can be shifted
by complex distances along the Cartesian coordinates. This
leads to a new solution. Therefore, it would be interesting
to study other beams in the same way: asymmetric Hermite-
Gaussian [31], asymmetric Ince-Gaussian [23], and the like.
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