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Influence of finite bandwidth on the propagation of information in fast- and slow-light media
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We examined the propagation of information encoded as nonanalytical points on temporally Gaussian-shaped
optical pulses in fast- and slow-light systems. The bandwidth of the input pulses determined the sharpness of
the nonanalytical points. A sharp bending nonanalytical point propagated with luminal velocity in both fast- and
slow-light systems, in good agreement with relativistic causality. As the bandwidth was reduced, the bending
point became broad and propagated with the relevant group velocities. This transition was, however, qualitatively
different in the fast- and slow-light systems. We also examined the predictability of the future pulse shape beyond
the practical nonanalytical point on the basis of the expansion. When the bandwidth was reduced below a critical
value, the expansion well predicted the future pulse shape.
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I. INTRODUCTION

Superluminal propagation of optical pulses has been ob-
served in many systems, including, atomic absorption and
gain lines [1–4], microcavities [5,6], metamaterials [7,8], and
photonic structures [9–11], through the control of quantum
coherence or manipulation of the photonic structures. Super-
luminal pulse propagation is a ubiquitous effect appearing in
any dispersive system [12]. Although this velocity is seemingly
paradoxical in the context of Einstein’s special relativity,
it is now well understood that the arrival of the smooth
superluminal pulse peak does not contain true information,
because the arrival of the peak can be predicted on the basis
of the expansion of the early part of the pulse [13–16]. It
was demonstrated experimentally that a Gaussian-shaped peak
exited from the far side of a negative-group-velocity medium,
even though the incident pulse was terminated before its
Gaussian peak [17].

There have been long debates surrounding the information
velocity in superluminal media. Historically, Sommerfeld and
Brillouin showed that, although the main signal propagates
through the medium with a group velocity, the front edge
propagates at c, the velocity of light in a vacuum [18–20].
They claimed that the true signal was carried by the front;
thus, the superluminal pulse propagation of the pulse peak is
not contradictory to Einstein’s special relativity. The idea was
developed that true information was encoded on nonanalytical
points along the wave packets [21–24]. The front edges can be
considered as nonanalytical points.

The idea that the true information is included on the
nonanalytical points and that the propagation velocity of the
information is equal to that of the nonanalytical points seems to
be fundamentally reasonable and has been accepted by many
researchers. Strictly, however, ideal nonanalytical points, as
well as ideal analytical functions, are mathematical illusions.
Practically, there are many questions to be discussed because
there are crucial gaps between the ideal nonanalytical points
and practical nonanalytical points. For example, mathemati-
cally, a Gaussian pulse has tails extending infinitely far back
and forth in time. Actually, there should be a front and an end;
i.e., a nonanalytical point, in any pulse, in accordance with
the discussions by Sommerfeld and Brillouin. In addition,
it is unclear whether such a front is truly localized at an

infinitesimal time point. Second, mathematically, an analytical
function is differentiable at any order; therefore, any tiniest
leading edge of a smooth Gaussian pulse determines the entire
pulse. Practically, it is obvious that the leading edge must
have sufficient photons. The question then arises as to how
many photons are necessary to reconstruct the forthcoming
pulse shape. Third, real experimental data suffer fluctuations
and noise; thus, it is always difficult to determine the exact
time point of the nonanalytical point [22,23,25–28]. Finally,
if the information velocity is defined on the basis of the
nonanalytical points, then the signal velocity should always be
the same as the speed of light in a vacuum, raising the question
as to whether there are any practical uses of slow and fast
light [28].

The fluctuations and noise represent one of the most
intensively studied effects [22,23,25–28]. Stenner et al. ex-
amined the velocity of detectable information experimentally
in superluminal-group-velocity media, defining the location of
the nonanalytical point on the basis of the bit error rate [22,23].
To achieve a given signal-to-noise ratio at the output of an
amplifying medium, a larger signal was required, resulting in
retardation of the signal. They concluded that the time to detect
information propagating through a fast-light medium was
longer than the time required to detect the same information
traveling through a vacuum. Dorrah and Mojahedi investigated
the effects of the propagation distance [27]. They showed that
the relative strength of the detector noise with respect to the
medium noise critically affected the signal velocity. From the
point of view of the question on realistic uses of slow and
fast light, Yang introduced another definition of information
velocity, defining the velocity as the ratio of the propagation
distance to the minimum time required to complete the part of
the pulse that carried the information of interest [28].

Our interest here is in another aspect of the nonanalytical
points: that is, the predictability of the future pulse shape be-
yond the practical nonanalytical point. An ideal nonanalytical
point localizes at an infinitesimal time point; thus, it requires
infinite spectral bandwidth and infinite energy. It is impossible
to realize an ideal nonanalytical point in the laboratory. In
contrast, the bandwidth of any practical nonanalytical point is
restricted to a finite value; therefore, the nonanalytical point
acquires analyticity and delocalizes, spreading into a certain
time region. This suggests that the practical nonanalytical point
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neither disconnects completely nor connects completely to the
previous and following regions in the pulse.

In this paper, we examine the propagation of the practical
nonanalytical points that are relevant to a finite bandwidth. We
first examined experimentally the propagation of a bending
nonanalytical point encoded on a temporally Gaussian-shaped
optical pulse in fast- and slow-light systems using optical
ring resonators. We controlled the sharpness of the bending
point. When the bandwidth was sufficiently large, the bending
point acted as a nonanalytical point and propagated with the
velocity of light in a vacuum or in the background medium,
independent of the group velocity. This is in agreement with
relativistic causality. As the sharpness of the bending points
was reduced, the point was advanced and delayed in the
fast- and slow-light systems, respectively. This transition was,
however, qualitatively different in the fast- and slow-light
systems. From the point of view of relativistic causality, the fast
propagation of the practical nonanalytical point in the fast-light
medium suggests that the expansion of the early part of the
pulse can predict the forthcoming bending point. Therefore,
we also examined the predictability of the forthcoming pulse
shape beyond the practical nonanalytical point on the basis of
the expansion.

II. EXPERIMENTS

Our experimental setup was similar to previous experiments
[29], and is illustrated schematically in Fig. 1(a). We used fiber
ring resonators, which offer highly controllable dispersion via
the cavity loss x and coupling strength between the fiber
and the ring resonator,y. Note that our interest here lies
in the propagation of the practical nonanalytical points and
not in the dispersion characteristics of the ring resonators,
which have already been studied in detail [5,6]. The stationary
input-output characteristics of the resonator can be analyzed
on the basis of directional coupling theory. The transmitted
light intensity T (ν), as a function of incident laser frequency ν,
shows a periodic dip structure due to resonance. The dispersion
relationship depends on the loss and coupling strength. For the
undercoupling condition (x < y), the transmission phase θ (ω)
shows an anomalous dispersion at the center of the resonance.
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FIG. 1. (a) Schematic illustration of the experimental setup.
(b) Experimental observations of the resonance spectra of the ring
resonators. The blue and red lines represent the undercoupling and
overcoupling conditions, respectively. The resonance widths were
7.6 MHz and 11.4 MHz, respectively.

The group delay is expected to be negative, τg = ∂θ/∂ω < 0,
corresponding to superluminal pulse propagation, i.e., fast
light. In contrast, for the overcoupling condition (x > y), the
transmission phase shows normal dispersion, and one would
expect slow light.

In the current study, 90:10 and 80:20 couplers were
used to achieve undercoupling and overcoupling conditions,
respectively. We inserted additional loss elements within the
ring resonator to control the loss parameter. The physical
length of the ring was LR = 100 cm. Figure 1(b) shows an
example of a transmission spectrum as a function of detuning
frequency; the blue and red lines represent the resonance
spectra of the ring resonator for the under-coupling and
over-coupling conditions, respectively. The resonance widths
are δνR = 7.6 MHz and 11.4 MHz, respectively. An Er-fiber
laser was used as the incident light source. The spectral width
was 1 kHz, and the laser frequency was tuned by piezoelectric
control of the cavity length. We prepared Gaussian-shaped
pulses, which were encoded with bending nonanalytical points
at time tNA on the leading side of the pulse:

Ein(t,∞) =
{

αt + β, t � tNA,

exp
[−(

t
tp

)2]
, tNA < t,

(1)

where tp = 180 ns, tNA = −120 ns, α = 1.2 × 10−3 ns−1, and
β = 0.79. In contrast to traditional nonanalytical points,
the function of Eq. (1) is continuous at tNA, but the first-
order derivative is discontinuous, limε→0∂Ein(t)/∂t |tNA−ε �=
limε→0∂Ein(t)/∂t |tNA+ε; thus, tNA is a bending nonanalytical
point. The notation “∞” in Ein(t,∞) indicates that the point
at tNA has initially infinite bandwidth. The Fourier spectrum
Ein(ν,∞) of Eq. (1) has long wings in the higher- and lower-
frequency regions, which are responsible for the bending
point. These components are small in intensity, but critically
important for the sharpness of the bending point. We controlled
the sharpness of the bend using a bandpass filter. The Fourier
spectrum of the original pulse was passed through a filter
function F (ν,δνB), where δνB is the bandwidth. This function
was then inversely Fourier transformed. We refer to this filtered
input pulse as Efil(t,δνB). A series of optical pulses of different
sharpness at the bending point was generated from the laser
using a LiNbO3 (LN) modulator. The repetition rate was
100 kHz and the incident power was 0.1 mW. Transmission
intensity through the system was observed using an InGaAs
photodetector and was reordered using a 600-MHz digital
oscilloscope.

III. RESULTS

Figure 2 shows the experimental results for the propagation
of the bending point through the fast- and slow-light systems.
Figure 3 shows an expansion of Fig. 2 around the bending
point. In the undercoupled ring resonator, i.e., the fast-light
system [Figs. 2(a1) and 3(a)], the peak of the Gaussian
pulse was not significantly influenced by the presence of the
nonanalytical point, and the peak was advanced by −35 ns,
similar to the result with the advancement of the original
Gaussian pulse without the bending point (not shown). In
contrast, the nonanalytical points were neither advanced nor
delayed but, rather, appeared as the light entered the ring
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FIG. 2. Propagation of the bending nonanalytical point encoded
on Gaussian-shaped pulses at time tNA = 120 ns through the ring
resonators: (a1)–(d1) experimental observations and (a2)–(d2) nu-
merical simulations. The black (denoted as 1) and colored (denoted as
2) lines in each figure represent input and output pulses, respectively.
The left column [(a1), (b1), (a2), and (b2)] and the right column [(c1),
(d1), (c2), and (d2)] show the results for undercoupling (fast-light) and
overcoupling (slow-light) conditions, respectively. Top [(a1), (c1),
(a2), and (c2)] and bottom [(b1), (d1), (b2), and (d2)] show the results
without and with the bandpass filter of δνB = 12 MHz, respectively.
The dotted colored vertical lines represent the time of the peak in
the output pulses. The Gaussian pulse peak shows negative [−35 ns
in (b1)] and positive [102 ns in (d1)] delays for the undercoupling
and overcoupling conditions, respectively. The solid purple vertical
lines represent the time of the bending point in the input pulses.
The parameters used in the simulations were x = 0.9, y2 = 0.92,
and y2 = 0.84 for the undercoupling and overcoupling conditions,
respectively.

resonator within the experimental resolution (2 ns). The
experimental result suggests, therefore, that the nonanalytical
point propagated with the light velocity in the background
medium, independently of the group velocity. Here, we refer
to this velocity as a luminal velocity. In traditional experiments
[22–24], the front edge or discontinuous points in the pulse
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FIG. 3. Expansion of Fig. 2 around the bending point; (a)–(d)
correspond to Figs. 2(a1)–2(d1), respectively. The solid and dotted
purple vertical lines represent the time of the bending point in the
input and output pulses, respectively. In (a) and (c), the two vertical
lines (i.e., solid and dotted lines) are overlapped with respect to each
other. The sharp bending points propagated with luminal velocity in
both (a) fast- and (b) slow-light systems. The broad bending point
showed (c) negative (−10 ns) and (d) positive (56 ns) delays.

envelope were examined as nonanalytical points. A time
point at which any order of the derivatives is discontinuous
could also be recognized as a nonanalytical point [30]. The
experimental results shown in Figs. 2(a1) and 3(a) were,
thus, in good agreement with arguments relevant to relativistic
causality that the sharp bending point propagates with luminal
velocity. Figures 2(b1) and 3(b) show the propagation of the
bending nonanalytical point, in which the sharpness of the
bend was reduced using a bandpass filter of δνB = 12 MHz.
As a result of the bandwidth restriction, the bending point
became broad and advanced by −10 ns. Figures 2(c1) and
2(d1) and Figs. 3(c) and 3(d) show similar experimental
results in the overcoupled ring resonator, i.e., the slow-light
system. The Gaussian pulse peak was delayed by 102 ns, the
same as the delay of the Gaussian pulse without the bending
point (not shown). The sharp bending point propagated with
luminal velocity [Figs. 2(c1) and 3(c)], as was the case in the
fast-light system. The characteristic features in the transmitted
pulse profile were, however, different between the fast- and
slow-light systems. In the fast-light system [Figs. 2(a1) and
3(a)], the bending point was followed by the Gaussian peak
immediately after the bending point. In contrast, in the
slow-light system [Figs. 2(c1) and 3(c)], a dip and plateau
appeared just after the point. This is reasonable because the
peak moved in negative and positive time directions in the fast-
and slow-light systems, respectively, while the nonanalytical
point stayed at the original time point in both systems; thus,
the interval between the Gaussian peak and the bending
point became narrow in the fast-light system and wide in
the slow-light system. This effect resulted in the gap and the
plateau only in the slow-light system. To analyze the details,
we systematically examined the propagation of the bending

063854-3



HEISUKE AMANO AND MAKOTO TOMITA PHYSICAL REVIEW A 93, 063854 (2016)

Fast

Time[ns]

In
te

ns
ity

 (N
or

m
al

iz
ed

)

-500            0  

1

2
3
4
5

(a)

-500            0  
Time[ns]

In
te

ns
ity

 (N
or

m
al

iz
ed

) Slow

1

2
3
4
5

(b)

FIG. 4. Propagation of the bending point encoded on Gaussian-
shaped pulses for different values of the bandwidth δνB . Experimental
results for (a) undercoupling (fast-light) and (b) overcoupling (slow-
light) conditions, respectively. In both (a) and (b), from top to bottom,
the bandwidth was 40, 24, 16, 12, and 8 MHz.

point for different values of δνB . Figures 4(a) and 4(b) show
the experimental results of the transmitted pulse profile in the
fast- and slow-light systems, respectively. In Fig. 5, the early
edges of the bending region in the transmitted pulses are plotted
as a function of δνB for both the fast- and slow-light systems.
In the fast-light system, the sharp bending gradually became
smooth and the advancement increased monotonically as the
bandwidth was reduced. In contrast, in the slow-light system,
the dip was gradually filled as the bandwidth was reduced;
the delay time jumped towards the relevant group delay
when the dip was completely filled. In Fig. 5, in the slow-light
case, the error bars were large for bandwidths below 20 MHz
as the gap and plateau made it difficult to determine accurately
the transition region.

In Figs. 2(a2)–2(d2) and Fig. 6, numerical simulations are
shown for the transmitted pulse profile. The simulations well
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FIG. 5. Delay time of the early edge of the bending point in
the output pulses as a function of the bandwidth δνB . The solid
(blue series) and open (red series) circles are experimental results for
the under- and overcoupling conditions, respectively. The colors of
circles correspond to those used in Fig. 4. The solid blue (denoted
as 1) and red (denoted as 2) lines are calculations for the under- and
overcoupling conditions, respectively.

captured the main features of the experiments. In particular, for
the slow-light system, the sharp bending point was followed
by a dip and plateau [Fig. 6(a3)]. The dip was gradually filled
[Figs. 6(b3) and 6(c3)] as the bandwidth was reduced, and the
delay time jumped towards the group delay when the dip was
totally filled [Fig. 6(d3)]. For a bandwidth below 24 MHz,
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FIG. 6. Numerical simulations for the propagation of the practical
bending nonanalytical point encoded on Gaussian-shaped pulses at
time tNA = −120 ns. The left column [(a1)–(d1)] shows input pulses.
The green hatched shapes represent the filter function. The middle
[(a2)–(d2)] and right [(a3)–(d3)] columns are the output pulses
through the undercoupling (fast-light) and overcoupling (slow-light)
conditions, respectively. The bandwidth was, from top to bottom,
infinite, 40, 24, and 12 MHz, respectively. The solid and dotted
purple lines represent the times of the bending point in the input
and output pulses, respectively. For the slow-light system, a dip and
plateau appeared just after the bending point [(a3), (b3), and (c3)].
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the advancement and delay approached those of the Gaussian
pulse peak, and the entire pulse shapes were totally advanced
or delayed, keeping the shape unchanged. The broad bending
point cannot transfer information; thus, it is not contradictory
to relativity.

We add three notes. First, for the input pulses represented
by Eq. (1), the bending point was encoded in the leading
section of the pulse; i.e., before the peak (tNA < 0). When
the bending point was encoded on the trailing section of the
pulse after the peak (0 < tNA), we obtained the opposite results
with respect to the fast- and slow-light systems. That is, in
the fast-light system, a dip and plateau appeared just before
the bending point. In the slow-light system, the dip did not
appear. These opposite results observed under the condition
0 < tNA are also reasonable because the nonanalytical point
stayed at the original time point; thus, the interval between
the Gaussian peak and the bending point became wide in the
fast-light system, while this interval became narrow in the
slow-light system. Similar results were confirmed in Lorentz-
type absorbing and amplifying resonance lines (i.e., fast- and
slow-light media, respectively).

Second, in our experiments, the peak of the Gaussian
pulse was not seriously influenced by the presence of the
nonanalytical point (Fig. 2). Recently, Yang [28] introduced
a new definition of information velocity, as the ratio of
the propagation distance to the minimum time required to
complete any given information transfer process. In the context
of this discussion, for the preservation of the Gaussian pulse
peak in Fig. 2, a longer time interval between the nonatypical
point and the pulse peak was necessary than the minimum time
specified above.

Finally, in previous experiments [29], the functional form
for the slowly varying envelope of the input pulses, f (t) =
A exp[−|t/tp|α] was used, where the parameter α controlled
the sharpness of the pulse peak. For α = 1, the pulse is
exponential on both sides. In this case, the pulse peak
is mathematically a nonanalytical point. For α = 2, the pulse is
the traditional Gaussian pulse, where the pulse peak becomes
smooth and mathematically analytical. The present method,
based on bandwidth restriction, is a more general approach
to examining the effect of sharpness of the practical nonan-
alytical points and is applicable to any type of nonanalytical
point.

IV. DISCUSSION: PREDICTABILITY

In our experiments, the sharp bending point propagated
with luminal velocity in both fast- and slow-light media,
consistent with relativistic causality [13–24]. As the band-
width was reduced, the bending point became broad and
propagated with the relevant group velocities. For the case
of a traditional Gaussian pulse peak, it has been debated
whether the arrival of the smooth pulse peak can be predicted
on the basis of the expansion of the leading part of the
pulse, thus meaning that the pulse peak does not contain true
information [21]. We developed this idea to incorporate a
bandwidth-restricted practical nonanalytical point. From the
point of view of relativistic causality, the fast propagation
of the practical nonanalytical point in the fast-light medium
suggests that the expansion around an earlier time point

Time
0

tNA

Nonanalytical point

F   (t)

= νtB -1B

νB

FIG. 7. Illustration, shown as a gray hatched shape, of Gaussian-
shaped pulses encoded with discontinuous nonanalytical points at
time tNA on the trailing side of the pulse. The pulse shape is
represented by Eq. (2). The green hatched shape represents the filter
function.

t0 < tNA can predict the forthcoming pulse shape. For the
confirmation of this predictability of the function form,
we consider a Taylor expansion for the following pulse
shape:

Ein(t,∞) =
{

exp
[−(

t
tp

)2]
, t � tNA,

0, tNA < t,
(2)

where tp = 180 ns and tNA = −120 ns. The function form
is illustrated schematically in Fig. 7. Here, we discuss
the discontinuous nonanalytical point limε→0Ein(tNA − ε) �=
limε→0Ein(tNA + ε), rather than the bending nonanalytical
point, to more clearly see the effect. For the restriction
of the bandwidth, we used a similar process to that used
in our experiments. The resulting filtered pulse Efil(t,δνB),
was alternatively represented by a convolution of the in-
put pulse,Ein(t,∞), and a Fourier transform of the filter
function,F (t,δνB ), by Parseval’s theorem:

Efil(t,δνB) =
∫ ∞

−∞
Ein(t ′)F (t − t ′,δνB)dt ′. (3)

Strictly, when the bandwidth is restricted to a finite value,
the discontinuous point at tNA is no longer a nonanalytical
point in the mathematical sense. However, we consider the
point at tNA to represent a rather practical nonanalytical point in
physics. As a result of the bandwidth restriction, this point ac-
quired analyticity. We are interested in the predictability of the
forthcoming pulse shape beyond tNA. Figure 8 illustrates the
Taylor expansion of Ein(ν,∞) [without bandwidth reduction;
Fig. 8(a)] and Efil(t,δνB) [with the reduction; Figs. 8(b)–8(f)]
around t0 < 0. We denote this expansion as

T [Efil(t,δνB); t0] =
nmax∑
n=0

1

n!
an(δνB)[t − t0]n. (4)

Because we developed the expansion over an unusually
high order range, we paid special attention to the numerical
errors. The significant figure was enhanced up to 150; we
confirmed that a significant figure of 300 also gave the same
results. The red and light blue lines in Fig. 8(a) show Ein(t,∞)
and its Taylor expansion T [Ein(t,∞); t0], respectively. In
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FIG. 8. (a)–(f) Filtered pulses and their expansions. (a) The red
line is the original pulse without a bandwidth restriction,Ein(t,∞).
(b) Orange, (c, f) light green, and (d, e) deep green lines (denoted as
1) are bandwidth-restricted pulses, in which the bandwidth was (b)
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as 2 in all figures) show the Taylor expansion around t0 = −120 ns.
(f) Similar calculations in which the bandwidth was the same as that
in (d), but t0 was shifted to an earlier time t0 = −200 ns. The dotted
purple vertical lines indicate the time t0. The red arrows represent the
time of the radius of convergence. In (a)–(e), the input pulses and
expansions overlap in most time regions around the Gaussian peak.
(g) The expansion coefficient an(δνB ) as a function of expansion order
n for different bandwidths. The filter bandwidth was (1) infinite, (2)
50, (3) 33, (4) 20, (5) 8.3, and (6) 5.0 MHz.

Fig. 8(a), the expansion perfectly predicted the Gaussian-
shaped pulses beyond time tNA. This is reasonable because
the input pulse at t0 had no information on the existence of the
forthcoming nonanalytical points at tNA; hence, the expansion
perfectly predicted the forthcoming Gaussian pulse shape as
an analytical connection of the input pulse at t0.

Figures 8(b)–8(e) show a similar expansion for the
pulses,Efil(t,δνB), for different values of δνB . We classify the
expansion into three cases, cases I, II, and III depending on the
bandwidth δνB . In case I, we first consider a condition in which
the bandwidth is especially broad. Figure 8(b) corresponds
to this case, for a bandwidth δνB = 50 MHz. In this case,
the expansion T [Efil(t,δνB); t0] predicted the forthcoming

Gaussian peak and the pulse shape beyond tNA, as was the
case with the original pulse [Fig. 8(a)]. As the bandwidth was
very broad, the nonanalytical point was localized well at tNA

and did not affect the expansion around t0.
In case II [Fig. 8(c)], the bandwidth of the filter is

moderate, δνB = 33 MHz. The expansion T [Efil(t,δνB); t0]
well predicted the filtered function Efil(t,δνB) in the time
region t < tNA, including the arrival of the Gaussian pulse
peak. The expansion, however, became unstable at t ∼ tNA

and diverged. It could not predict the forthcoming function
shape in the time region after tNA. As the bandwidth was
reduced, the nonanalytical point delocalized and emerged in
the neighboring time regions. When the earlier boundary of
the delocalized nonanalytical region reached t0, the anomaly
at tNA influenced the expansion around t0 and the expansion
became unstable. The time point tNA disconnected the previous
and following time regions of the pulse.

For case III, the bandwidth of the filter is narrow.
Figures 8(d) and 8(e) correspond to this case, in which
the bandwidth was δνB = 8.3 and 5.0 MHz, respectively.
The expansion T [Efil(t,δνB); t0] developed well beyond tNA,
correctly predicting the filtered pulse shape Efil(t,δνB). The
earlier boundary of the delocalized nonanalytical points spread
into early time, before t0; hence, t0 was totally included in
the delocalized nonanalytical region. The input pulse at t0
had, then, sufficient information to predict the forthcoming
filtered pulse shape after tNA. Figure 8(f) shows a similar
calculation in which the bandwidth was the same as that shown
in Fig. 8(d) (8.3 MHz); however, t0 had shifted to an earlier
time t0 = −200 ns. In this case, the earlier boundary of the
delocalized nonanalytical region still did not include t0; thus,
the expansion could not predict the function shape after tNA

(i.e., belongs to case II).
The distinction among cases I, II, and III also appeared

in the development of the expansion coefficient an(δνB) in
Eq. (4). Figure 8(g) shows the expansion coefficients as
a function of expansion order n for different bandwidths.
The red line in Fig. 8(g) (line 1) shows the expansion
coefficient an(∞) for Ein(t,∞). When the bandwidth was
broad, the expansion coefficient an(δνB) did not differ much
from an(∞) [Fig. 8(g), line 2]. This situation corresponds
to case I. When the bandwidth was reduced, the expansion
coefficient an(δνB) departed from the curve of an(∞) (line 1)
at certain values of n [Fig. 8(g), lines 3 and 4]. We denote
this n as the critical expansion order ncri(δνB). It can be seen
that ncri(δνB) decreased as the bandwidth was reduced. This
situation corresponds to case II. As the bandwidth was reduced
further, the expansion coefficient an(δνB) showed no bend as
a function of expansion order n, but developed with a new and
different decay rate from that of an(∞) [Fig. 8(g), lines 5 and
6] [i.e., ncri(δνB) did not appear]. This situation corresponds
to case III. The expansion around t0 developed beyond tNA,
correctly predicting the filtered Gaussian shape after tNA.

For a quantitative understanding of the characteristic
features of cases I, II, and III above, we used a simplified
model:

Ẽin(t) =
⎧⎨
⎩

Ein(t,∞), t � tNA − ε,

Ein(tNA,∞), tNA − ε < t � tNA

0, tNA < t,

, (5)

063854-6



INFLUENCE OF FINITE BANDWIDTH ON THE . . . PHYSICAL REVIEW A 93, 063854 (2016)

where ε is the time duration of the order δvB
−1. Using Eqs. (3)

and (5), Ẽfil(t,δνB) can be written as

Ẽfil(t,δνB) =
∫ ∞

−∞
Ẽin(t ′)F (t − t ′,δνB )dt ′

=
∫ tNA−ε

−∞
Ein(t ′,∞)δ(t − t ′)dt ′

+Ein(tNA,∞)
∫ tNA

tNA−ε

F (t − t ′,δνB )dt ′

= Ein(t,∞) + εEin(tNA,∞)F (t − tNA,δνB ). (6)

Here F (t − t ′,δνB) in Eq. (6) was approximated by δ(t −
t ′). As an example, when we used a Gaussian-shaped filter
function, i.e., F (ν) = exp[−(ν/δνB)2], then

εEin(tNA,∞)F (t − tNA,δνB ) ≈ Ein(tNA,∞) exp[−(πδνBt)2].

(7)

We denote the first and second terms in the last equation
in Eq. (6) as analytical and nonanalytical terms, respectively.
We now presume the value of Ẽfil(tNA,δνB ), on the basis of the
expansion around t0, to be

T [Ẽfil(t,δνB); t0]|t=tNA

= T [Ein(t,∞); t0]|t=tNA

+ εEin(tNA,∞)T [F (t − tNA,δνB ); t0]|t=tNA

=
∑
n=0

bn[tNA − t0]n+εEin(tNA,∞)

{∑
n=0

cn[tNA − t0]n
}

,

(8)

where we may roughly estimate the magnitudes of the
derivatives from the temporal durations of the functions as

bn = dn

dtn
Ein(t,∞)

∣∣∣∣
t0

∼
(

1

tp

)n

, (9a)

cn = dn

dtn
F (t − tNA,δνB)

∣∣∣∣
t0

∼ F (tNA − t0,δνB )(δνB)n. (9b)

The prefactor F (tNA − t0,δνB ) in Eq. (9b) represents the
fact that the effect of the nonanalytical point weakens rapidly
as tNA − t0 increases. The simplified analytical discussion
based on Eq. (5) shows good agreement with the three cases
numerically, shown in Figs. 8(b)–8(e).

For case I, we first consider that the bandwidth δνB

is very broad, as δvB � |tNA − t0|−1. In this case as
F (tNA − t0,δνB) 	 1, then, bn � cn in Eq. (9b). The term
bn is dominant in all regions of n considered. In this case,
the expansion around t0 develops beyond tNA, predicting the
Gaussian-shaped pulse, in good agreement with Fig. 8(b)
(δνB = 50 MHz).

Next, we consider case II in which the bandwidth is
moderate, δvB > |tNA − t0|−1. In this case as F (t,δνB) < 1,
then, in the small-n regions, bn > cn, so bn is dominant. With
an increase in n, however, cn terms become dominant, because
the derivative series in the cn terms in Eq. (9b) decreases more
gently than in the bn terms in Eq. (9a) as tp

−1 < δνB . The
critical order,ncri(δνB) is understood as the order that satisfies

the condition bn ∼ εcn,

ncri(δνB) ∼ ln[εF (tNA − t0,δνB )]

ln[(tpδνB )−1]
. (10)

When the expansion develops beyond ncri(δνB), the func-
tion becomes unstable at tNA and diverges, in good agreement
with Fig. 8(c) (δνB = 33 MHz).

Finally, for case III, when the bandwidth of the filter is
narrow, δvB ∼ |tNA − t0|−1, then F (tNA − t0,δνB ) ∼ 1, so bn �
cn. The cn terms are dominant or comparable to the bn terms in
all regions of n. In this case, the expansion around t0 develops
beyond tNA, correctly predicting the filtered pulse shape after
tNA, in good agreement with Figs. 8(d) and 8(e) (δνB = 8.3
and 5.0 MHz).

Note that the values of δνB that separate the cases I, II,
and III depend on the precision of the calculations. In our
calculations, shown in Figs. 8(a)–8(f), the maximum order of
the expansion was set to nmax = 90. For example, if we set
this value as nmax = 40, the bandwidth δνB = 33 MHz still
belongs to case II, as we see ncri(δνB = 33 MHz) = 56 in
Fig. 8(g), line 3; thus, nmax < ncri. Strictly, so long as the
bandwidth δνB is not infinite, then time point tNA is not
mathematically nonanalytical. Therefore, it may be supposed
that the total shape of the filtered function could be predictable
from the time point t0. This idea is reminiscent of a discussion
that, mathematically, the Gaussian pulse has tails extending
infinitely far back in time, so that the tiniest leading edge of a
smooth Gaussian pulse could determine the entire pulse shape.
Physically, however, such an expansion is impossible because
we must take into account the effects of fluctuations, noise at
the leading edge.

Studies aiming to reconcile the superluminal group ve-
locity with relativistic causality should include a quantum-
mechanical model of the photon detector, which in turn must
take into account quantum fluctuations. In our discussion, the
predictability of the forthcoming practical nonanalytical points
depends on the maximum degree of expansion order; i.e., if the
expansion can develop to a significantly higher order beyond
ncri, it can be used to predict further practical nonanalytical
points. The degree of the expansion depends on the noise in
the detector or, more fundamentally, on quantum fluctuations.

The fact that the forthcoming pulse shape is predictable
under a condition of δvB ∼ |tNA − t0|−1 is fairly reasonable.
Consider an anomalous resonance line with width δνR and
consider a situation that a pulse with bandwidth δvB propagates
through the resonance under the condition δνB < δνR . In this
case, the entire pulse shape is advanced without significant
distortion by a time of the order of τ ∼ −δνR

−1. Such a time
advancement occurs generally within the time range of the
predictability discussed above, as |τ | ∼ |δνR

−1| < |δνB
−1| ∼

|t0 − tNA|.

V. SUMMARY

We examined the propagation velocity of information
encoded as a nonanalytical point, controlling the sharpness
of the point. When the bandwidth was sufficiently wide, the
point propagated with luminal velocity in good agreement
with relativistic causality. As the bandwidth was reduced, the
propagation velocity converged to the relevant group velocity.
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This transition was, however, qualitatively different in the
fast and slow systems. From the point of view of relativistic
causality, the fast propagation of the practical nonanalytical
point indicates that the expansion around an early time point
can predict the forthcoming pulse shape. It was shown that
when the bandwidth was restricted below the critical value,
the expansion predicted the forthcoming pulse shape well.
Finally, we note that the pulse front, in a practical sense, that
would also be relevant to the finite-bandwidth effect could
be treated in a similar manner to the present one, in which a

discontinuous nonanalytical point exists at a very early time
in the leading part of the pulse. Such an analysis could give an
answer to the question set out in the Introduction as to whether
a front is truly localized at an infinitesimal time point.
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