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The link of two concepts, indistinguishability and entanglement, with the energy-time uncertainty principle
is demonstrated in a system composed of two strongly coupled bosonic modes. Working in the limit of a short
interaction time, we find that the inclusion of the antiresonant terms to the coupling Hamiltonian leads the system
to relax to a state which is not the ground state of the system. This effect occurs passively by just presence of the
antiresonant terms and is explained in terms of the time-energy uncertainty principle for the simple reason that at
a very short interaction time, the uncertainty in the energy is of order of the energy of a single excitation, thereby
leading to a distribution of the population among the zero, singly and doubly excited states. The population
distribution, correlations, and entanglement are shown to substantially dependent on whether the modes decay
independently or collectively to an exterior reservoir. In particular, when the modes decay independently with
equal rates, entanglement with the complete distinguishability of the modes is observed. The modes can be made
mutually coherent if they decay with unequal rates. However, the visibility in the single-photon interference
cannot exceed 50%. When the modes experience collective damping, they are indistinguishable even if decay
with equal rates and the visibility can, in principle, be as large as unity. We find that this feature derives from the
decay of the system to a pure entangled state rather than the expected mixed state. When the modes decay with
equal rates, the steady-state values of the density matrix elements are found dependent on their initial values.
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I. INTRODUCTION

There has recently been a great interest in the realization
of quantum networks of coupled qubits formed by spatially
periodic structures of trapped atoms [1–3], arrays of cou-
pled optical cavities [4–10] or superconducting electrical
circuits [11–14]. Quantum networks provide an experimental
platform for spatial transport of quantum states required for
quantum cryptography, quantum teleportation, simulation of
many-body systems, quantum information processing, and
quantum computation. Optical cavities are ideally suited for
the implementation of quantum networks where the intercavity
coupling might be realized through the output cavity fields
which could be focused and transmitted by optical elements,
for example, short optical fibers. The primary objective is
to achieve strong and lossless couplings. Therefore, differ-
ent coupling schemes have been proposed to accomplish
an efficient transfer of photons between adjacent cavities
including overlapping evanescent field modes, optical fibers
or waveguides, and hopping fields, the tunneling of photons
between cavities [15]. Exchange of information between the
cavities is often affected by dissipation and decoherence
induced by the unavoidable coupling to the environment. For
coupling via fibers or waveguides, major obstacles are losses
inside the fiber or waveguide material.

A number of theoretical and experiment studies were
carried out on the simplest quantum network composed of
only two cavities, and several schemes have been proposed in
which an efficient transmission between the cavities could be
achieved [16–18]. In most treatments the cavities contained

*sbougouffa@hotmail.com

two-level atoms, and the creation of entanglement between
the atoms and its transfer to the cavity modes was considered
[19–30]. It has also been demonstrated that effective quantum
gates between atoms located in distant cavities can be realized
even in the presence of losses and imperfections in coupling
strengths [31,32]. In addition, the interaction of the cavities
with an injected squeezed field or with a squeezed reservoir
has been studied [33–35].

The previous work on quantum networks of coupled
cavities was limited to the weak coupling regime described by
the coupling Hamiltonian containing only resonant terms, the
photon hopping between the modes. In general, the coupling
Hamiltonian also contains antiresonant terms such that the
creation of an excitation in a given mode is accompanied by
the creation of a negative energy quantum in the other mode.
In the weak coupling regime the antiresonant terms make
much smaller contributions and therefore are often omitted,
under the rotating-wave approximation [36]. However, in the
strong coupling regime in which the magnitude of the coupling
strength is comparable to the frequency of the modes, the
antiresonant terms make notable contributions leading to novel
features [37–45].

In this paper, we consider a pair of coupled bosonic modes
represented by two single-mode cavities coupled by a short
waveguide. In studying the interaction between the cavities, we
include both resonant and antiresonant terms in the interaction
Hamiltonian. To say this another way, we permit for two
types of the interactions, linear and nonlinear to contribute
simultaneously to the coupling between the cavities. Notice
that the inclusion of the antiresonant terms is equivalent to take
into account the energy nonconserving terms in the interaction
between the cavities. These terms are known to produce virtual
photons which can survive only for a time �t ∼ 1/ω, where
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ω is the frequency of the modes. According to the energy-time
uncertainty principle, at such short times the virtual photons
fail to conserve energy by an amount �E, which is of order
of the energy of a single excitation, �E ∼ �ω. This fact can
lead to a redistribution of the population among states differing
in energy by �ω. Of particular interest is the stationary limit
the system attains over this short time. This requires a strong
coupling of the modes and a fast damping of the modes if one
would like to achieve a stationary state over such a short time.
Therefore, our results apply to a short observation time and the
ultrastrong coupling regime. Some results are also presented
for the so-called deep strong coupling regime, corresponding
the coupling strengths larger than the field frequency [46–49].

We show that the system exhibits features, in particular
coherence and entanglement features that are not present in the
weak coupling regime. Two cases are studied: (i) The modes
decay independently, and (ii) the modes decay collectively
to an external reservoir. We find that the modes decaying
independently with equal rates can be found entangled and
simultaneously behaving as mutually incoherent. We calculate
the visibility of the interference fringes and show how
the “which-path” information is made possible when the
modes decay with equal rates. The “which-way” information,
however, is not possible when the modes decay with unequal
rates, so a mutual coherence can be established resulting in
single-photon interference between the modes. We find an
upper bound that the visibility cannot exceed 50% when the
modes decay independently.

The modes can, however, be made entangled and simultane-
ously exhibiting quantum interference with 100% visibility if
they decay collectively. We find that in this case, the modes are
always indistinguishable independent of whether they decay
with equal or unequal rates. In addition, we find that the
collective damping can lead to the steady-state values of the
density matrix which depends on initial conditions.

The paper is organized as follows. In Sec. II we introduce
the model and formulate the master equation for the density
operator of the system. The equations of motion for the density
matrix elements and their steady-state solutions are given in
Sec. III. The equations of motion are simple enough that we
can find their steady-state values analytically. In Sec. IV we
discuss the problem of distinguishability between the modes
induced by the energy-time uncertainty principle and methods
to make the modes indistinguishable. An upper bound is
imposed on the visibility of the interference fringes when
the modes decay independently and it can be overtaken if
the modes decay collectively. In Sec. V we examine the
conditions for entanglement. Some remarks are made about
the connection between the one- and two-photon coherences.
Finally, in Sec. VI, we summarize and conclude our results.

II. THE MODEL AND APPROACH

We consider a pair of strongly coupled bosonic modes
of equal frequencies ω, labeled by the suffixes A and B.
The modes are represented by the annihilation and creation
operators, âj ,â

†
j (j = A,B), which satisfy the commutation

relation [âi ,â
†
j ] = δij . We assume that apart from the strong

dynamical influence on each other through the direct coupling,

the modes can also influence on each other through modes of
the reservoir to which they are damped with rates γA and
γB , respectively. We will investigate two cases in which the
modes decay independently or collectively. We will refer to
these cases as the decay of the modes to either separate
reservoirs or a common reservoir. In order to take into
account contributions of the antiresonant (non-RWA) terms,
we will require the coupling strengths and damping rates to be
comparable to the frequency ω. In other words, we will work
in the ultrastrong coupling regime. We are interested in the
steady-state characteristics of the system, in which the strong
coupling processes counterbalance the decay process.

In practice this model could be realized in a circuit QED
system where the ultrastrong coupling regime with the ratio of
the coupling strength g to the resonator frequency ω of order
g/ω = 0.1 has been achieved [50–52]. Ultrastrong couplings
with a rate up to g/ω = 0.58 have been realized with two
high-mobility two-dimensional electron gases coupled to a
metamaterial [53]. Recently, even higher coupling rates of
up to g/ω = 0.87 have been reached in semiconductor het-
erostructures [54]. The most relevant to the model considered
in the present paper are experiments with photonic crystal
nanocavities coupled to a short waveguide [55]. Owing to its
small optical loss and tight field confinement, waveguides are
capable of mediating strong and long range couplings using
photons propagating in their guided modes. Recently, it has
been demonstrated experimentally that a strong coupling with
a ratio g/ω ≈ 0.1 can be achieved between two single-mode
cavities subject of a very short decay time of photons out of
the cavities to a waveguide composed of discrete modes [56].
Schematic diagram of the experiment is shown in Fig. 1.

The properties of the coupled modes, including the damping
of the modes due to their coupling to the reservoir, are
determined by the density operator ρ which satisfies the
following master equation:

d

dt
ρ̃ = − i

�
[H̃AB,ρ̃] + Lρ̃, (1)

where ρ̃ is the density operator in the interaction picture and
H̃AB is the coupling Hamiltonian between the modes,

H̃AB = �g(â†
AâB + â

†
BâA + âAâBe2iωt + â

†
Bâ

†
Ae−2iωt ). (2)

Cavity A Cavity B
Waveguide

γ
A

γ
B

κ,ε
FIG. 1. Schematic diagram of the system. Two single-mode

cavities are coupled to each other through a short waveguide. The
photons in the cavities leak out to the waveguide with a very short
leaking time. Both resonant and antiresonant coupling processes are
taken into account and are described by the coupling strengths κ and
ε. The cavities also decay, separately or collectively, to the external
environment.
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Taking into account a very short decay time of photons to the
waveguide, we have included into the coupling Hamiltonian
the resonant (RWA) as well as antiresonant (non-RWA) terms
which, as we will see, can have notable contributions at such
short evolution times. The RWA terms represent the linear,
a beam splitter type coupling between the cavities, whereas
the non-RWA terms describe the nonlinear (parametric)-type
coupling. In order to distinguish between the contributions
of the linear and nonlinear terms, we will work with the
Hamiltonian of the form,

H̃AB = �κ(âAâ
†
B + â

†
AâB) + �ε(âAâBe2iωt + â

†
Bâ

†
Ae−2iωt ),

(3)

where κ determines the strength of the linear, whereas ε

determines the strength of the nonlinear coupling. The term
Lρ̃, appearing in the master equation (1), is an operator repre-
senting the damping of the modes to the external environment
(reservoir). In general, it contains resonant and antiresonant
terms. A recent investigation by Joshi et al. [57] shows that
the antiresonant terms present in the damping part of the
master equation can modify the dynamics of strongly coupled
modes. However, further insight into the results reveals that
the antiresonant terms change the results quantitatively, but do
not alter the qualitative behavior. Therefore, we retain only the
resonant terms in Lρ̃:

Lρ̃ = −1

2

∑
j=A,B

γj (â†
j âj ρ̃ + ρ̃â

†
j âj − 2âj ρ̃â

†
j )

− 1

2

∑
i �=j=A,B

γ (â†
i âj ρ̃ + ρ̃â

†
i âj − 2âj ρ̃â

†
i ), (4)

where γj is the damping rate of the mode j , and γ is the
cross damping rate at which the modes are coupled to each
other through the interaction with the same reservoir. The
coupling reflects the fact that, as a photon is emitted by the
spontaneous decay of the mode A it can be absorbed by
the mode B, and vice versa. In other words, γ describes a
collective damping of the modes. The strength of the collective
damping depends on the rates γA and γB and the polarization of
the modes that γ = √

γAγB cos θ , where θ is the angle between
the polarization directions of the modes. If the polarizations
are parallel then θ = 0 and the collective damping is maximal,
γ = √

γAγB , while if the polarizations are perpendicular, then
γ = 0.

An obvious question arises, under which conditions both
terms in the Hamiltonian (3) could simultaneously contribute
to the dynamics of the system. In the presence of the
antiresonant terms there are two time scales of the evolution of
the system, one determined by the parameters κ,g, and γj and
the other determined by ω. The resonant terms in the master
equation (1) experience a variation on a time scale �tr ∼ 1/κ,

(∼1/g,1/γj ), whereas the antiresonant terms experience a
variation on a time scale of �tar ∼ 1/ω. Therefore, these
two time scales should be comparable (�tr ≈ �tar ) in order
for the steady state to be reached with the antiresonant
terms participating fully in the dynamics. Thus, observation
(detection) times should be comparable to �tar .

In what follows, we explore the role of the resonant
and antiresonant terms on the steady-state characteristics

of the system. Analytic expressions are obtained for the
density matrix elements which then are used to investigate
the influence of the two kind of couplings between the
modes on the population distribution, distinguishability, and
entanglement of the modes.

III. STEADY-STATE SOLUTIONS

Given the master equation (1), we can use the photon
number representation for the density operator and derive
equations of motion for the density matrix elements. Suppose
that initially there is no excitation present in the modes, i.e.,
the initial state of the system was a vacuum state |0A〉 |0B〉.
Since there is no external excitation field present, one would
expect that the modes would remain in their vacuum states
for all times. However, we will demonstrate that the system
evolves to a steady state in which the singly and doubly excited
states can have nonzero populations. To demonstrate this, we
consider a basis set of low excitation states consisting of four
states,

|1〉 = |0A〉 |0B〉, |2〉 = |0A〉 |1B〉,
|3〉 = |1A〉 |0B〉, |4〉 = |1A〉 |1B〉, (5)

where |0j 〉 and |1j 〉 are zero and one excitation states of the
cavity j . The singly and doubly excited states have been
included into the basis in order to fully account for effects
of the antiresonant terms âAâB and â

†
Bâ

†
A, which couple the

vacuum state to higher excitation states.
The reason for the inclusion of the low excitation states can

be understood by noting that the inclusion of the antiresonant
terms in the master equation (1) leads to the steady state to be
achieved on a time scale of order �t ∼ 1/ω. If the evolution
time is of order �t , the energy-time uncertainty principle,
�E�t � �/2, enforces that a precision �E of the energy of
photons has to be at least of order of �E ≈ �ω, which is of
order of the one-photon energy. Thus, over the evolution time
�t ≈ 1/ω, an excitation of the system to the states |1A〉 |0B〉,
|0A〉 |1B〉, and |1A〉 |1B〉 is possible.

In the basis (5) the density operator ρ has 15 independent
matrix elements. The equations of motion for the density
matrix elements which can have nonzero values in the steady
state are

ρ̇11 = γBρ22 + γAρ33 + γ (ρ23 + ρ32) + iε(ρ14 − ρ41),

ρ̇22 = γA − 2γ0ρ22 − γA(ρ11 + ρ33)

− 1
2 (γ − 2iκ)ρ23 − 1

2 (γ + 2iκ)ρ32,

ρ̇33 = γB − 2γ0ρ33 − γB(ρ11 + ρ22)

− 1
2 (γ + 2iκ)ρ23 − 1

2 (γ − 2iκ)ρ32,

ρ̇23 = γ − γ0ρ23 − γ (ρ11 + ρ22 + ρ33)

− 1
2 (γ − 2iκ)ρ22 − 1

2 (γ + 2iκ)ρ33,

ρ̇14 = −iε − (γ0 − 2iω)ρ14 + iε(2ρ11 + ρ22 + ρ33), (6)

where γ0 = (γA + γB)/2, and ρ44 is found from the closure
relation of the conservation of the total population, ρ11 + ρ22 +
ρ33 + ρ44 = 1. The set of coupled equations for the density
matrix elements involves the populations and the one-photon
ρ23 and two-photon ρ14 coherences.
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The set of the differential equations can be written in a
matrix form,

d

dt
�Y = M �Y + �P , (7)

where the vector �Y has the components,

Y1 = ρ11, Y2 = ρ22, Y3 = ρ33, Y4 = ρ23 + ρ32,

Y5 = i(ρ23 − ρ32), Y6 = ρ14 + ρ41, Y7 = i(ρ14 − ρ41). (8)

Nonzero components of the vector �P are

P2 = γA, P3 = γB, P4 = 2γ, P7 = 2ε, (9)

and M is the 7 × 7 matrix of real coefficients,

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 γB γA γ 0 0 ε

−γA −2γ0 −γA −γ /2 κ 0 0
−γB −γB −2γ0 −γ /2 −κ 0 0
−2γ −3γ −3γ −γ0 0 0 0

0 −2κ 2κ 0 −γ0 0 0
0 0 0 0 0 −γ0 2ω

−4ε −2ε −2ε 0 0 −2ω −γ0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (10)

The matrix M describes the effects of the coupling terms κ

and ε as well as those of the dampings.
Solving Eq. (7) for the steady state, we find the diagonal

matrix elements to be

ρs
11 = (ε2 + 4ω2 + γ 2

0 )

D

[
4κ2

(
γ 2

0 − γ 2
) + γ 2

0 (γAγB − γ 2)
]
,

ρs
22 = ε2

D

[(
4κ2 + γ 2

A

)
(γ 2

0 − γ 2) + 1

4
γ 2(γA − γB)2

]
,

ρs
33 = ε2

D

[(
4κ2 + γ 2

B

)(
γ 2

0 − γ 2) + 1

4
γ 2(γA − γB)2

]
,

ρs
44 = ε2

D

[
4κ2(γ 2

0 − γ 2) + γ 2
0 (γAγB − γ 2)

]
, (11)

and the off-diagonal elements,

ρs
14 = iε(γ0 + 2iω)

D

[
4κ2(γ 2

0 − γ 2) + γ 2
0 (γAγB − γ 2)

]
,

ρs
23 = i(γA − γB)ε2

4D

[
8κ

(
γ 2

0 − γ 2
) + iγ

(
γ 2

A − γ 2
B

)]
, (12)

where

D = (
γ 2

0 + 4ω2
)[

4κ2
(
γ 2

0 − γ 2
) + γ 2

0 (γAγB − γ 2)
]

+ 4ε2
(
γ 2

0 − γ 2
)(

γ 2
0 + 4κ2

)
. (13)

From Eq. (11), we see that the steady state of the coupled
modes is not the ground state |1〉 = |0A〉 |0B〉. The population
is redistributed between the states including the doubly excited
state |4〉. There are no external sources of photons, like driving
laser fields in the system. This effect occurs passively by just
adding the antiresonant (non-RWA) terms determined by ε.
When these terms are ignored, the standard RWA result is
obtained with ρ11 = 1 and no population in the excited states.

In addition, the steady-state solution is strongly affected
by the coupling of the modes to the reservoir. In particular, a
coherence is generated in the process of spontaneous emission
with unequal damping rates, γA �= γB . Let us discuss in greater

detail the cases of independent (γ = 0) and collective (γ �= 0)
dampings, under unbalanced (γA �= γB) and balanced (γA =
γB) decays of the modes.

A. Unbalanced decay: γA �= γB

When the modes decay independently, γ = 0, and then the
steady-state solution (11) reduces to

ρs
11 = (4κ2 + γAγB)

D0

(
4ω2 + ε2 + γ 2

0

)
,

ρs
22 = ε2

(
4κ2 + γ 2

A

)
D0

, ρs
33 = ε2

(
4κ2 + γ 2

B

)
D0

,

ρs
44 = ε2(4κ2 + γAγB)

D0
, ρs

23 = 2i(γA − γB)κε2

D0
,

ρs
14 = iε(4κ2 + γAγB)

D0
(γ0 + 2iω), (14)

where

D0 = (4κ2 + γAγB)
(
4ω2 + γ 2

0

) + 4ε2
(
4κ2 + γ 2

0

)
. (15)

Expression for ρs
23 shows that a coherence is generated by

spontaneous decay of the modes even if the modes decay
independently. It requires the modes to decay with unequal
rates, γA �= γB ; that is, unbalanced decay plays a constructive
role in the generation of the one-photon coherence. The
unbalanced decay of the modes creates a population inversion
between states |2〉 and |3〉 that

ρs
22 − ρs

33 = ε2
(
γ 2

A − γ 2
B

)
D0

= 2ε2γ0(γA − γB)

D0
. (16)

Then the coherence can be written as

ρs
23 = 2i(γA − γB)κε2

D0
= iκ

γ0

(
ρs

22 − ρs
33

)
. (17)

This shows the familiar fact that the coherence between two
states is proportional to the product of the driving field strength
and the population inversion. That is, the linear coupling κ

between the modes is a complete analog of a coherent driving
of two quantum states.

Another interesting observation is that the unbalanced
decay can lead to a population inversion between the doubly
excited state |4〉 and the singly excited states |2〉 and |3〉).
Really, if we evaluate ratios ρs

22/ρ
s
44 and ρs

33/ρ
s
44, we find the

result,

ρs
22

ρs
44

= 1 + γA(γA − γB)

κ2 + γAγB

,

ρs
33

ρs
44

= 1 − γB(γA − γB)

κ2 + γAγB

. (18)

We see that depending on whether γA > γB or γA < γB , the
population can be inverted between |4〉 and either |2〉 or |3〉. It
is interesting that the population can be inverted between |4〉
and only one of the singly excited states.

Consider now the case when the modes decay collectively.
If the collective damping rate is maximal, γ = √

γAγB , the
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solution (11) simplifies to

ρs
11 = κ2

(
ε2 + 4ω2 + γ 2

0

)
D̃

,

ρs
22 = ε2(2κ2 + γAγ0)

2D̃
, ρs

33 = ε2(2κ2 + γBγ0)

2D̃
,

ρs
44 = κ2ε2

D̃
, ρs

14 = iεκ2(γ0 + 2iω)

D̃
,

ρs
23 = iε2

2D̃
[κ(γA − γB) + iγ0

√
γAγB ], (19)

with

D̃ = κ2(γ 2
0 + 4ω2) + ε2(γ 2

0 + 4κ2). (20)

There are several important differences between Eq. (19) and
the result (14) for independent reservoirs.

First of all, the coherence ρs
23 is composed of two parts:

The part proportional to κ is driven directly by the linear
coupling between the modes, while the part proportional to
γ results from an exchange of the excitation through the
coupling of the modes to the same reservoir. This shows
that a coherence between two states can be generated even
if there is no population difference between the states. This
property of the coherence can have an interesting effect on the
redistribution of the population between the states. It is easily
seen from Eq. (19) that in the absence of the linear coupling
(κ = 0) the entire population is redistributed (trapped) in the
single excitation states with the populations of the states and
the coherence between them given by

ρs
22 = γA

2γ0
, ρs

33 = γB

2γ0
, ρs

23 = −
√

γAγB

2γ0
. (21)

We may introduce symmetric and antisymmetric combinations
of the singly excitation states,

|b〉 = 1√
2γ0

(
√

γA |3〉 + √
γB |2〉),

|d〉 = 1√
2γ0

(
√

γB |3〉 − √
γA |2〉), (22)

and find using Eq. (21) that ρbb = 0 and ρdd = 1. Clearly,
the steady state of the modes is not a mixed state but a
pure entangled state |d〉. Thus, despite the interaction with
a dissipative reservoir, the system evolves to a pure entangled
state rather than the expected mixed state.

In addition, there is no population inversion between the
double excitation state |4〉 and the single excitation states |2〉
and |3〉. It is easy to see that Eq. (19) for the populations lead
to ratios,

ρs
22

ρs
44

= 1 + γAγ0

2κ2
,

ρs
33

ρs
44

= 1 + γBγ0

2κ2
, (23)

which are always greater than 1.

B. Balanced decay: γA = γB

Let us now discuss the steady-state solutions in the case
of balanced decay of the modes, i.e., decay with equal
damping rates, γA = γB . We will see that this leads to quite
different features than those found for unbalanced decays. The

most important difference is that it requires one to consider
separately the steady-state solutions for two regions of γ :
γ < γ0 and γ = γ0. This is because the determinant of the
matrix M , Eq. (10), is equal to zero when γ = √

γAγB and
γA = γB .

We first examine the steady-state solution for γ < γ0.

ρs
11 = ε2 + γ 2

0 + 4ω2

D′ , ρs
22 = ρs

33 = ρs
44 = ε2

D′ ,

ρs
14 = iε(γ0 + 2iω)

D′ , ρs
23 = 0, (24)

where D′ = 4ε2 + γ 2
0 + 4ω2. We see that as long as γ < γ0,

the system relaxes to a mixed state which is independent
of γ and κ . Moreover, the populations of the singly and
doubly excited states are exactly equal. In other words,
when measuring the populations of the excited states, all
measurement outcomes would occur with equal probability.
Since ρs

23 = 0, no entangled states are created between the
singly excited states. We can conclude that as long as
γA = γB ≡ γ0 and γ < γ0, there is no difference in the
decay of the modes into local reservoirs and into a common
reservoir.

The fact that the result (24) is independent of γ may lead
one to conclude that it is also valid in the limit of γ = γ0.
But this result is not correct in this limit since Det[M] = 0
when γ = √

γAγB and γA = γB ≡ γ0. In order to find the
correct steady state of the system, we rewrite the equations of
motion (6) in the basis, {|1〉 , |b〉 , |d〉 , |4〉} and find that the
corresponding equations of motion are

ρ̇dd = 0,

ρ̇bb = 2γ0(1 − ρdd ) − 2γ0ρbb − 2γ0ρ11,

ρ̇bd = −(γ0 + 2iκ)ρbd,

ρ̇11 = 2γ0ρbb + iε(ρ14 − ρ41),

ρ̇14 = −iε − (γ0 − 2iω)ρ14 + iε(2ρ11 + ρbb + ρdd ). (25)

Since ρ̇dd = 0, the state |d〉 is totally decoupled from the
remaining states and does not evolve in time. In other words,
an initial population of the state |d〉 will remain constant for
all times.

With ρdd constant, the steady-state solution of Eq. (25) is
of the form,

ρbd = ρdb = 0,

ρdd = ρdd (0),

ρbb = ε2

3ε2 + γ 2
0 + 4ω2

[1 − ρdd (0)],

ρ11 = ε2 + γ 2
0 + 4ω2

3ε2 + γ 2
0 + 4ω2

[1 − ρdd (0)],

ρ14 = i
ε(γ0 + 2iω)

3ε2 + γ 2
0 + 4ω2

[1 − ρdd (0)]. (26)
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In terms of the product state basis, the corresponding
solution is

ρs
11 = ε2 + γ 2

0 + 4ω2

3ε2 + γ 2
0 + 4ω2

[1 − ρdd (0)],

ρs
22 = ρs

33 = 1

2

{
1 − 2ε2 + γ 2

0 + 4ω2

3ε2 + γ 2
0 + 4ω2

[1 − ρdd (0)]

}
,

ρs
44 = ε2

3ε2 + γ 2
0 + 4ω2

[1 − ρdd (0)],

ρs
14 = i

ε(γ0 + 2iω)

3ε2 + γ 2
0 + 4ω2

[1 − ρdd (0)],

ρs
23 = −1

2

{
1 − 4ε2 + γ 2

0 + 4ω2

3ε2 + γ 2
0 + 4ω2

[1 − ρdd (0)]

}
. (27)

We see that the physical consequences of the complete
decoupling of the state |d〉 from the remaining states is the
dependence of the steady-state values of the density matrix
elements on initial conditions. Note that the system no longer
evolves to a pure state unless it is prepared initially in the
state |d〉. Thus, depending on the way we prepare the system
initially, we can realize different situations. Note also the
steady state of the system is independent of κ . Hence, if
ρdd (0) = 1, the only steady state for Eq. (25) is ρdd = 1 with
all other density matrix elements equal to zero. It means that if
the system is initially prepared in the state |d〉, it will remain
in this state for all times, i.e., ρdd (t) = ρdd (0).

IV. DISTINGUISHABILITY OF THE MODES

The presence of the linear and nonlinear couplings between
the cavities A and B may lead one to suspect that the modes of
the cavities are indistinguishable. In particular, if we assume
that only a single excitation is present that the system is in
either |1A〉 |0B〉 or |0A〉 |1B〉 state, then the action of the linear
coupling κ generates a state which is a linear superposition
of the one-photon states. As is well known, the probability
of detecting a photon emitted from the superposition state
exhibits interference effects. The interference is regarded as a
signature of indistinguishability of the states.

Nevertheless, we will demonstrate that the modes can
be distinguishable even in the presence of the couplings
that “which-path” information is made possible due to the
inclusion of the state |1A〉 |1B〉 enforced by the energy-time
uncertainty principle. However, the “which-way” information
can be erased by allowing the cavities to decay with different
rates. To show this, we consider electromagnetic fields ÊA(�r,t)
and ÊB(�r,t) of the cavities A and B at position �r at time t .
Since fields of the cavities are treated as single-mode fields,
the negative frequency parts of the fields can be written as

Ê
(−)
A (�r,t) = E âAei(�kA·�r−ωt),

Ê
(−)
B (�r,t) = E âBei(�kB ·�r−ωt), (28)

where �kA and �kB are wave vectors of the modes and E is a
constant amplitude. Then the intensity of the field detected by

a photodetector located at �r at time t is given by

I (�r,t) = α〈(Ê(+)
A + Ê

(+)
B )(Ê(−)

A + Ê
(−)
B )〉

= α|E |2{2ρ44 + ρ22 + ρ33

+ 2|ρ23| cos[(�kA − �kB) · �r + arg(φA − φB)]}, (29)

where α is a constant characteristic of the detector, and we
have written

〈â†
AâA〉 = ρ44 + ρ22, 〈â†

BâB〉 = ρ44 + ρ33,

〈â†
AâB〉 = 〈â†

BâA〉∗ = |ρ23|ei(φA−φB ). (30)

We see from Eq. (29) that the intensity varies periodically with
position only if the coherence |ρ23| is different from zero. From
the definition of the first-order visibility and Eq. (29), we find
that

V = Imax − Imin

Imax + Imin
= 2|ρ23|

2ρ44 + ρ22 + ρ33
, (31)

and then by using Eqs. (11) and (12) we find

V =
|γd |

√
4κ2

(
γ 2

0 − γ 2
)2 + (γ γ0γd )2(

4κ2 + γ 2
0

)(
γ 2

0 − γ 2
) , (32)

where γd = (γA − γB)/2. This simple result for the first-order
visibility is strongly dependent on whether the modes are
damped with equal (γA = γB) or unequal (γA �= γB) rates.
If the modes are damped with equal rates, γd = 0, and then
the interference pattern vanishes. Hence, independent of the
presence of the couplings, the modes are distinguishable when
they are damped with the same rates. The reason for the
distinguishability of the modes is the inclusion of the state
|1A〉 |1B〉 into the dynamics of the system enforced by the
energy-time uncertainty principle. In physical terms, we may
attribute this to the fact that the modes, each occupied by a
photon, are resolved at the detector. For example, if a photon
is detected in mode A it must come from this mode since
two occupied modes cannot exchange photons. An alternative
explanation is that two decay channels from the state |1A〉 |1B〉
exist: |1A〉 |1B〉 → |0A〉 |1B〉 and |1A〉 |1B〉 → |1A〉 |0B〉. Then,
one can distinguish from which channel the detected photon
came by measuring the population of the states |1A〉 |0B〉 and
|0A〉 |1B〉.

One can notice from Eq. (32) that the visibility is inde-
pendent of ε. Note also that for the visibility to be nonzero
it is required that not only γd �= 0 but also κ �= 0 and/or
γ �= 0. Thus, in the case of the collective decay (γ �= 0)
the visibility can be different from zero even if κ = 0.
Equation (32) also shows that the visibility is maximal when
either γA  γB or γB  γA. Consequently, we can make the
modes indistinguishable by erasing one of the photons through
a fast spontaneous emission of one of the two modes. To
put it another way, when one of the photons is erased by
spontaneous emission then the remaining photon can produce
the interference since in the presence of the coupling κ it
is impossible to determine from which mode the detected
photon came. This restores the first-order interference which
is a manifestation of the intrinsic indistinguishability of two
possible paths of the detected photon.
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It is worth emphasizing that there is an upper limit of 50%
for the first-order visibility V when the modes independently
decay to the reservoirs. On the other hand, when the modes
decay collectively the visibility can be close to unity and can be
independent of κ . To show this, we introduce ratios R ≡ κ/γ0

and u ≡ γd/γ0, and then find that Eq. (32) yields

V ≡ Vs = |u| 2R

4R2 + 1
, (33)

for the decay to separate reservoirs (γ = 0), and

V ≡ Vc =
√

4R2u2 + 1 − u2

4R2 + 1
, (34)

for the decay to a common reservoir with γ = √
γAγB .

Since |u| � 1, the visibility Vs can be no larger than 50%,
and it is required that R �= 0 for Vs to be different from
zero. It follows from Eq. (33) that Vs has its largest value
of Vs = 1/2 when R = 1/2 and |u| = 1. Clearly, there is an
upper limit of 50% for the visibility when the modes decay
to separate reservoirs. In contrast, the visibility Vc can exceed
50% and can approach 100% even when R = 0 (κ = 0). It
can happen when the linear coupling κ is weak, R � 1, or
even if it is absent, R = 0. In this limit, V ≈ √

1 − u2, which
can be close to 1 when u ≈ 0 (γA ≈ γB). It should be noted
that in this case the system is in the pure entangled state |d〉,
Eq. (22), which is not the maximally entangled state. We stress
that it is impossible to put u = 1 in Eq. (34), at which the
visibility would correspond to that of a maximally entangled
state since we cannot assume γA = γB in the expression (34).
The expression for the visibility given in Eq. (32) is valid only
for γA �= γB .

To consider the limit γ = √
γAγB with γA = γB in the

evaluation of the visibility V given by Eq. (31), we must apply
the steady-state solutions given in Eq. (27). Thus, substituting
Eq. (27) into Eq. (31) we get

V =
∣∣ε2 − (

4ε2 + γ 2
0 + 4ω2

)
ρdd (0)

∣∣
3ε2 + (

γ 2
0 + 4ω2

)
ρdd (0)

. (35)

In comparison with Eq. (32), we see that the dependence of
the visibility on κ is absent. The most obvious difference is
the dependence on the initial state ρdd (0). For ρdd (0) = 0,
the visibility V = 1/3 irrespective of ε and γ0. In the other
extreme when ρdd (0) = 1, the visibility reaches its maximal
value of V = 1 also irrespective of ε and γ0. This behavior can
be explained as a result of the transition of the system from a
mixed state involving three states |1〉 , |b〉 , |4〉 to a pure state
involving the state |d〉, which is a maximally entangled state.
These results suggest that the interference can be used to detect
one-photon entangled states in the system.

Finally, we would like to comment about the connection
between indistinguishability and the presence of two signifi-
cantly different decay rates in the system. Although the modes
A and B decay with the same rate it must not be thought that
in this case the interference pattern is always absent. If the
modes decay collectively there are two superposition states in
the system |b〉 and |d〉 which decay with significantly different
rates. According to Eq. (25), the state |b〉 decays with a rate 2γ0

whereas the state |d〉 is metastable. Clearly, the decay rates of
the superposition states are significantly different even when

γA = γB . Therefore, we may conclude that the one-photon
interference results from the presence of unequal decay rates
in the system.

V. ENTANGLEMENT BETWEEN THE MODES

The strong dependence of the steady state of the system on
whether γA �= γB or γA = γB may have a significant effect on
entanglement between the modes. The question of the creation
of entanglement between the modes is addressed by consider-
ing the concurrence, a measure of entanglement between two
systems [58]. Since the evolution of the system is described
by the density operator whose the matrix representation in the
basis (5) is of the X form, the concurrence can be calculated
analytically and can be expressed as

C(t) = max{0,C1(t),C2(t)}, (36)

where

C1(t) = 2[|ρ23(t)| −
√

ρ11(t)ρ44(t)], (37)

C2(t) = 2[|ρ14(t)| −
√

ρ22(t)ρ33(t)]. (38)

There are two quantities which determine a nonzero concur-
rence. Obviously, either C1(t) > 0 or C2(t) > 0 is required for
the modes to be entangled. The quantity C1(t) determines an
entanglement created by the coherence ρ23(t), whereas C2(t)
determines an entanglement created by the coherence ρ14(t).
It follows that C1(t) > 0 corresponds to an entangled state
involving the one-photon states while C2(t) > 0 corresponds
to an entangled state involving the zero and two-photon states.
We have already seen that the coherence ρ23(t) can be created
by the linear coupling κ and also by the collective damping
γ , while the coherence ρ14(t) can be created by the nonlinear
coupling ε.

Although there is no direct connection between the one- and
two-photon coherences, we find that in the system considered
here the modes exhibit an interesting coherence effect [59–61].
Namely, the modes can be anticoherent that the one-photon
coherence ρ23 vanishes and at the same time ρ14 is maximal.
This is shown in Fig. 2 where we plot the variation of the

−1 −0.5 0 0.5 1
0

0.05

0.1

0.15

0.2

0.25

γ
d
/γ

0

|ρ
23

|, 
|ρ

14
|

FIG. 2. Variation of the steady-state coherences |ρ23| (solid black
line) and |ρ14| (dashed red line) with γd when the modes decay to
separate reservoirs (γ = 0). The other parameters are κ/ω = ε/ω =
γ0/ω = 1.
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absolute values of the coherences |ρ23| and |ρ14| with γd .
When γd = 0, the coherence |ρ23| vanishes whereas |ρ14|
has a maximum. Thus, for γd = 0 the modes are completely
anticoherent. However, as soon as γd �= 0, the coherence ρ23

is different from zero. In this case, the modes are regarded
as partially mutually coherent. It is interesting to note from
Fig. 2 that an increase of |ρ23| results in a decrease of
|ρ14| and vice versa. This “anticoherence” can be reflected in
entanglement so that an increase of C1(t) leads to a decrease
of C2(t).

A. The case of independent decay γ = 0

Let us turn to detailed analysis of the concurrence for the
case of independent unbalanced decays γ = 0 and γA �= γB .
Using the steady-state solution (14), the concurrence can be
easily determined and is given by

Cs = max
(
0,Cs

1,C
s
2

)
, (39)

where

Cs
1 = 2ε

D0

[
4|γd |κε − (

4κ2 + γ 2
0 − γ 2

d

)√
4ω2 + ε2 + γ 2

0

]
,

(40)

and

Cs
2 = 2ε

D0

[
(4κ2 + γAγB)

√
4ω2 + γ 2

0

− ε

√(
4κ2 + γ 2

A

)(
4κ2 + γ 2

B

)]
. (41)

It is seen from Eqs. (40) and (41) that a nonzero ε is necessary
for both quantities Cs

1 and Cs
2 to be nonzero. However, a

nonzero κ is needed for Cs
1 to be positive, while Cs

2 can be
positive even for κ = 0. Moreover, the damping rates should
be different (γA �= γB) for Cs

1 to be positive. This means that in
the case of an unbalanced damping rate, entanglement between
the modes can be determined by two criteria. These two criteria
do not overlap so that they determine two separate ranges of
the parameters at which entanglement occurs.

The concurrence given by Eq. (39) is plotted in Fig. 3
as a function of the coupling strengths κ and ε. For the
balanced decay, Fig. 3(a), the entanglement is independent
of κ and occurs in a range of ε <

√
γ 2

0 + 4ω2. For the
unbalanced decay, Figs. 3(b) and 3(c), there are two separate
ranges of the parameters where entanglement occurs. As
discussed above, these two ranges are determined by Cs

1 > 0
and Cs

2 > 0, respectively. We see a gap between the Cs
2 > 0

and Cs
1 > 0 structures that entanglement created by the one-

and two-photon coherences lying in separate ranges of the
parameters. Moreover, the magnitude of Cs

2 is reduced in the
range of κ where Cs

1 emerges. Evidently, with an increasing
asymmetry between the damping rates the entanglement shifts
from Cs

2 to Cs
1. Thus, the creation of entanglement by the

coherence ρ23 occurs at the expense of the entanglement
created by the coherence ρ14. One can also notice from Fig. 3
that the entanglement as determined by Cs

2 occurs in the
parameters range κ/ω � 1 and ε/ω ≈ 1. On the other hand,
the entanglement as determined by Cs

1 occurs in the deep strong
coupling regime of ε/ω > 1.

(c)

(a)

(b)

FIG. 3. Stationary concurrence Cs as a function of the coupling
strengths κ and ε when the cavity modes decay to separate reservoirs
γ = 0. The damping rate γB is fixed at γB = 0.01ω and (a) γA =
0.01ω, (b) γA = 0.1ω and (c) γA = 0.2ω. The red surface represents
a contribution of Cs

1, while the green (light gray) part represents the
contribution of Cs

2 to the entanglement created between the modes.

It is interesting to examine which of the two quantities, Cs
1

or Cs
2, produces the largest degree of entanglement and whether

the maximum corresponds to the case of distinguishable
or indistinguishable modes. A quick inspection of Eq. (41)
shows that Cs

2 achieves its maximum value at γd = 0 and the
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corresponding maximum value is

Cs
2 =

2ε
(√

4ω2 + γ 2
0 − ε

)
4ω2 + 4ε2 + γ 2

0

. (42)

Viewed as a function of ε, Cs
2 is maximal at ε =

√
4ω2 + γ 2

0 /4,
in which case Cs

2 = 3/10.
An inspection of Eq. (40) reveals that the maximum value

of Cs
1 occurs for |γd | = γ0, corresponding to either γA  γB

or γB  γA, and when ε,γ0  κ . In these limits, Cs
1 is

small, Cs
1 = 2κ/γ0 � 1. This means that the largest degree

of entanglement produced in the system is that determined
by Cs

2. Since for |γd | = 0, at which Cs
2 attains its maximum

value, the visibility Vs = 0, we conclude the largest degree
of entanglement is achieved when the modes are completely
distinguishable.

B. The case of collective decay γ �= 0

Let us now turn to the case of the decay of the modes
to a common reservoir with γ = √

γAγB . The corresponding
steady-state solution for the density matrix elements are given
by Eq. (19). When applying Eq. (19) to the concurrence, we
find the following expressions for the quantities Cs

1 and Cs
2:

Cs
1 = 2ε

D̃

[
1

2
ε

√
κ2(γA − γB)2 + γAγBγ 2

0

− κ2
√

ε2 + 4ω2 + γ 2
0

]
, (43)

and

Cs
2 = 2ε

D̃

[
κ2

√
γ 2

0 + 4ω2

− 1

2
ε
√

(2κ2 + γAγ0)(2κ2 + γBγ0)

]
. (44)

We see that in the case of damping of the modes to a common
reservoir, the role of κ in the creation of entanglement reversed,
a nonzero κ is now required for Cs

2 to be positive, whereas Cs
1

can be positive even for κ = 0.
If we set κ = 0 in Eqs. (43) and (44), we find Cs

2 < 0 and
Cs

1 = √
γAγB/γ0. In this case, the concurrence is insensitive

to ε. Therefore, the modes can be entangled for all values
of ε. The reason is that now the mechanism responsible for
the generation of the entanglement is in the trapping of the
population in the state |d〉. Note that the concurrence depends
only on the damping rates and therefore can be close to the
optimum value of unity, which can be achieved for γA ≈ γB .

Figure 4 shows the effect of the collective damping γ on
the concurrence of the modes. We see that the collective decay
results in an entanglement which is associated mostly with the
quantity Cs

1. Hence, it is mostly associated with the presence
of the coherence ρ23. Moreover, the concurrence, although the
most positive in the strong coupling regime of the antiresonant
terms, is seen to be positive in the weak coupling regime
of both resonant (κ/ω � 1) and antiresonant (ε/ω � 1)
terms.

Comparing Cs
1 with the visibility Eq. (34), we easily find

that in the case of κ = 0, where the system evolves to the

(c)

(b)

(a)

FIG. 4. Stationary concurrence Cs as a function of the coupling
strengths κ and ε when the cavity modes decay to a common reservoir.
The plots are for γA = 0.2ω, γB = 0.01ω and different γ : (a) γ = 0,
(b) γ = 1

2

√
γAγB , and (c) γ = √

γAγB . The red surface represents
the contribution of Cs

1, while the right green (light gray) surface
represents the contribution of Cs

2.

pure state |d〉, Cs
1 is equal to Vc. Thus, in the case of pure

states there is a direct connection between indistinguishability
and entanglement [62,63]. Otherwise, when the system is in a
mixed state, one can observe entanglement with the complete
distinguishability of the modes and vice versa.

063848-9



SMAIL BOUGOUFFA AND ZBIGNIEW FICEK PHYSICAL REVIEW A 93, 063848 (2016)

FIG. 5. Stationary concurrence in terms of ε and the initial
condition ρdd (0) for γa = γB = γ = 0.01ω.

Finally, we consider the case of the balanced decay of the
modes (γA = γB ≡ γ0) with the collective damping rate γ = γ0.
We have shown in Sec. III B that in this special case the steady-
state values of the density matrix elements depend on initial
conditions. Moreover, it is independent of κ . Therefore, it is
straightforward, using the results given in Eq. (27), to show
that entanglement between the modes is related to the initial
state. Specifically, if initially the system is prepared in the
maximally entangled state |d〉, it will remain in this state for
all times. If the initial state is different for |d〉 then the system
can decay to an entangled state created by ε. This is illustrated
in Fig. 5, where we plot the concurrence as a function of ε and
the initial population of the state |d〉.

Similarly to the case of the unbalanced decay presented in
Fig. 3, the entanglement is mostly associated with the presence
of the coherence ρ23. Only for initial states at which ρdd (0)≈0,
the entanglement created is associated with the coherence
ρ14. Moreover, the entanglement, which is independent of the
coupling strength κ of the resonant terms, is present in all
ranges of the coupling strength ε of the antiresonant terms.

Comparing the concurrence with the visibility, we see that
in the case of the collective decay of the modes, the maximum
entanglement is achieved when the modes are indistinguish-
able, and the maximum possible entanglement of Cs = 1 is
achieved when the modes are completely indistinguishable,
V = 1. Therefore, we may conclude that in the case of the
collective decay of the modes, more entanglement is achieved
with more indistinguishability and the maximum possible
entanglement is achieved with completely indistinguishable
modes.

C. Second-order correlations

We have seen that the creation of entanglement is deter-
mined by two criteria Cs

1 and Cs
2 which do not overlap. In

other words, these two criteria determine two distinct ranges of
the parameters at which entanglement occurs. We may relate
these criteria to the normalized second-order photon-photon
correlation function g(2)(0) which is directly measurable in

coincidence counting schemes and provides a test of whether
the photons are correlated (bunched) or anticorrelated (anti-
bunched) [64]. For this purpose, we consider the normalized
second-order correlation function, which for the two modes A

and B is [65]

g(2)(0) ≡ 〈â†
Aâ

†
BâAâB〉

〈â†
AâA〉〈â†

BâB〉
= ρ44

(ρ44 + ρ22)(ρ44 + ρ33)
. (45)

(c)

(b)

(a)

FIG. 6. Stationary second-order correlation function g(2)(0) plot-
ted as a function of the coupling strengths κ and ε for the same
parameters as in Fig. 3.
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If we compare this expression with the expressions for Cs
1

and Cs
2, Eqs. (37) and (38), we find that there is no direct

connection here between entanglement and the second-order
photon correlations. The quantities Cs

1 and Cs
2 are given in

terms of the coherences and populations, while g(2)(0) is given
entirely in terms of the populations. Nevertheless, we can
demonstrate that entanglement determined by Cs

1 > 0 occurs
in the range of the parameters at which g(2)(0) < 1, whereas
entanglement determined by Cs

2 > 0 occurs in the range at
which g(2)(0) > 1.

Let us examine the relations for the case of independent
reservoirs (γ = 0). To do this, let us first assume that γA = γB .
Then using Eqs. (14) and (15) we readily find

g(2)(0) = 1 + 4ω2 + γ 2
0

4ε2
, (46)

from which it is clear that g(2)(0) is always greater than one.
This means that emitted photons exhibit the bunching effect
when γA = γB .

On the other hand, when γA �= γB and in the limit of κ < ε,
it can be shown that g(2)(0) is of the form,

g(2)(0) ≈ 1 − 4κ2γ 2
d(

4κ2 + γ 2
0

)2 − γ 2
0 γ 2

d

. (47)

Here we see that g(2)(0) is always less than one. It follows
that for γA �= γB and κ < ε, the emitted photons exhibit the
antibunching effect.

Figure 6 shows the variation of g(2)(0) with κ and ε for the
same parameters as in Fig. 3, where we illustrated the variation
of Cs with κ and ε. It is seen that g(2)(0) decreases with an
increasing ε and for γA = γB attains a minimum value of
g(2)(0) = 1 independent of κ . For γA �= γB , there is a range of
κ (κ � ε) at which g(2)(0) < 1. Comparing Fig. 6 with Fig. 3,
we see that the positive values of Cs

2 lie within the parameter
ranges permissible for photon bunching, g(2)(0) > 1, and the
positive values of Cs

1 lie within the permissible ranges for
photon antibunching, g(2)(0) < 1.

Summarizing, there is a connection between entanglement
and photon statistics that the entanglement determined by
Cs

1 > 0 is related to photon antibunching whereas the entan-
glement determined by Cs

2 > 0 is related to photon bunching
effect.

VI. SUMMARY AND CONCLUSIONS

We have investigated two concepts of quantum mechanics,
indistinguishability and entanglement, in a system composed

of two strongly coupled bosonic modes. We have found that
the use of both resonant (RWA) and antiresonant (non-RWA)
terms in the interaction between the modes forms a natural link
of the two concepts with the energy-time uncertainty principle.
The inclusion of the antiresonant terms requires working in an
ultrastrong coupling regime and at a very short interaction
time. We have found nonzero population distribution and
coherences between the low energy states and have interpreted
the distribution as the result of the uncertainty in energy
which over a very short interaction time is of the order of
the one-photon energy.

The analysis of the steady state of the system has demon-
strated the importance of the dissipation in the redistribution
of the population and in the creation of coherences between
the low energy states. To explore the role of the dissipation, we
have calculated the steady state of the system when the modes
decay either independently or collectively. We have found that
when the modes decay independently, the distinguishability
and entanglement of the modes depend strongly on whether
the modes decay with equal or unequal rates. In particular,
when the modes decay with equal rates, entanglement with the
complete distinguishability of the modes can be observed; the
entangled cavity modes behave as mutually incoherent. When
the modes decay with unequal rates, a single-photon coherence
is induced between the modes resulting in indistinguishability,
single-photon interference between the modes. We have found
an upper bound of the single-photon visibility that the visibility
cannot exceed 50% when the modes decay independently.
When the modes decay with equal rates we show that
“which-path” information is made possible and the visibility
in single-photon interference vanishes.

When the modes decay collectively, the single-photon
coherence is created even if the modes decay with equal rates.
The additional pathway induced by the collective decay rate
results in nearly perfect visibility of the interference pattern
even in the absence of the resonant coupling between the
modes. We have shown that the collective damping creates
superposition states and in the absence of the resonant coupling
the steady state is a pure entangled state rather than the
expected mixed state. This can result in entanglement with the
complete indistinguishability of the modes, so that the modes
entangled through the collective decay behave as mutually
coherent. In addition, we have found that the collective
damping with the maximal rate can lead to the steady-state
values for the density matrix elements which depend on their
initial values. This requires that the modes decay with equal
rates. Then, depending on the initial state, the modes can be
found in a mixed or in a pure maximally entangled state.
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