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Polaritonic modes in a dense cloud of cold atoms
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(Received 21 October 2015; revised manuscript received 18 April 2016; published 20 June 2016)

We analyze resonant light scattering by a cloud of cold atoms with randomly distributed positions in a regime
where resonant dipole-dipole interactions between scatterers cannot be neglected. Using a microscopic approach
we calculate numerically the collective eigenmodes of the cloud for many realizations. It is found that there always
exists a small number of polaritonic modes. Using a macroscopic approach, we show that the atomic cloud is
equivalent to a homogeneous particle with an effective permittivity and that there is a one-to-one correspondence
between the microscopic polaritonic modes and the modes of the homogeneous particle.
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I. INTRODUCTION

Light scattering by an ensemble of particles is usually
viewed as a multiple scattering process involving a sequence
of single scattering events. Each scatterer is considered to be
in the far field of the others so that a scattering matrix approach
can be used to describe each scattering event [1]. When the
density of the system increases, correlations and near-field
resonant dipole-dipole interactions between scatterers start
playing a role. These effects and also coherence effects can
be included using a coherent theory of multiple scattering
[2–5]. Within this framework, it is possible to show that the
electric field averaged over an ensemble of realizations of
the system obeys a propagation equation in a homogeneous
system with an effective dielectric permittivity. Many standard
models are available to derive the effective permittivity in the
dilute regime [3,6–8]. The regime where recurrent scattering,
i.e., the electromagnetic field gets scattered at least twice
by the same scatterer, becomes significant remains largely
unexplored experimentally.

The physics of multiple scattering of light has been revisited
in the context of resonant atomic gases in the last fifteen
years. Backscattering enhancement has been measured in the
low-intensity regime where a classical description of scattering
is valid [9,10]. Cold atoms allow changing the scattering
regime by detuning the laser: from optically thin to optically
thick media [11] and from dilute to dense media [12]. In
the dense regime, novel effects are expected as pointed out
by Morice et al. [13]. The recurrent scattering has been
studied theoretically in Refs. [14,15]. These works predict
that resonant dipole-dipole interaction becomes significant
when the dipole-dipole interaction strength parameter ρ/k3

is larger than unity, where ρ is the number of atoms per unit
volume and λ0 = 2π/k is the atomic resonance wavelength.
It is interesting to note that this condition can be cast in the
form kl < 1 where l ∼ k2/ρ is the elastic mean free path on
resonance. This condition is thus similar to the so-called Ioffe-
Regel criterion of Anderson localization [3]. Furthermore,
in this density regime, it has been shown that the effective
dielectric permittivity can be negative [16]. The decrease of the
elastic mean free path due to resonant dipole-dipole interaction
has been discussed in Refs. [17–19]. Another interesting aspect
of scattering by a dense cold-atom system is the presence
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of collective effects. Recently, single-photon superradiance
has been studied both theoretically [20] and experimentally
[21–24]. Bienaimé et al. described light scattering quantum
optically for a finite-size system and found subradiant and su-
perradiant states [25]. They predicted that superradiance gives
rise to directional light scattering. It has also been reported that
spontaneous emission is dominated by superradiant modes
and that the emission spectrum displays both negative and
positive Lamb shifts in the presence of resonant dipole-dipole
interactions [26]. Sokolov et al. [27] analyzed the response of
an ensemble of cold resonant scatterers in a spherical volume
and they compared a modal microscopic description with a
macroscopic description based on the effective permittivity
in the mean field approximation; both approaches are in good
agreement for low densities. In contexts such as random lasing,
light localization, and subradiance, microscopic modes of a
system of interacting atoms in the scalar approximation have
been studied [25,26,28–31].

In this work, we study dense (ρ/k3 � 1) and disordered
systems consisting of N resonant dipoles in a small volume
with dimensions comparable to the resonant wavelength [see
Fig. 1(a)]. We consider cold atoms in vacuum with a negligible
Doppler effect. We study light scattering by this system using,
on one hand, a microscopic model accounting for all interac-
tions between atoms and, on the other hand, a macroscopic
model based on a homogeneous system with an effective
permittivity [see Fig. 1(b)]. The effective permittivity is then
derived numerically by fitting the scattered intensity averaged
over an ensemble of 300 different realizations of the system.
This allows us to compare both the eigenfrequencies and the
spatial structures of the eigenmodes of both microscopic and
macroscopic systems.

As already pointed out in Ref. [25], superradiant modes
are responsible for coherent light scattering. In this work, we
observe that some of them have the following properties: (i)
all atoms contribute to the mode, (ii) the frequency and the
spatial structure of the mode is independent of the realization
but depends on the geometry and density of the system so
that they are very robust against disorder. Hence, despite the
fact that the system is disordered, these modes are analogous
to the polaritons introduced by Hopfield to analyze collective
excitations in condensed matter for ordered systems [32]. We
thus refer to these superradiant modes as polaritonic modes.
We further observe that the spatial structure of these modes
coincides with the spatial structure of the modes of the effective
homogeneous particle with effective permittivity. We thus
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conclude that there is a one-to-one correspondence between
modes of a particle with effective permittivity and polaritonic
modes in an atomic system.

The analysis developed in this work is not limited to
cold-atom systems but is also applicable to condensed-matter
systems of coupled oscillators such as an ensemble of quantum
dots and layers of organic molecules with electronic transitions
or vibrations in a crystal. Let us give two examples where the
polaritonic behavior survives the introduction of disorder and
can be described in the framework of an effective permittivity.
As a first example, we consider surface phonon polaritons.
A phonon is a collective excitation which results from the
interaction potential between neighbors. For optical phonons,
these collective mechanical excitations are coupled to the
electromagnetic field, resulting in a polariton [33]. These
approaches can be applied to many different crystals such
as SiC or quartz. It is now interesting to consider amorphous
glass. There, the concept of phonon disappears as there is
no periodicity of the system. However, it turns out that the
permittivity still has a negative real part so that surface phonon
polaritons are still predicted by classical electrodynamics and
indeed observed experimentally. This raises the question of
the underlying microscopic excitation.

The second example is the optical behavior of a disor-
dered ensemble of densely packed quantum dots or organic
molecules such as J aggregates. It has been observed that
layers of these resonant materials deposited on metallic
films display strong coupling with surface plasmons [34–41].
The experimental results can be explained using a resonant
effective permittivity for the ensemble scatterers. It has further
been observed that the modes are spatially coherent. The
previous examples share the basic physical ingredients with
our model consisting of N cold atoms in a cloud. They are
dense and disordered systems of N resonant scatterers.

The paper is organized as follows. First, using a microscopic
model, we study the collective eigenmodes of the system
consisting of N cold atoms in a small volume as depicted
in Fig. 1(a). We find that some of them, called hereafter

FIG. 1. (a) System under study: N = 450 atoms uniformly
distributed in a rectangular box. The atomic density is ρ = k3.
The incoming light excites the collective eigenmodes of the system
(visualized by the blue sinusoid), which gives rise to a scattering
pattern in, essentially, the forward direction. Here, we have plotted
the modulus square of the electric field radiated in the far field at
resonance, averaged over 1500 realizations, 〈|E|2〉. (b) Homogeneous
medium described by an effective permittivity εeff exhibiting optical
resonances. The scattering pattern, |E|2, is found to be similar to (a)
except for the diffuse light, which is by definition null in (b).

polaritonic, are robust against disorder, involve all atoms, and
are superradiant. We then analyze light scattering by the system
using this model and compare it with an effective permittivity
as sketched in Fig. 1(b). We show that polaritonic modes can be
identified with the macroscopic optical modes of that system.
We also discuss the origin of losses in the effective permittivity.

II. MODEL

We consider a cloud of atoms uniformly distributed in
a rectangular box [see Fig. 1(a)]. The dipoles, being cold
atoms in vacuum, experience no nonradiative losses and
a negligible Doppler effect with respect to their radiative
linewidth �0. In the numerical simulations presented below,
we have taken rubidium-87 atoms, λ0 = 780 nm, and �0 =
2π × (6 MHz). The number of atoms, N = 450, and the
dimensions of the box, 4.8λ0 × 0.6λ0 × 0.6λ0, correspond to
typical experimental conditions obtained by laser cooling and
trapping techniques in wavelength-size optical dipole traps
[12]. With such parameters, ρ/k3 ∼ 1, so recurrent scattering
starts playing a significant role. We also show some results for
a rectangular cloud with dimensions 2.1λ0 × 0.4λ0 × 0.4λ0

and density ρ/k3 ∼ 5. The cloud is investigated in the weak-
excitation limit, where its optical properties can be described
by classical optics [26,28]. Because the system is dense,
we treat the electromagnetic field vectorially to properly
take into account the 1/r3 dependence of the near-field
interactions (r is the interatomic distance). The atoms are
modeled as pointlike and identical scatterers characterized
by an isotropic electric polarizability matrix ¯̄α(ω) = α(ω)1,
where α(ω) = (3π�0/k3)/(ω0 − ω − i�0/2), with ω0 = ck

being the transition frequency and c being the speed of light in
vacuum. This polarizability model corresponds to a classical
J = 0 → J = 1 atom with three transitions. It assumes elastic
scattering events and therefore no nonradiative decay channels.

The microscopic eigenmodes of the atomic cloud are
obtained by searching for a self-consistent solution of the
coupled-dipole equations in the absence of a driving elec-
tric field. The induced dipoles pi can be written as pi =
ε0 ¯̄α(ω)

∑
j �=i Ej→i(ri), where Ej→i(ri) = μ0ω

2 ¯̄G(rj ,ri ; ω)pj

is the electric field at the position of scatterer i created by the
induced dipole of scatterer j . Here, ¯̄G(rj ,ri ; ω) is the vacuum
Green tensor [42]. The dipoles are thus coupled through the
following linear system of equations:

pi − ω2

c2
α(ω)

∑
j �=i

¯̄G(rj ,ri ,ω)pj = 0. (1)

Assuming ω2 ¯̄G(rj ,ri ,ω) ≈ ω2
0

¯̄G(rj ,ri ,ω0) turns this problem
into an eigenvalue problem. Because of the narrow atomic
linewidth and the nonresonant character of the vacuum Green
tensor, this is an accurate assumption. The eigenvalue problem
is of the form ¯̄A(ω0)Pβ = (ωβ − i

�β

2 )Pβ , where the matrix

¯̄A(ω0) =

⎛
⎜⎜⎜⎝

(
ω0 − i �0

2

)
I −3πc�0

ω0

¯̄G2→1 . . .

−3πc�0
ω0

¯̄G1→2
(
ω0 − i �0

2

)
I

...
. . .

⎞
⎟⎟⎟⎠,

of which all submatrices are of size 3 × 3.
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This eigenvalue problem has 3N eigenvalues. The
corresponding eigenvectors Pβ are composed of the
vector components of all N dipole moments, Pβ =
[pβ

1x,p
β

1y,p
β

1z, . . . p
β

Nx,p
β

Ny,p
β

Nz]
ᵀ. They are normalized such

that |Pβ |2 = ∑
j |pβ

j |2 = 1.

III. EIGENSPECTRUM ANALYSIS

Figure 2 shows all 405 000 eigenfrequencies in the complex
plane obtained from 300 realizations of the cloud. We observe
three distinct families of modes, each defined in terms of
their collective linewidth �β and their collective frequency
shift 
β = ωβ − ω0: (1) �β ∈ {0,2�0} and |
β | 	 �0, (2)
�β 	 �0, and (3) others. Type 1 eigenmodes have a collective
linewidth of either � ≈ 2�0 or � 
 �0 and a large frequency
shift. Figure 3(a) shows a typical eigenmode of type 1.
It contains only two excited atoms, so we call it a dimer
mode. When two dipoles oscillate in phase and are very
close together, the electric fields of both dipoles interfere
constructively. Therefore, the pair of dipoles radiates twice as
fast (� = 2�0) as they would independently. However, when
the dipoles oscillate out of phase, their electric fields interfere
destructively, and the pair of dipoles is strongly subradiant
(� 
 �0). The large level splitting is due to the large resonant
dipole-dipole interaction.

Within the type 2 family of modes, one can distinguish a
few patches (four in these cases) of modes (see rectangles
in the insets of Fig. 2), which we denote as polaritonic
modes for reasons explained below. More precisely, for a given
realization, the spectrum of eigenfrequencies always contains
the same number of polaritonic modes, with each mode falling

FIG. 2. The three types of eigenmodes are indicated by the
numbers (1) through (3). The inset shows a closeup of the boxed
part of the main figure, where the polaritonic modes (a), (b), (c), and
(d) for both (a) ρ/k3 = 1 and (b) ρ/k3 = 5 are visualized in Fig. 7.
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FIG. 3. Typical eigenmodes for the cloud with ρ/k = 1 are
shown. (a) Type 1 eigenmodes are called dimer modes. The dipoles are
very close to each other. (b) A polaritonic mode shows an oscillatory
behavior. (c) Bunches of dipoles oscillate. (d) Many dipoles oscillate,
but without the spatial oscillatory behavior, so there is no periodic
arrangement of the dipoles.

into one of these patches [43]. For a dense atomic system, in the
scalar approximation, these patches have also been obtained
numerically by Goetschy et al. [30,31]. Figure 3(b) shows a
plot of the dipole moments squared |pj |2 for a typical mode of
type 2. For this collective mode, most of the atoms are excited
and Fig. 3(b) suggests |pj |2 oscillates spatially along the z axis.
We have checked that this oscillation is an intrinsic property of
the homogeneous system, i.e., that it is a property of the shape
and density of the sample but not of the exact positions of the
atoms. To do this, we calculate the average dipole moment
squared 〈|p|2〉, where 〈· · · 〉 denotes averaging both inside thin
slices perpendicular to the long axis of the box, and over 300
realizations of the uniform atomic distribution. Here, only the
modes inside rectangle (a) in the inset of Fig. 2(a) are taken
into account in the average. The rectangles are taken such
that they contain most of the polaritonic modes of a specific
kind. Figure 4(b) shows that the spatial oscillation observed
in Fig. 4(a) survives the ensemble averaging. Note that the
symmetry of the macroscopic mode structure with respect to
the plane z = 0 is restored by the averaging procedure. Their
spatial structure is the same for all realizations: It depends on
the density and shape of the cloud. These facts confirm that
these few type 2 eigenmodes are polaritonic by nature. This
is in contrast with the other types of modes, which do not
show this spatial periodicity along the z axis nor involve all
the dipoles simultaneously.

All modes we have not discussed so far belong to type
3. These modes involve either many dipoles distributed
throughout the whole volume but without a regular spatial
structure [Fig. 3(d)], as the one observed in Fig. 3(b), or a
localized mode involving only a subset of dipoles [Fig. 3(c)].
In order to demonstrate that neither type 1 nor type 3 modes
have a spatial structure, as opposed to polaritonic modes, we
have calculated the average dipole moment square along the
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FIG. 4. (a) Spatial structure of a typical microscopic eigenmode
of type 2 for ρ/k3 = 1. The dipole moment squared |pj |2 of each atom
j has been plotted, with the atoms being sorted by their z coordinate.
(b) Average dipole moments squared 〈|p|2〉 (red dots). The ensemble
average is performed over the polaritonic modes inside the black
solid rectangle (a) in the inset of Fig. 2(a). The macroscopic mode
of the homogeneous cloud (blue solid line) coincides very well with
the average polaritonic mode, taking into account a small offset due
to the fluctuations of the dipoles amplitudes from one realization to
another. Refer to the appendix for a discussion about this offset.

long axis of the box for these modes. It is seen in Fig. 5 that
these modes do not possess the oscillatory structure observed
for type 2 modes.

The periodic arrangement of the dipole moments, which
only exists for the type 2 eigenmodes, allows phase matching
of the radiation by the dipoles and therefore single-photon
superradiance along the axis of the object. Note that this
phase matching only occurs within a rather limited solid angle
(∼2π/15). This is why the linewidth is not enhanced by a
factor N as is the case for superradiance by N emitters in a
subwavelength volume. As the other modes do not possess
such a spatial arrangement, the collective linewidth for both
type 1 and 3 modes is smaller.
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FIG. 5. The average dipole moment square of type 1 (a) and type
3 (b) eigenmodes along the long axis of the box do not show any
spatial oscillatory structure, like type 2 does. (a) All eigenmodes with
|
β | > 150�0 have been taken into account for the averaging. (b) All
modes within the region defined by |
β | < 19 and �β < 3�0 have
been taken into account for the averaging. The density of the cloud is
ρ/k3 = 1.

IV. LIGHT SCATTERING

We now study light scattering by the cloud of atoms.
Solving the coupled-dipoles equations using the laser field
as an external driving source allows us to calculate the
scattered field E in the far field for a given realization of
the cloud when it is illuminated by an x-polarized plane
wave, as is done in our recent work [44]. After averaging
over 1500 realizations, the scattering pattern obtained near
resonance (ω = ω0) exhibits one lobe in the forward direction
[see Fig. 1(a)] and some diffuse light which is on average
quasi-isotropic and has a smaller amplitude. However, these
two features have comparable contributions when integrated
over the full solid angle with 54% and 46% of the total
scattered light, respectively. The lobe in the forward direction
is very similar to the diffraction pattern originating from a
homogeneous particle, suggesting that one could replace the
cloud, with its random graininess, by a homogeneous cloud
with the same shape and extract an effective permittivity.

We understand these observations by decomposing the
electric field E scattered by the random medium into an
ensemble-averaged field 〈E〉 (also denoted coherent) and a
fluctuating field δE (also denoted incoherent), E = 〈E〉 + δE,
with 〈δE〉 = 0 [2,4]. 〈E〉 satisfies the Helmholtz equation
in an effective homogeneous medium with an effective
permittivity εeff: ∇2〈E〉 + ω2

c2 εeff〈E〉 = 0 [2,4]. From this it
follows that 〈E〉 is the field diffracted by an effective medium
with effective permittivity εeff and with the same shape as
the cloud. The scattered intensity can also be decomposed
in a coherent and incoherent contribution 〈|E|2〉 = |〈E〉|2 +
〈|δE|2〉 ∝ Icoh + Iincoh. The first term corresponds to the lobe
in the forward direction in Fig. 1(a), while the second term is
the quasi-isotropic diffuse light.

V. EFFECTIVE PERMITTIVITY

We now proceed to the extraction of the effective permit-
tivity of the cloud as a function of frequency. Textbook mean-
field theory gives the Lorentz-Lorenz relation between the
macroscopic permittivity of a medium and the polarizability
of the scatterers

εLL(ω) − 1

εLL(ω) + 2
= ρα(ω)

3
. (2)

This formula takes only partially dipole-dipole interactions
into account by the local-field correction [45]. Recurrent
scattering is not included, while its impact on the effective
properties is expected to be of importance for dense systems
[4,19,46]. In order to derive the effective permittivity by ac-
counting for multiple scattering, we solve an inverse problem.
We compare the coherent contribution |〈E〉|2 of the far-field
scattering pattern of the atomic cloud with that of an effective
homogeneous particle with a permittivity εeff and the same
geometry as the cloud. The latter is numerically calculated
with an aperiodic Fourier modal method (a-FMM) [47], using
εeff as a fitting parameter. We find that the far-field scattering
pattern computed using either the effective homogeneous
particle or the ensemble average microscopic cloud agree
within 1% [compare Figs. 1(a) and 1(b)], showing that the
effective permittivity approach is valid. We conclude that this
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macroscopic approach captures both the recurrent scattering
and the collective effects of the microscopic picture. By
repeating this procedure for different frequency detunings
δω = ω − ω0, we obtain the spectrum of the effective permit-
tivity (see Fig. 6), which is found to be significantly different
from the prediction by Eq. (2). Our results evidence that the
Lorentz-Lorenz formula is not valid for a dense cloud of
resonant scatterers; the discrepancy between the simulation
and the Lorentz-Lorenz theory increases with the density,
showing that the dipole-dipole interactions become stronger
[46,48]. This result has been recently studied experimentally
using a cloud of cold atoms with similar shape and density
[44]. It is all the more remarkable as the system is five orders
of magnitude more dilute than a gas at ambiant conditions for
which the Lorentz-Lorenz theory is an accurate description.

It is noteworthy that at resonance the gas is described by a
permittivity with a negative real part and thus optically behaves
as a metal. From the permittivity we derive the imaginary part
of the refractive index neff = ε

1/2
eff and thus find the mean free

path at resonance, l = 1/[kIm(neff)]. We find l = 1/(1.5k),
indicating that the Ioffe-Regel criterion is satisfied [3]. Yet,
we have found many modes extended throughout the whole
system, indicating that the localization length, if any, is larger
than the size of the system.

VI. CONNECTION BETWEEN POLARITONIC MODES
AND MACROSCOPIC MODES

We have seen that the far-field scattering pattern of
the atomic cloud is very similar to that of an effective
homogeneous particle with an effective permittivity. We now
make explicit the relation between the (macroscopic) modes
of the homogeneous particle and the (microscopic) polaritonic
modes. To do that, we use the fitted effective permittivity
εeff(ω) (see solid lines in Fig. 6) and calculate the macroscopic
modes of the homogeneous particle, which are poles of the
scattering matrix, by iteratively solving Maxwell’s equations
in the complex frequency plane [49]. Remarkably, we find
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FIG. 6. Effective permittivity εeff(ω) for (a) ρ/k3 = 1, and (b)
ρ/k3 = 5. The real and imaginary parts of the effective permittivity
(circles and dots) largely differ from the predictions of Lorentz-
Lorenz theory (dashed curves). Solid lines: Lorentzian fit of the
numerical data.
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FIG. 7. The average dipole moment squared of polaritonic modes
(red dots) is plotted along the long axis of the rectangular box.
Superimposed (blue dashed curve) is |E|2 of the macroscopic mode of
the homogeneous object. Each panel belongs to a different polaritonic
mode. Refer to Fig. 2 for the eigenfrequencies of the modes. For the
averaging procedure, we divided the system along its long axis in
thin slices. The dipole moment squared is averaged per slice and then
averaged over 300 realizations. (a) ρ/k3 = 1 and (b) ρ/k3 = 5.

that the macroscopic modes coincide (within error bars) with
the above-mentioned polaritonic modes (see Fig. 2). Despite
the fact that the geometrical length of the cloud is fixed
and the frequency of the laser is almost fixed (close to ω0),
it is possible to find several longitudinal modes because of
the strong dispersion of the medium close to resonance. This
provides a physical explanation of the results reported by Li
et al. [26], who studied the spontaneous emission spectrum of
a dense cloud of atoms and found blue- and red-shifted modes.

Figure 4(b) shows that the above-mentioned coincidence is
not accidental: The microscopic and macroscopic modes have
not only the same frequency and linewidth, but also the same
spatial structure along the z axis. Figure 7 shows the spatial
agreement for all polaritonic modes for both ρ/k3 = 1 and
ρ/k3 = 5. This illustrates that the coincidence is not restricted
to a particular value of the interaction strength parameter ρ/k3.
The same agreement holds for the transverse dimensions of
the box. Figure 8 shows an example of this agreement. We
observe that the number of oscillations as observed in Fig. 7
decreases by one from the leftmost patch to the rightmost
patch in Fig. 7(a). The same holds for the polaritonic modes in
Fig. 7(b), taking into account that modes (b) and (c) actually
have a different polarization as the other modes. Modes (b)
and (c) are polarized along the long axis of the box (z axis),
whereas the other modes are transversely polarized, i.e., in
the (x,y) plane. Modes (a)–(d) for ρ/k3 = 1 are also mostly
transversally polarized. Our analysis thus sheds new light
on the connection between the microscopic and macroscopic
approaches of scattering, as one can directly identify the
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FIG. 8. Transverse profile of the polaritonic mode (a) of Fig. 2(a)
(red dots) and of the macroscopic mode (blue solid curves). The
profile has been obtained by averaging the dipole moments squared
inside a thin slice at z  −1.3λ0 and along the y axis.

(microscopic) polaritonic modes with the macroscopic modes
of the corresponding effective homogeneous object.

VII. ABSORPTION

In the macroscopic model, the appearance of an imaginary
part of the effective permittivity (see Fig. 6) accounts for losses,
which correspond to an energy transfer from the coherent
field to the incoherent (diffuse) field. Here, we demonstrate
that these quantities are actually equivalent. First, we discuss
the microscopic system. From an energy balance, it can be
shown that the total scattered power leading to extinction
P micro

ext = P micro
s,coh + P micro

s,incoh, where P micro
s,coh is the coherent scat-

tered power and P micro
s,incoh the incoherent scattered power [50].

As we assume elastic light scattering, there is no absorption
in the microscopic system. In the macroscopic system, there
is both absorption and light scattering: P macro

ext = P macro
s +

P macro
abs . As the ensemble-averaged electric field follows the

Helmholtz equation with an effective permittivity, P micro
s,coh =

P macro
s . Because of the equivalence between the microscopic

and macroscopic systems, their extinction is the same. From
this simple reasoning, it follows that P micro

s,incoh = P macro
abs . While

losses are generally considered as being irreversible as a result
of dephasing processes, e.g., coupling to phonons, we note that
this cannot be the case here, as there is no loss mechanism in
the microscopic model. Before averaging, the field scattered
by a single realization of the cloud can be time reversed,
provided that the scatterers’ positions have not changed. After
averaging, only the coherent field has a well-defined phase
and can be time reversed. In summary, in the presence of
dephasing processes, or when the positions of the atoms are
changed randomly from one realization to another (as is the
case when we ensemble average), the coupling of the incident
light to dipole fluctuations leads to an irreversible radiation of
incoherent light.

VIII. CONCLUSION

In conclusion, we have shown the existence of polaritonic
modes in a dense atomic system. These polaritonic modes
do not depend on the atomic positions but only on the
shape and size of the cloud and on the atomic density; they
are spatially delocalized and strongly superradiant. We have
shown that they can be identified to the macroscopic modes
of a homogeneous object with an effective permittivity. These
results apply not only to cold atomic clouds but also to any
dense system of resonant scatterers such as molecules or
quantum dots. Our work provides a unified vision of scattering
by dense systems of resonant scatterers.
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APPENDIX: COMPARING MICROSCOPIC
AND MACROSCOPIC MODES

As can be seen from Fig. 7 in the main text, the macroscopic
modes coincide very well with the microscopic polaritonic
modes. In this appendix, we detail the procedure used to
compare the macroscopic mode with the average dipole
moment square.

Let us note that the dipole moment square for a single
realization [see Fig. 4(a) of the main text] corresponds to a
single eigenmode. In the main text, the procedure of obtaining
these eigenmodes has been explained. From the derivation,
it follows that these modes are calculated in the absence of
an external driving field, so the dipole moments are known
apart from a multiplication factor. This multiplication factor is
obtained by normalizing the modes, which has been done as
explained in the main text by imposing

∑
j |pβ

j |2 = 1.
Obviously, the normalization issue also arises for the

macroscopic modes. The latter have been normalized such that
their intensity coincides well with the average dipole moment
square. This way of comparing macroscopic and microscopic
modes is consistent with the fact that p ∝ E. Lastly, we
note that 〈|p|2〉 = |〈p〉|2 + 〈|δp|2〉. As a consequence, 〈|p|2〉
exhibits an offset, which is due to dipole moment fluctuations.
This explains the fact that a significant offset as for 〈|p|2〉 is
not present for |E|2. In order to superimpose them, we have
added a constant offset to the macroscopic |E|2.
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