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Dissipative two-level systems under ultrastrong off-resonant driving
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We study the dissipative dynamics of a two-level system under ultrastrong driving when the frequency and
strength of the exciting field exceed significantly the transition frequency. We find three qualitatively different
regimes of such dynamics: (1) the collapse and revival of oscillations in the population difference, (2) the
simple exponential decay of the oscillations resulting in their steady state with the finite amplitude, and (3) the
steady-state stabilization of the equally populated levels. The nonmonotonic Bessel-function-like dependence on
the driving strength is also predicted for the decay rate of these oscillations. The features of this dependence are
determined by the relative rates of energetic relaxation and pure dephasing.
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I. INTRODUCTION

The resonant interaction between electromagnetic fields
and two-level systems (qubits) is widely used for studying
and control of various quantum objects such as atoms, nuclear
and electronic spins, impurity centers, quantum dots, and
superconducting qubits [1–3]. The coherent dynamics of
qubits can be described in terms of Rabi oscillations between
the two energy eigenstates. In particular, this dynamics is
extremely important for quantum information processing [4],
quantum control [5], and protection against decoherence [6].
The rate of the two-level state manipulation and the system
coherence time are critical parameters for the processing. The
manipulation rate is characterized by the Rabi frequency and
depends on the strength of the driving field. The number of
coherent single-qubit operations (the number of half-periods
of Rabi oscillations) is limited by the system coherence time.
Both the lengthening of the coherence time and the increase in
the manipulation rate result in faster state operation. Increasing
the manipulation rate requires stronger driving fields and can
lead to the strong driving regime when the driving strength
g is comparable to, or exceeds, the transition frequency ε

between two energy levels. In this regime the counter-rotating
component of an oscillatory driving field results in complex
dynamics of two-level systems due to breakdown of the
rotating wave approximation (see, e.g., [7–9]). Previous results
on the steady-state response of two-level systems, mainly
superconducting qubits, under their strong continuous-wave
driving have been reviewed [2,10]. The strong driving of
qubits is also realized in Landau-Zener-Stuckelberg inter-
ferometry. Such interferometry on quantum dots [11,12],
in spinor Bose-Einstein condensates [13], superconducting
qubit-nanomechanical resonator systems [14], including quan-
tum properties of a photon mode [15] has been investigated
both theoretically and experimentally. Recently, using time-
domain Rabi oscillations, the strong driving (g � ε) has been
studied in experiments with nuclear spins [16], artificial atoms
such as superconducting flux [17–19], and charge [20] qubits,
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a single nitrogen-vacancy (NV) center in diamond [21,22],
radiation-dressed states of NV centers [23], and mechanical
driving of a single electron spin [24]. Qubit-oscillator systems
and their potential for preparing nonclassical states [25] as
well as multiphoton quantum Rabi oscillations in circuit
QED systems [26] have also been discussed. Usually the
qubit’s dynamics under strong driving is described within
the framework of Floquet theory, where the state of a driven
system is expressed in terms of quasienergies and quasienergy
states [19,27]. The presence of the various frequency compo-
nents in the observed Rabi oscillations and the Bessel-function
dependence of the quasienergy difference on the driving
strength have been demonstrated [18–20]. On the other hand,
the study of dissipative and decoherence processes limiting the
observation of Rabi oscillations remains a challenging task in
the strong and ultrastrong (g � ε) driving regime.

In this paper, we present an analytical description of the
dissipative dynamics under the ultrastrong driving, when the
frequency ω and the strength of electromagnetic field exceed
significantly the qubit transition frequency (ω,g � ε). The
description is given in the framework of the nonsecular pertur-
bation theory based on the Krylov-Bogoliubov-Mitropolsky
(KBM) averaging method. With the help of the KBM method
the secular terms in the series of the perturbation theory are
resummed and the accurate results up to the third order in
∼ε/ω are obtained. We predict three regimes of oscillations
in the population difference of the qubit. These regimes with
qualitatively different behavior are controlled by the driving
strength. The unusual feature of these oscillations is also the
nonmonotonic Bessel-function-like dependence of their decay
rate on the driving strength. Such properties cannot be realized
under weak driving, where the decay rate of Rabi oscillations
can increase monotonically with the driving strength, an effect
called “driven decoherence” [28]. The obtained analytical
results are validated by numerical calculations.

II. DENSITY-MATRIX EVOLUTION

The master equation for the qubit interacting
with a linearly polarized electromagnetic field
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is

i
∂ρ

∂t
= [H,ρ] + i�ρ, (1)

where

H = εsz − 2gsx cos ωt (2)

is the Hamiltonian and � is the relaxation superoperator
defined as

�ρ = γ21

2
D[s−]ρ + γ12

2
D[s+]ρ + η

2
D[sz]ρ. (3)

Here g is the qubit-field coupling strength; s±, z are compo-
nents of the pseudospin operator, describing the qubit state

and satisfying the commutation relations: [s+,s−] = 2sz and
[sz,s±] = ±s±. In addition, D[O]ρ = 2OρO+ − O+Oρ −
ρO+O, γ21 and γ12 are the rates of photon radiative processes
from the excited state |2〉 of the qubit to its ground state |1〉
and vice versa, and η is the dephasing rate. Note that the
strong interaction between the external field and the qubit
should be taken into account at the microscopic definition
of the relaxation superoperator, as it was done, e.g., in
[29–32]. However, for our purposes, it is sufficient to use the
superoperator in its standard form, assuming that the relaxation
parameters are defined phenomenologically.

After the canonical transformation ρ1 = u+ρu, where u =
exp(i 2g

ω
sx sin ωt), the master equation is transformed into

i
∂ρ1

∂t
= [H1,ρ1] + i�1ρ1, (4)

H1 = u+Hu − iu+ ∂u

∂t
= ε

2
[sz + (s+ − s−)/2]f (t) + H.c., (5)

�1ρ1=u+�uρ1=	↓
2

D[s−]ρ1+	↑
2

D[s+]ρ1+	ϕ

2
D[sz]ρ1, (6)

where

	↓ = (γ21a
2
+ + γ12a

2
− − ηc2/4)/2, 	↑ = (γ12a

2
+ + γ21a

2
− − ηc2/4)/2, 	ϕ = (ηd2 − (γ12 + γ21)c2)/2, (7)

a± = [1 ± d], c = Im(f (t)), d = Re(f (t)), f (t) = exp [ia sin ωt], and a = 2g/ω.

III. AVERAGING OF RAPID OSCILLATIONS

The rapidly oscillating terms in the transformed master equation can be eliminated in the framework of the nonsecular
perturbation theory by using the KBM averaging method [33]. The description of this method and its applications to studies of
the dynamics of two-level systems under bichromatic driving [34,35] as well as strongly correlated electron systems in solid-state
physics [36] have been published previously. In the high-frequency limit, ε/ω � 1, the Hamiltonian H1 is replaced by its effective
counterpart up to the third order in this small parameter: H1 → Heff = H

(1)
eff + H

(3)
eff ,where

H
(1)
eff = 〈H1〉 = εJ0(a)sz ≡ ε(1)sz, (8)

H
(3)
eff = −1

3

〈[ ∫ t

dτ (H1(τ ) − 〈H1(τ )〉),
[∫ t

dτ (H1(τ ) − 〈H1(τ )〉),
(

H1(t) + 1

2
〈H1(t)〉

)]]〉
= ε(3)sz,

(9)

ε(3) = ε3

4ω2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

J0(a)
∑
n�=0

J 2
n (a)

n2
((−1)n − 1) − 2

3

⎡
⎢⎢⎢⎣

∑
n �= 0,n1 �= 0,

n + n1 �= 0

Jn(a)Jn1 (a)Jn+n1 (a)

nn1
+

∑
n �= 0,n1 �= 0,

n − n1 �= 0

Jn(a)Jn1 (a)Jn1−n(a)

nn1

⎤
⎥⎥⎥⎦

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

Here the symbol 〈· · · 〉 denotes time averaging over the period 2π/ω of the rapid oscillations exp(inωt) given by 〈O(t)〉 =
ω

2π

∫ 2π/ω

0 O(t)dt , where n = ±1, ± 2, . . ., and O(t) is some time-dependent operator. Square brackets in the definition of the

effective Hamiltonians H
(1,3)
eff denote the commutation operation and the upper limit t of the indefinite integral indicates the

variable on which the result of the integration depends. Jn is the Bessel function of the first kind and order n. The second order of
the nonsecular perturbation theory does not yield the contribution in the effective Hamiltonian. The relaxation operator calculated
in the first nonvanishing approximation is given by

〈�1〉〈ρ1〉 = 〈	↓〉
2

D[s−]〈ρ1〉 + 〈	↑〉
2

D[s+]〈ρ1〉 + 〈	ϕ〉
2

D[sz]〈ρ1〉, (10)

where

〈	↓〉 = γ

8
(3 + 4J0(a) + J0(2a)) − η

8
(J0(2a) − 1),

〈	↑〉 = γ

8
(3 − 4J0(a) + J0(2a)) − η

8
(J0(2a) − 1),

〈	ϕ〉 = γ + η

2
+ η − γ

2
J0(2a). (11)
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In the above equations, we denoted γ21 by γ and assumed
that at low temperatures γ12 ≈ 0. Then, we obtain

i
∂〈ρ1〉
∂t

= [Heff,〈ρ1〉] + i〈�1〉〈ρ1〉. (12)

Within the first-order approximation the quasienergies
±ε(1)/2 = ±εJ0(a)/2 are equal to zero for such driving
strengths for which the Bessel function J0(a) is equal to zero
(Fig. 1) [37]. The third-order correction to the quasienergies
consists of two parts. The first one (the first sum in H

(3)
eff )

is proportional to J0(a). The second one [the residual two
sums in Eq. (9)] is very small but, due to its contribution,
the zeroth values of the quasienergies ±(ε(1) + ε(3))/2 are
shifted from the zeros of the Bessel function J0(a) within
the range that is smaller than 0.01a, as it is shown in
the insets in Fig. 1 (see also [38,39]. Assuming that the
Hamiltonian H describes the tunneling of a particle in a
double-well potential at the action of a sinusoidal exciting
field, the crossings of quasienergies correspond to the blocking
of tunneling dynamics of the system, i.e., the effect termed
“coherent destruction of tunneling” [29,40] is realized. The
problem of calculations of the third-order correction to the
quasienergies in the high-frequency limit has been previously
discussed [39]. Different approaches such as the averaging
method [38], the dual Dyson series, and renormalization
group techniques [39] give different expressions with the
sums of multiplications of the Bessel functions of all orders.
It is difficult to reduce these expressions to each other but
the third-order corrections obtained numerically by using
these approaches differ insignificantly. Our approach based on
the nonsecular perturbation theory with the KBM averaging
method gives the results consistent with those obtained by the
previous methods.

Taking into account that

e(−iLeff+〈�1〉)t s± = e(∓i(ε(1)+ε(3))−〈	⊥〉)t s±,

e(−iLeff+〈�1〉)t sz = e−〈	||〉t sz, (13)

e(−iLeff+〈�1〉)t × const = [1 + 2σ0(1 − e−〈	||〉t )sz] × const,

ρ(0) = 1/2 − sz (14)

FIG. 1. Quasienergies vs the driving strength. Solid lines are the
first approximation, while dashed lines are obtained with the third-
order correction. Insets show the zeroth values of the quasienergies
in more detail.

and that the superoperator Leff acts in an accordance with the
rule LeffX = [Heff,X], the density matrix in the laboratory
frame can be written as

ρ(t) = 1/2 + (σ0 − (σ0 + 1)e−〈	||〉t )

×
(

cos(a sin ωt)sz − i

2
sin(a sin ωt)(s+ − s−)

)
,

(15)

where

σ0 = −(〈	↓〉 − 〈	↑〉)/〈	||〉, (16)

〈	||〉 = 〈	↓〉 + 〈	↑〉,
〈	⊥〉 = (〈	↓〉 + 〈	↑〉 + 〈	ϕ〉)/2,

〈	||〉 = 3
4γ + 1

4η + 1
4 (γ − η)J0(2a),

〈	⊥〉 = 5
8γ + 3

8η + 1
8 (η − γ )J0(2a). (17)

We find the population difference of the initial qubit

W = Sp(szρ(t)) = �(t) cos(a sin ωt), (18)

where

�(t) = [σ0 − (σ0 + 1)e−〈	||〉t ]/2 (19)

is the relaxation coefficient, and σ0 = −γ J0(a)/〈	||〉 in ac-
cordance to (16). When the relaxation is ignored (〈	||〉 = 0),
this expression coincides with the one obtained for the strong
quantum field [41].

Within the approximation considered here (ω,g � ε), ε

does not enter the expressions for the relaxation parameters
and the population difference. In order to apply the KBM
method, we must use the values of a � 1.5.

Physically, the ultrastrong high-frequency (ω � ε) field
modulates the energy gap of the qubit and excites paramet-
rically quantum transitions in the coupled qubit-field system.
These transitions are realized at frequencies εq + 2nω (n =
0,1,2,3, . . .), where εq ≡ ε(1) + ε(3) is the quasienergy, and
can be observed in the spectrum of resonance scattering. At
the same time, the oscillations of the population difference
occur at frequencies 2nω without the frequency component
εq .

IV. REGIMES OF QUBIT’S TIME EVOLUTION

Now we consider the qubit dynamics in more detail. The
parameter σ0 is equal to twice the population difference of
the quasienergy states at t → ∞. Due to the presence of
J0(a) in the expression for σ0, this parameter oscillates and
can be negative, zero, or positive [Fig. 2(a)]. We observe
that the ratio of the rates of energetic relaxation and pure
dephasing influence only the amplitude of the variations in
σ0, but cannot change the sign of σ0. The variations of the
parameter σ0 correspond to the Bessel-function dependence
of the quasienergy states on the driving strength (see Fig. 1).

The color plot shows the time evolution of the relaxation
coefficient �(t) in the population difference W of the qubit
as a function of the driving strength [Fig. 2(b)]. The plot
demonstrates three different time dependences of the relax-
ation coefficient which result in three possible regimes of
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the time evolution of the qubit excited from its ground state.
These regimes are determined by the population difference
of the quasienergy states, which can be negative, positive,
or zero depending on the driving strength. As a result,
three qualitatively different regimes of the oscillations in the
population difference W can be observed. These time-domain
oscillations occur at frequencies 2nω with the intensities
proportional to J2n(a), where n = 1,2,3, . . .. In contrast to
the strong resonant driving [19], there are no oscillations
with the frequency of the quasienergy difference. At the
strong off-resonant driving the quasienergy states determine
the regimes of the dissipative dynamics of the qubit.

V. DRIVING-DEPENDENT RELAXATION RATE OF
POPULATION DIFFERENCE

For the values of the driving strength resulting in σ0 = 0, the
oscillations decay to zero with the characteristic time 〈	||〉−1.
For these values of a, the vertical lines are tangent to the
white lines in Fig. 2(b) and the relaxation coefficient �(t)
decay to zero. In this case, the system relaxes to the steady
state with the equally populated levels, i.e., the stabilization
of these levels occurs. Figure 3 shows such oscillations for
a = 5.5. If the variation of �(t) is within the brown (dark
gray) and red (gray) areas in Fig. 2(b) (σ0 < 0), the decaying
oscillations disappear with the characteristic time 〈	||〉−1 and
only the steady-state oscillations with the fixed amplitude
|σ0| remain. Figure 3 depicts such oscillations for a = 7.0.
If σ0 > 0, �(t) changes its sign at some driving strengths
and passes from the brown (dark gray) area to the yellow
(light gray) one crossing over the white line in Fig. 2(b). In
this case, the oscillations of the population difference decay

FIG. 2. (a) Parameter σ0 as a function of the driving strength at
the energetic relaxation rate γ /ω = 0.03 and three values of the pure
dephasing rate η. (b) The time evolution of the population difference
as a function of the driving strength. The vertical dashed lines show
the values of the driving strength for which the time evolution of the
population difference is presented in Fig. 3.

to zero during the time tc = 〈	||〉−1 ln(1 + σ−1
0 ), then revive

with the characteristic time 〈	||〉−1 and reach their steady-state
amplitude σ0, as it is shown for a = 3.8 (Fig. 3). We observe
the collapse and revival of the oscillations. In contract to
the well-known collapse and revival of Rabi oscillations in
quantum optics [42], this effect is not caused by quantum
properties of radiation. It arises due to the competition between
the steady-state oscillations with the constant amplitude σ0/2
and the exponentially decaying oscillations with the amplitude
−e−〈	||〉t (σ0 + 1)/2. Since at σ0 < 0 the amplitudes of the
steady-state and decaying oscillations have the same sign and
at σ0 = 0 the oscillations with the amplitude −e−〈	||〉t /2 only
occur, in these cases the collapse and revival effect is absent.

Figure 4 depicts the qubit relaxation rate 〈	||〉 of the
population difference versus the normalized driving strength
a = 2g/ω and the pure dephasing rate η at the fixed energetic
relaxation rate γ . These dependences were calculated under
the assumption that we have capability of changing the cou-
pling of the qubit to its environment, i.e., the relaxation rates.
Such changes can be realized by choosing natural quantum
systems in corresponding materials or by using artificial atoms.
So, for artificial atoms such as semiconductor quantum dots,
pure dephasing processes are almost absent [43]. On the other
hand, the spin coherence time of solid-state qubits such as NV
centers in diamonds can be changed over a wide range using its
dependence on the concentration of paramagnetic centers [44].
Moreover, the dephasing rate can be controlled by means of
external stochastic fields modulating the resonant transition
frequency of qubits [45–47]. We observe in Fig. 4 that the
ultrastrong driving significantly modifies not only the energy
states of the two-level system, but also its relaxation behavior.
Due to such modification, the relaxation rate 〈	||〉 depends on
the driving strength in a very unusual way. The features of this
dependence are determined by the ratio of the rates of energetic
relaxation γ and pure dephasing η. When the pure dephasing
is absent (η = 0) or when γ > η, the relaxation rate 〈	||〉

FIG. 3. Time evolution of the population difference W for three
driving strengths corresponding to three regimes of the oscillations.
The collapse and revival of the oscillations is realized at a = 3.8. The
steady-state stabilization of the oscillations is presented at a = 5.5.
At a = 7.0 the decaying and steady-state oscillations are observed.

063834-4



DISSIPATIVE TWO-LEVEL SYSTEMS UNDER . . . PHYSICAL REVIEW A 93, 063834 (2016)

FIG. 4. (a) Relaxation rate 〈	||〉 of the population difference as
a function of the driving strength and the dephasing rate at the
energetic relaxation rate γ /ω = 0.03. (b) Cuts of (a) at η = 0 (red
line A), η/ω = 0.015 (green line B), γ = η (gray line C), η/ω = 0.05
(brown line D), and η/ω = 0.08 (blue line E). The dashed lines show
positions of these cuts in (a). The dotted lines in (b) present the
numerical results.

oscillates in accordance with the Bessel-function dependence
J0(2a). At γ < η, the variations of 〈	||〉 are inverted in
comparison with the previous case because the Bessel function
changes its sign. The equality γ = η is the condition for the
crossover between these regimes. Upon satisfaction of this
condition the relaxation rate 〈	||〉 is independent of the driving
strength and is the same as under weak driving. The decay rate
of Rabi oscillations of artificial atoms at weak nonresonant
excitation has been investigated in [48]. When the condition
γ = η is not fulfilled, the strong driving decreases (at γ > η)
or increases (at γ < η) the relaxation rate 〈	||〉 of about half
of its value at the weak driving. We see in Fig. 4 that the
amplitude of the variations of the relaxation rate increases

when the difference between γ and η increases. For example,
at γ = 8η/3 the variations of the relaxation rate is of about
12% [the blue line E in Fig. 4(b)]. In Fig. 4(b) the analytical
and numerical results are presented by the solid and dotted
lines, respectively. There is a good agreement between these
results.

VI. CONCLUSIONS

We have studied the dynamics of a qubit under an
ultrastrong nonresonant high-frequency driving. The problem
was analytically solved in the framework of the nonsec-
ular perturbation theory based on the Krylov-Bogoliubov-
Mitropolsky averaging method. We have found three qual-
itatively different regimes in the dissipative dynamics of
the qubit. The realization of these regimes is determined
by the driving strength. When the driving field inverts the
quasienergy states, the collapse and revival of the time-domain
oscillations in the population difference of the initial two-level
system is observed. At the degeneration of the quasienergy
states, the simple exponential vanishing of the oscillations
(the steady-state stabilization of equally populated levels)
takes place. If the lower and upper quasilevels are separated
enough, the decaying oscillations of the population difference
disappear due to relaxation processes and only the steady-
state oscillations remain. Moreover, we predicted that the
ultrastrong off-resonant driving modifies the decay rate of
the oscillations in the population difference and can cause its
nonmonotonic Bessel-function-like dependence on the driving
strength. Our results are confirmed by numerical calculations.
We expect that our theoretical results will stimulate future
experiments to verify our predictions on the dissipative
qubit’s dynamics under ultrastrong driving. The discovered
features of this dynamics are fundamental and important to
the physics of open quantum systems as well as for practical
applications, including coherent transient spectroscopy and
quantum information. In particular, the regime with the steady-
state oscillations can be used for long-time manipulations
to quantum information because in this regime the coherent
oscillations are not limited by the relaxation times or by
a rapid collapse. Note that the expression obtained for the
density matrix allows one to calculate the coherent response
of open quantum systems under their multipulse ultrastrong
off-resonant excitation.
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