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We present, discuss, and validate an adapted S-matrix formalism for an efficient, simplified treatment of stacked
homogeneous periodically structured metasurfaces operated under normally incident plane wave excitation. The
proposed formalism can be applied to any material system, arbitrarily shaped metaatoms, at any frequency, and
with arbitrary subwavelength periods. Circumventing the introduction of any kind of effective parameters we
directly use the S parameters of the individual metasurfaces to calculate the response of an arbitrary stack. In
fact, the S parameters are the complex parameters of choice fully characterizing the homogeneous metasurfaces,
in particular with respect to its polarization manipulating properties. Just as effective material parameters like
the permittivity and the permeability or wave parameters like the propagation constant and the impedance, the
stacking based upon S matrices can be applied as long as the individual layers are decoupled with respect to their
near fields. This requirement eventually sets the limits for using the optical properties of the individual layers to
calculate the response of the stacked system—this being the conceptual aim for any homogeneous metasurface or
metamaterial layer and therefore the essence of what is eventually possible with homogeneous metasurfaces. As
simple and appealing as this approach is, it is as powerful as well: Combining structured metasurfaces with each
other as well as with isotropic, anisotropic, or chiral homogeneous layers is possible by simple semianalytical
S-matrix multiplication. Hence, complex stacks and resonators can be set up, accurately treated and optimized
with respect to their dispersive polarization sensitive optical functionality without the need for further rigorous
full-wave simulations.
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I. INTRODUCTION

Metamaterials, i.e., artificial subwavelength structured
materials [1,2], attracted a great deal of interest on all
wavelength scales ranging from mm waves to optics for already
more than one and a half decades [3–6]. Where the early
focus was on the realization of artificial, usually periodically
structured materials with tailored material properties for
full control of propagation, dispersion, and polarization, a
new class, most often called metasurfaces, emerged taking
control over diffraction as well [7–10]. Common to both
classes is their composition of metaatoms each of them being
subwavelength in its lateral dimensions. Here, a single layer
of metaatoms will be called metasurface irrespective of the
shape and composition of its individual metaatoms. To further
distinguish between both classes we will call metasurfaces
comprised of identical metaatoms with subwavelength inter-
particle distances homogeneous metasurfaces, which are also
known as frequency-selective surfaces (FSS) [11–14]. Their
far-field response is fully contained in a zeroth diffraction
order in transmission and reflection.1 Metamaterials are then
understood as stacked identical homogeneous metasurfaces.
In contrast, an inhomogeneous metasurface with gradually
or abruptly varying arrangements of metaatoms across the
surface allows the control of a larger number of diffrac-
tion orders and can be understood as a hologram [15–21]
in its most general sense. In the present paper we will

1Aperiodically or amorphously arranged identical metaatoms,
designed for controlling the zeroth diffraction orders and, hence,
neglecting scattering losses, are called homogeneous metasurfaces as
well.

deal with the stacking of homogeneous metasurfaces (MS)
only.

Exploiting a stacking of metasurfaces to enhance the range
of accessible optical functionalities is widely used, e.g., for
tailoring dispersion [22], diffraction [23], and in particular for
controlling the polarization state of light [24–29]. However,
just a limited number of publications explicitly dealt with the
stacking of decoupled homogeneous metasurfaces [30–32],
where our approach—based on the S-matrix of the individual
MS—is fundamentally different.

Originally, the individual homogeneous metasurfaces ought
to be described by universal material properties reducing
the generally complicated electromagnetic response of pe-
riodically structured surfaces to a few parameters only.
Unfortunately, it turned out that these parameters depend on the
embedding of the MS [33] and might change upon stacking
of identical MSs. The reason for this lies in the near-field
coupling of the MS with its surrounding [34–40]. Furthermore,
for MSs comprised of low-symmetry metaatoms being ideally
described by bianisotropic constitutive relations [41–43], the
retrieval of effective material parameters becomes cumber-
some. Eventually, most MSs operating in the resonant regime
exhibit a strongly nonlocal response disqualifying the use
of local effective material parameters [44–49], which do not
depend on the wave vector or angle of incidence. In particular
in the optical domain just a single publication is known
where a local description of an artificial magnetic response
is validated [50].

Once the electromagnetic properties cannot be reduced
to local material parameters, we can remain on the level of
generally wave vector dependent dispersion relations for the
propagation constant kprop(kt) and Bloch impedances [34,40]
Z(kt), which are available, e.g., via the S-parameter
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retrieval [40,47,51,52] or similar methods [53–55]. Under
certain circumstances, namely the validity of the fundamental
Bloch mode approximation (FMA, see Sec. III A) [40], the
reduction to thickness independent k of the fundamental Bloch
mode and its Bloch impedance Z is possible and undoubtedly
useful for stacked systems of identical MSs. Here, the effective
parameters k and Z are in fact independent of the number of
layers [34]. The validity of the FMA is of major importance
for the stacking in general: Only for MSs fulfilling the FMA
the far-field response of the stacked system can be calculated
rigorously from the far-field response of the individual
MSs.

However, if nonidentical MSs ought to be stacked for
optimizing a specific optical functionality and, hence, the
overall far-field response (transmission and reflection), the
treatment of the individual MSs by effective parameters is
not meaningful. It suffices to remain on the equivalent level of
zeroth order transmission (t) and reflection (r) for describing
the individual MS, thereby circumventing any kind of retrieval
procedure. We just have to combine the r and t of the individual
MSs appropriately to get r and t of the stacked system, this
being the aim of the present paper.2 In fact, it captures the
essence of what is eventually possible with homogeneous
MSs and what their conceptual design guideline was: the
reduction of the complex response of the individual MS to
a few essential parameters and use of these parameters for
the rigorous determination of the properties of an arbitrarily
stacked MM system.

The essential parameters describing the MSs are their
complex 4 × 4 S matrices [56], comprised of the forward and
backward reflection and transmission coefficients rij and tij .
They can be determined either by rigorous simulations, on
analytical grounds, or by experimental characterization even
in the optical domain [57,58]. The analytical calculation is of
particular importance: As complexity of the response in partic-
ular with respect to polarization can be achieved by stacking,
the individual MSs can be realized as simple planar MSs that
can be efficiently modeled as arrays of coupled electric and
magnetic dipoles [59–62]. By additional use of the stacking
algorithm presented here, the overall response of the stacked
system can be modeled analytically and efficiently optimized.
Furthermore, restricting to planar MSs is advantageous for
systems operating in the NIR and VIS domain significantly
simplifying their fabrication compared to MSs composed of
complex shaped 3D metaatoms [57,63,64] and obviating the
subtle issue of lateral alignment of subsequent layers [31].

The stacking algorithm3 as presented can be applied to
any kind of subwavelength structured homogeneous MS with
arbitrarily shaped metaatoms irrespective of the material
system and the wavelength. The different MSs can have similar
or different as well as incommensurable periods, which cannot
be treated on rigorous grounds by numerical simulations.
Within the stack common optical materials like isotropic
or chiral materials and anisotropic crystals can be used as
well.

2This formalism was first presented at the META’15 conference.
3The proposed stacking formalism is basically a modified S-matrix

formalism for stacking of homogeneous media.

The remainder of the paper is outlined as follows: In
Sec. II we define the system under consideration and discuss
the representation of the periodically structured system with
respect to the reduced S matrix. In Sec. III we present the
formulas necessary for the stacking, provide an estimate for the
necessary critical embedding thickness validating the FMA,
and discuss symmetry operations on S matrices. In Sec. IV we
discuss some prototypical examples by comparing the rigorous
and approximated solution based on the reduced S matrix. We
conclude the manuscript in Sec. V.

II. THE S MATRIX

We assume systems that are periodic in the x and y direction
with periods �x and �y and plane wave propagation along the
z direction with wave number k and frequency ω, hence an
incident electric field of the form

Einc = (Ex �ex + Ey �ey)ei(kz−ωt). (1)

The periodically structured MS [Fig. 1(a)] acts as a sub-
wavelength grating, where in general an infinite number of
diffraction orders, i.e., plane wave expansion coefficients, of
the overall field on both sides have to be taken into account for
a rigorous description including the near field [40]. However,
for a subwavelength grating at the interface between two
embedding media in front and back (with respect to the z

direction) with refractive indices nf and nb, respectively, and
a free space wavelength λ > max[nf,nb] · max[�x,�y], all
higher diffraction orders are evanescent for normal incidence.
Only the zeroth diffraction order in reflection and transmission
are nonevanescent (see Fig. 1) contributing to the far-field
response. The response of such a system schematically shown
in Fig. 1(a) strongly depends on the embedding and any other
MS placed closely in front or back of the first one effects the
response due to near-field coupling mediated by the evanescent
fields between both [40]. As is well known, the near-field
coupling disqualifies any effective medium approach and the
response of the combined or stacked system has to be treated
rigorously taking into account all evanescent diffraction orders
as well. To obviate the near-field coupling we have to assure a
minimum distance between different MSs or the MS and any
interface to homogeneous layers introducing a new thickness
D = �z which defines the unit cell in the z direction [see
Fig. 1(b)].

In terms of Bloch modes, the newly created MM unit cell
satisfies the fundamental Bloch mode approximation (FMA)
with respect to plane wave coupling [40]. The fundamental
Bloch mode of the periodic system is plane wave like at the
boundaries, and the system is fully described by its zeroth
order transmission and reflection coefficients for plane wave
excitation. In fact, such a system can be described by effective
wave parameters which are the propagation constant of the
fundamental mode and its Bloch impedance [34,40,55]. How-
ever, for low-symmetry MS the Bloch impedance becomes
tensorial and two propagation constants need to be considered
for reciprocal systems. To avoid the issue of introducing and
retrieving these effective wave parameters, we remain on
the level of complex reflection and transmission coefficients,
which become 2 × 2 matrices for low-symmetry MM and,
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FIG. 1. Schematic of the geometry under consideration. The figures show an xz cut of the structured surface periodic in the x and y direction
(�x,�y). The surface is embedded in half spaces characterized by refractive indices nf and nb in front and back of the surface. The solid
arrows indicate zeroth diffraction orders. The dashed arrows indicate evanescent diffraction orders. The red dashed line contains the periodic
unit cell. (a) Metasurface/grating with physical thickness d of the structured surface. (b) The same MS as in (a) with additional spacing layers
defining the new MM unit cell with period D = �z in the z direction. At the z boundary of the new unit cell the evanescent diffraction orders
are sufficiently decayed such that the field is plane wave like. (c) The homogeneous MM unit cell described in (b) is replaced by an effective
homogeneous MM layer with virtual thickness D ≡ 0. Due to the translational invariance along the x and y direction the definition of the unit
cell is arbitrary and indicated here just to anticipate the transition from (b) to (c). Such layers are the building blocks of the considered stacked
MSs.

hence, 4 × 4 matrices taking into account both propagation
directions.

A single MM layer that fulfills the FMA is called homo-
geneous MM and can be replaced conceptually by a single
complex layer with virtual thickness D = 0 as shown in
Fig. 1(c), i.e., a true MS. Its response upon normally incident
plane wave excitation is fully characterized by the S matrix
defined below.

The plane wave field in front (f) and back (b) of such a
system can be written as

Ef (z < 0) = [
Ef

ine
ikz + Ef

oute
−ikz

]
e−iωt (2)

Eb(z > 0) = [
Eb

oute
ikz + Eb

ine
−ikz

]
e−iωt . (3)

The S matrix describing the plane-wave response of the system
connects the incoming and outgoing complex two-component
field vectors E = (Ex,Ey)T

(
Eb

out

Ef
out

)
= S

(
Ef

in

Eb
in

)
=

(
Ŝ11 Ŝ12

Ŝ21 Ŝ22

)(
Ef

in

Eb
in

)
. (4)

For polarization insensitive samples, where no polarization
rotation occurs, the submatrices Ŝij are scalars and directly
give the complex transmission and reflection in the forward
(t f,r f) and backward (tb,rb) direction

S =
(

t f rb

r f tb

)
. (5)

For any sample affecting the polarization state in transmission
or reflection the situation is more involved. The S matrix in
terms of transmission and reflection matrices indicated by
capital letters is given as

S =
(

Ŝ11 Ŝ12

Ŝ21 Ŝ22

)
=

(
T̂ f R̂b′

R̂f T̂ b′

)
. (6)

For reciprocal systems we have Ŝ11 = ŜT
22. For the backward

direction we added a prime to the transmission and reflection
matrices to take into account the flip of the coordinate
system when looking in the negative z direction as detailed
in the Appendix. Note that in the S matrix is often defined
differently. For example, in the analysis of FSS [13] the
diagonal elements of the S matrix are reflection coefficients
and the off diagonals denote transmission coefficients, whereas
here it is the opposite.

III. THE STACKING

If all individual layers of the stack possess a negligible
reflection, the overall transmission can be obtained by simple
multiplication of the individual Jones matrices [65–67].
However, for resonant periodically structured layers, the
assumption of negligible reflection or multiple reflections
between the layers is unjustified, except for specific cases like
balanced Huygens surfaces [68,69]. When taking into account
reflection as well, calculating the overall response of a stack
containing polarization-changing layers, e.g., anisotropic or
chiral media or low-symmetry MS, is nontrivial such that
analytical formulas of reasonable size can be obtained just
for the case of two layers. Hence, the aim of the paper is to
present a general algorithm applicable to any number of layers
with arbitrary symmetry, given in terms of a 4 × 4 S matrix.

Once we have the S matrices of the MS under consideration
at hand, we can stack them in an arbitrary manner with
arbitrary homogeneous spacer layers in between. Therefore,
we need to know not only the S matrices for the MSs but also
the S matrices Sn,d for propagation in homogeneous media
characterized by a refractive index n and thickness d and the
S matrix Sn1,n2 for the transition between two homogeneous
media with refractive indices n1 and n2. The S matrix Sn,d

for the propagation in a homogeneous medium of thickness d

with refractive index n and free space wave number k0 is given
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FIG. 2. Schematic example of two stacked metasurfaces
(MS1,MS2) embedded in dielectrics with refractive indices n1 and
n3, respectively. Between the metasurfaces there is an additional
dielectric layer with refractive index n2 and thickness d2. The general
propagation direction is from the front (left) to the back (right). Note
the reverse ordering of the S-matrix product. For the overall S matrix
Sfull we have to take into account the S matrix of MS1 and MS2,
the propagation through the dielectrics by Sni ,di

, and the transition
between the dielectrics by Sni ,nj

at the interfaces marked with bold
dashed lines. Note that the S matrices for the MS intrinsically contain
the transition from and to the dielectric embedding, as their response
depends on the embedding via near-field coupling.

by

Sn,d = exp(ik0nd) × diag(1,1,1,1). (7)

The S matrix Sn1,n2 for the interface between two homogeneous
media with refractive index n1 and n2 (from 1 to 2) is given by

Sn1,n2 =

⎛
⎜⎜⎜⎝

2n1
n1+n2

0 n1−n2
n1+n2

0
0 2n1

n1+n2
0 n1−n2

n1+n2

− n1−n2
n1+n2

0 2n2
n1+n2

0

0 − n1−n2
n1+n2

0 2n2
n1+n2

⎞
⎟⎟⎟⎠ (8)

according to the Fresnel formulas for the reflection and
transmission at an interface at normal incidence [70]. The
formulas can be extended to layers of anisotropic media or
chiral media straightforwardly (see appendix).

We can now set up an arbitrary system as shown in Fig. 2 by
applying the star product [56] for the connection of S matrices.
For two S matrices A and B it is defined as

A � B =
(

â11 â12

â21 â22

)
�

(
b̂11 b̂12

b̂21 b̂22

)
=

(
b̂11(I − â12b̂21)−1â11 b̂12 + b̂11â12(I − b̂21â12)−1b̂22

â21 + â22b̂21(I − â12b̂21)−1â11 â22(I − b̂21â12)−1b̂22

)
.

By subsequent star-product multiplication we can calculate the
S matrix of an arbitrarily stacked system (see Fig. 2).

A. Estimation of the FMA validity

To guarantee the validity of the FMA is a subtle issue
and has to be verified for each MS individually in general.
The contribution of the evanescent waves to the reflected and
the transmitted field at the distance d to the MS has to be
negligible, where, e.g., the x-polarized field in the transmission
at the distance d in Rayleigh expansion [71] has the form:

Ex
T (x,y,d) =

∑
mn

tmn
xx exp

[
i

(
2πm

�x

x + 2πn

�y

y

)]
exp

[
ikmn

z d
]

with the complex transmitted amplitudes tmn
xx , the propagation

constant

kmn
z =

√
k2

0n
2 −

(
2πm

�x

)2

−
(

2πn

�y

)2

,

and a refractive index n of the medium in the transmitted
region. For simplicity we assumed tmn

yx = 0. Due to the rapid
decay of the contribution of the evanescent waves at z = d

and the general decay of the amplitudes tmn
xx with increasing

order (m,n), we can certainly restrict to the consideration of
the first evanescent order only, let’s say m = 1,n = 0. We
approximate the amplitude by |t10

xx | ≈ 1, which is usually valid
for MS employing localized resonances. Note that, e.g., for
high-Q dielectric waveguide resonances, the amplitude might
easily exceed 1, due to the strong field enhancement inside the
waveguide. By requiring the modulus of the evanescent first

diffraction order at z = d to be smaller than e−2π ≈ 1.8 ×
10−3 we get:

e−Im(kz)d � e−2π → d

λ

[(
λ

�

)2

− n2

] 1
2

� 1.

For a distance d larger than a critical thickness dcrit defined
by the inequality above, we can expect the FMA to be valid.
Upon rewriting

dcrit = �

/√
1 − �2n2

λ2
(9)

we see that the critical thickness is diverging at the occurrence
of the first diffraction order with λ = n� and approaches � for
λ � n�, hence monotonically decreasing for increasing λ. Of
course, for systems comprised of MS with different periods
and different embedding dielectrics the critical thickness is
given by the largest period �, the largest refractive index n

and the smallest wavelength λ.

B. Symmetry operations on S matrices

Once we have the S matrix for a specific system, we can
analytically calculate the S matrix for the system when rotated
by an angle ϕ around the z axis, or when flipped, i.e., operated
from the backside, or when mirrored (see Fig. 3). In the
following we present the respective expressions.
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FIG. 3. Schematic examples for periodically structured metasur-
faces. Left column: original system. Right: rotated (a), flipped (b),
and mirrored (c) system.

For an arbitrary matrix Â the reflection along the x or y

direction with the respective matrices

M̂x =
(−1 0

0 1

)
= M̂T

x ,M̂y =
(

1 0
0 −1

)
= M̂T

y (10)

leads to

M̂xÂM̂x = M̂yÂM̂y = M̂ÂM̂, (11)

where M̂ is either M̂x or M̂y . Mirroring the structure at the xz

or yz plane leads to the S matrix SM

SM =
(

M̂Ŝ11M̂ M̂Ŝ12M̂

M̂Ŝ21M̂ M̂Ŝ22M̂

)
. (12)

Rotating the structure by an arbitrary angle ϕ around the z axis
by the rotation matrix

R̂ϕ =
(

cos ϕ sin ϕ

− sin ϕ cos ϕ

)
,R̂T

ϕ = R̂−ϕ (13)

leads to SR

SR =
(

R̂T Ŝ11R̂ R̂T Ŝ12R̂

R̂T Ŝ21R̂ R̂T Ŝ22R̂

)
. (14)

Flipping the structure, i.e., looking at it from the backside leads
to SF

SF =
(

M̂Ŝ22M̂ M̂Ŝ21M̂

M̂Ŝ12M̂ M̂Ŝ11M̂

)
. (15)

With these operations we have direct access to the S matrices
of mirrored, flipped, and rotated systems without the need for
a new rigorous determination.

IV. EXEMPLARY METASURFACE STACKS

In the following section prototypical examples for stacked
MSs are discussed. At this point we are not interested in
specific physical effects which might be seen in the spectra.
Instead, we will pay particular attention to the error of
the stacking compared to rigorous solutions for the stacked
systems. To quantify the error we introduce the following
quantity:

�Sij (d) = max
ω

{∣∣Srig
ij (ω,d)

∣∣2 − ∣∣Sstack
ij (ω,d)

∣∣2}
(16)

providing a measure for the deviation between the the
rigorous (Srig

ij ) and the approximated (Sstack
ij ) solution of the

overall S matrix within a specific frequency range, which is
100–500 THz for all the examples studied here. Hence, the
smallest wavelength is 600 nm.

A. Stacks of wires

At first we consider a periodic square array (�x = �y =
300 nm) of resonant plasmonic wires. The wires are made
of gold [72], symmetrically embedded in a homogeneous
dielectric with n = 1.41 with a length of l = 240 nm, a width
of w = 60 nm, and a height of h = 30 nm. The distance
between the wire planes in the z direction is varied between
d = 30 and 1000 nm. Two different scenarios are investigated
with wires oriented parallel and orthogonal to each other [see
Fig. 4(a)].

The S matrices for the individual MS as well as for the
rigorous solution of the stacked system are calculated by
FMM [73] directly. For the stacking algorithm the S matrix
for the symmetrically embedded wires is obtained just once
for wires oriented parallel to the x axis. The S matrix for
the y-oriented wires are obtained by applying the rotation by
π/2 given in Eq. (14). Together with the S matrix for the
propagation over the distance d in a medium with refractive
index n = 1.41 as given by Eq. (7), we get the overall S matrix
Sstack

ij . The results for the decadic logarithm of the maximum
error �Sij (d) are shown in Fig. 4(b). For parallel wires the solid
and dashed line correspond to the transmission for x-polarized
and y-polarized light, respectively (txx,tyy). The dotted line
corresponds to the transmission for x- and y-polarized light
for the orthogonal wires, which is the same due to sym-
metry reasons. Furthermore, for the off-diagonal elements
we have txy = tyx = rxy = ryx = 0. Since the transmission
and the reflection behave similarly with respect to the error,
the error in transmission is plotted only. We clearly observe the
exponential decay of the error as discussed while deriving the
critical thickness dcrit [see Eq. (9)]. We also plotted the critical
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layer distance d (µm)
0 0.2 0.4 0.6 0.8 1

lo
g 10

Δ

-9

-8

-7

-6

-5

-4

-3

-2

-1

(b)

(a)

FIG. 4. (a) Schematic of the geometry of parallel (left) and
orthogonal (right) wire stacks. (b) Decadic logarithm of the maximum
error �Sij (d). For the parallel wire stack the solid blue and the dashed
red line correspond to �Sij for txx and tyy , respectively. The green
dotted line corresponds to �Sij for txx = tyy of the orthogonal wire
stack.

thickness, which is

dcrit = 300 nm

/√
1 − 1.412 × 3002 nm2

6002 nm2
= 423 nm,

(17)
and the limiting error 1.8 × 10−3 as black dashed vertical and
horizontal lines. Obviously the estimated critical thickness
provides a reasonable measure for the deviation between rigor-
ous and approximated solution. The nonmonotonic decrease of
the error is due to Fabry-Perot oscillations occurring between
the MSs.

B. Stacks of L-shaped particles

In fact, for the calculation of the overall transmission and
reflection for the stacked wires textbook Airy formulas might
have been used due to the nonoccurrence of cross-polarized
field components. The actual strength of the proposed S-matrix
stacking lies in its possibilities for calculating the response of
stacked systems exhibiting cross polarizations, which cannot
be handled conveniently by means of analytical formulas.
Hence, in a second example we treat the more complex
case of stacked resonant plasmonic L-shaped particles [see
Fig. 5(a)], which are prototypical metaatoms for polarization
control [74,75]. The asymmetric L’s are made of gold, arranged
on square lattices with a period of � = 300 nm, with arms
length of 240 nm and 160 nm, a width of w = 60 nm, and

layer distance d (µm)
0 0.2 0.4 0.6 0.8 1

lo
g 10

Δ

-16

-14

-12

-10

-8

-6

-4

-2

0(b)

(a)

FIG. 5. (a) Schematic of the geometry of parallel (left) and
orthogonal (right) L-particle stacks. (b) Decadic logarithm of the
maximum error �Sij (d). The solid blue and dashed green line
correspond to �Sij for txx and txy , respectively, of the orthogonal
L stack. The blue dashed-dotted and green dotted line correspond to
�Sij for txx and txy , respectively, of the parallel L stack.

a height of 30 nm. They are symmetrically embedded in a
dielectric with n = 1.41. The distance between the layers is
variable between d = 30 and 1000 nm. Again, we use parallel
and orthogonal oriented L-shaped particle arrays. Again, the S

matrix for the L’s is obtained only once. The S matrix for the
rotated L’s is obtained by using Eq. (14).

In Fig. 5(b) we have plotted the maximum error between the
approximated and the rigorous solution according to Eq. (16).
The solid blue and dashed green line correspond to the
transmissions txx and txy , respectively, for the orthogonal L’s.
The dashed-dotted blue and dotted green line correspond to
txx and txy for the parallel L’s. Again, the horizontal and the
vertical dashed black lines indicate an error of 1.8 × 10−3 and
the critical thickness of dcrit = 423 nm, respectively. Clearly,
the estimated critical thickness gives a reasonable measure for
the minimum distance of the layers.

For all the S-matrix entries, i.e., co- and cross-polarized
transmission and reflection, the linear decrease of the max-
imum error with increasing distance d between the layers
is similar, except for the cross-polarized transmission for
orthogonal L’s. Here, the decrease with the distance is twice
as fast, as the cross polarization itself is due to the near-field
coupling between the two layers only, quickly disappearing
for distances d � 50 nm.

To elucidate the actual error and the symmetry of the S

matrix, the amplitude and phase of the complex S-matrix
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FIG. 6. Comparison of the rigorous and the approximated solu-
tion for the first two columns of the S matrix for the stack of parallel
L’s at a distance of d = 150 nm. The graphs show amplitude (green,
left axis) and normalized phase (blue, right axis) of the respective co-
and cross-polarized complex reflection and transmission coefficients
upon plane wave illumination propagating in the +z direction.
Dashed and solid lines correspond to amplitude and normalized phase
(i.e., normalized by k0), respectively, of the approximated solution;
dots and squares correspond to amplitude and normalized phase,
respectively, of the rigorous solution.

elements for the parallel L’s are plotted in Fig. 6 for
forward direction, i.e., the first two columns and hence eight
elements of the 4 × 4 S matrix. Dashed and solid lines
correspond to amplitude and normalized phase, respectively,
of the approximated solution; dots and squares correspond to
amplitude and normalized phase (divided by k0), respectively,
of the rigorous solution. With respect to the given scale the
solutions coincide perfectly for all frequencies even for the
small distance of d = 150 nm shown here. Due to symmetry
the cross-polarized components in transmission (txy = tyx) and
reflection (rxy = ryx) are identical (achiral), respectively. Due
to the lack of rotational symmetries the diagonal elements are
different, showing a strong anisotropy.

In Fig. 7 we have plotted the same S-matrix elements
for the orthogonal L’s. Again the approximated and the

FIG. 7. Comparison of the rigorous and the approximated so-
lution for the first two columns of the S matrix for the stack of
orthogonal L’s with a distance of d = 150 nm. The graphs show
amplitude (green, left axis) and normalized phase (blue, right axis)
of the respective co- and cross-polarized complex reflection and
transmission coefficients upon plane wave illumination propagating
in the +z direction. Dashed and solid lines correspond to amplitude
and normalized phase (i.e., normalized by k0), respectively, of the
approximated solution; dots and squares correspond to amplitude
and normalized phase, respectively, of the rigorous solution.

rigorous solution coincide almost perfectly at this distance of
d = 150 nm. The co- and cross-polarized reflection is similar
to the case of parallel L’s. Quite surprisingly, the transmission
shows an unexpected polarization independent behavior with
txx = tyy and txy = tyx = 0, which holds perfectly for the
approximated solution (solid) and approximately for the
rigorous solution (dots). The amplitudes |txy | and |tyx | for
the rigorous solution are only very close to zero, such that
the phase is still well defined. The overall structure exhibits
no symmetry and is clearly chiral. However, no polarization
change occurs as soon as the layers are decoupled with respect
to the near field. Only for distances smaller than d � 50 nm a
significant polarization occurs as indicated by txy in Fig. 5(b).
Note that txy = 0 for all distances in the approximated solution.
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C. Stacks of particles with different periods

One of the major advantages of the stacking formalism is
its capability of efficiently treating stacked MSs with different
or even incommensurable periods. As a practical example,
consider the case of a MS that is supposed to support multiple
resonances. One could try to design the individual metaatom
such that it supports several resonances. That usually requires
the metaatom to be large and eventually not subwavelength
anymore. On the other hand, the unit cell could be comprised of
several metaatoms in the same layer each addressing a slightly
different frequency range. However, such a unit cell would
again become too large to be subwavelength. Alternatively,
several MS comprised of slightly different metaatoms might
be stacked. To keep the density of the metaatoms or the filling
fraction in each layer constant, the periods in each layer have
to change slightly as well. Unfortunately, their common super
period might get huge and eventually not accessible to rigorous
calculations of the overall stack. Here, the stacking algorithm
can be used, drastically decreasing the computational
efforts.

To give an example and prove the applicability of the
method, we consider a stack of arrays of wires and L’s (see
Fig. 8) entirely embedded in a dielectric with n = 1.41. The
wires and L’s are assumed as gold (see Appendix for the
permittivity model).

The array of L’s has a period of �x = 333.3 nm and
�y = 250 nm, arm length along the x and y direction of
lx = 250 nm and ly = 180 nm, a width of w = 60 nm and
a height h = 30 nm. The array of wires has a period of
�x = 133.3 nm and �y = 333.3 nm, arm length along the
y direction of ly = 200 nm, a width of w = 50 nm, and a
height h = 30 nm. The arrays have a common super period of
�x = 666.6 nm and �y = 1000 nm. This time we use FDTD
(MEEP) [76] with a spatial resolution of 2 nm for calculating
the S matrices as we need in particular for the super cell to run
FDTD in parallel mode. The S matrices were built up manually
by calculating the x- and y-polarized zeroth order transmitted
tij the reflected rij complex fields upon the x- and y-polarized
normally incident plane wave excitation. Note that the reflected
and transmitted field is defined with respect to planes 20 nm

FIG. 8. Schematic of the geometry of stacked wires and L’s.
Details of the geometrical parameters are given in the text. Due to
the different periods of the wire and the L-particle array, a super-cell
(white-red-dashed box) calculation is necessary, containing 5 × 3
wires and 2 × 4 L’s.

FIG. 9. Comparison of the rigorous and the approximated solu-
tion for the first two columns of the S matrix for the stack of L’s and
wires as shown in Fig. 8 with a distance of d = 250 nm. The graphs
show amplitude (green, left axis) and normalized phase (blue, right
axis) of the respective co- and cross-polarized complex reflection and
transmission coefficients upon plane wave illumination propagating
in the +z direction. Dashed and solid lines correspond to amplitude
and normalized phase (i.e., normalized by k0), respectively, of the
approximated solution; dots and squares correspond to amplitude
and normalized phase, respectively, of the rigorous solution.

in front and behind the structured surfaces, respectively. For
the individual arrays of wires and L’s a single period was
used, drastically decreasing the numerical efforts compared
to the super-cell calculation necessary for the stacked system.
Furthermore, due to the mirror symmetry with respect to the
xy plane and reciprocity of the system the S matrices for
the individual layers were built up based on the transmission
and reflection coefficients for illumination in the +z direction
(forward, first two columns) only. For the case of L’s we get:

SL =

⎛
⎜⎜⎜⎝

txx txy rxx rxy

txy tyy rxy ryy

rxx rxy txx txy

rxy ryy txy tyy

⎞
⎟⎟⎟⎠, (18)
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where only the six underlined elements had to be determined.
The remaining ones are fixed due to reciprocity and mirror
symmetry. Furthermore, for the S matrix of the wires we get

Swire =

⎛
⎜⎜⎝

txx 0 rxx 0
0 tyy 0 ryy

rxx 0 txx 0
0 ryy 0 tyy

⎞
⎟⎟⎠. (19)

The largest period of both arrays is � = 333.3 nm. With the
embedding n = 1.41 and the smallest wavelength of interest of
λ = 600 nm, we find for the critical thickness dcrit = 536.1 nm.

As we know from the previous examples, the difference
between the rigorous and the approximated solution is suf-
ficiently small already for distance of approximately dcrit/2.
Hence, we compared both solutions for a distance between
both MS of d = 250 nm. The results for the amplitude and
the phase of the forward part of the S matrix are shown in
Fig. 9. With respect to the accessible scale the approximated
and the rigorous solution are in perfect agreement. In fact the
maximum error �Sij (d = 250 nm) is smaller than 0.06.

V. CONCLUSION

To eventually establish metamaterials as building blocks
for modern photonic devices, the optical properties of the
individual blocks (metamaterial or metasurface layers) need
to be unique, independent of the neighboring ones or their
environment. Irrespective of the parameter sets used to
describe their optical properties—material parameters, wave
parameters, or simply their transmission and reflection coeffi-
cients concatenated in an S matrix—their uniqueness requires
the MM layers to be homogeneous, i.e., decoupled with respect
to the near-field interaction. Otherwise, the optical far-field
response of a stack of MM layers cannot be predicted by the
far-field response of the individual layers.

To circumvent the introduction and eventually the retrieval
of effective parameters in particular for the subtle case of low-
symmetry MM layers, we propose here to use the frequency
dependent 4 × 4 S matrix of the MM layers to fully describe
their far-field response upon normally incident plane wave ex-
citation. The far-field response of arbitrary MM stacks can then
be determined by use of the adapted S-matrix formalism pre-
sented in this contribution. We discussed the range of its appli-
cability, presented a measure for the limits of validity, and sup-
ported our findings by several examples. We provided all the
necessary ingredients for efficiently calculating the response
of stacked homogeneous metamaterials and metasurfaces.

The proposed formalism can be applied to any material
system, arbitrarily shaped metaatoms, at any frequency and
with arbitrary subwavelength periods which can be mutually
different as well as incommensurable. In particular in the
latter case a rigorous numerical treatment is impossible
and the proposed S-matrix formalism is the ultimate choice
for calculating the optical far-field response. Combining
structured metasurfaces with each other as well as with
isotropic, anisotropic, or chiral homogeneous layers is possible
by simple semianalytical S-matrix multiplication. Hence,
complex stacks and resonators can be set up, accurately treated,
and optimized with respect to their dispersive polarization

sensitive optical functionality without the need for further
rigorous full-wave simulations. In that sense, the presented
approach is the essence of what is actually possible with
homogeneous MS and what MM were designed for.

The proposed stacking formalism can be used for fast
and efficient optimization of the optical response of stacked
homogeneous MM with respect to a specific dispersion as
well as polarization. Complemented by analytical calculations
of the S matrices of the individual layers, we believe that the
presented method will open the fast lane towards complex MM
engineering.
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APPENDIX

1. The subtle issue with the coordinate system

Plainly speaking, the S matrix contains the complex reflec-
tion and transmission coefficients or matrices, respectively,
in the forward and backward direction. That’s certainly true,
however, just for a fixed laboratory coordinate system. The
actual 2 × 2 transmission and reflection matrices T̂ b and R̂b

obtained when illuminating the structure from the backside,
i.e., within a flipped coordinate system (see Fig. 3) are different
from the entries of the S matrix. Rotating the structure around
the x or y axis by 180◦ to look at it from the backside leads
to a change from x → −x or y → −y. This operation is
implemented by the reflection matrix

M̂ =
(−1 0

0 1

)
= M̂T ,

given here for the rotation around the x axis. Note that the
rotation around the y axis gives identical results, as the subse-
quent rotation around z by 180◦ does not affect the S matrix.
Hence, the actual transmission and reflection matrices are

T̂ b =
(

tb
xx tb

xy

tb
yx tb

yy

)
=

(
tb′
xx −tb′

xy

−tb′
yx tb′

yy

)
= M̂T̂ b′

M̂ = M̂Ŝ22M̂

(A1)

R̂b =
(

rb
xx rb

xy

rb
yx rb

yy

)
=

(
rb′
xx −rb′

xy

−rb′
yx rb′

yy

)
= M̂R̂b′

M̂ = M̂Ŝ12M̂.

(A2)

Let’s consider the S matrix for the system rotated by an angle
ϕ around the propagation direction. Intuitively the rotation
from the backside is accomplished by rotation with −ϕ. By
using the rotation matrix

R̂ϕ =
(

cos ϕ sin ϕ

− sin ϕ cos ϕ

)
,R̂T

ϕ = R̂−ϕ
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we get for the front direction:

T̂ f,ϕ = R̂−ϕT̂ fR̂ϕ,R̂f,ϕ = R̂−ϕR̂fR̂ϕ. (A3)

For the backward direction we get

(T̂ b,ϕ)′ = M̂T̂ b,ϕM̂ (A4)

= M̂R̂ϕT̂ bR̂−ϕM̂ (A5)

= M̂R̂ϕM̂T̂ b′
M̂R̂−ϕM̂ (A6)

= R̂−ϕT̂ b′
R̂ϕ (A7)

and

(R̂b,ϕ)′ = R̂−ϕR̂b′
R̂ϕ. (A8)

Hence, the rotation of the backward matrices is done precisely
as for the forward matrices. The intuitive rotation with
negative rotation angle is accounted for by the flip of the
coordinate system. Note that the subsequent reflection along
x and y or vice versa is identical to a rotation by ϕ = π and
has no effect on the S matrix.

If we introduce the matrices containing the reflection and
transmission matrices as obtained in the physically intuitive
system of looking in the forward and backward direction we
get (

T̂ f R̂b

R̂f T̂ b

)
=

(
Ŝ11 M̂Ŝ12M̂

Ŝ21 M̂Ŝ22M̂

)
. (A9)

For the flipped system we get(
T̂ f R̂b

R̂f T̂ b

)
=

(
M̂Ŝ22M̂ Ŝ21

M̂Ŝ12M̂ Ŝ11

)
(A10)

in accordance with the physical intuition of a simple exchange
of f and b matrices.

2. S matrices for anisotropic and chiral layers

The S matrix for propagation over distance d in an
anisotropic medium, whose crystal axes are coinciding with
the principal coordinate system and with refractive index pair
n = (nx,ny) for propagation along the z direction, is given by

Sn,d =

⎛
⎜⎝

Px 0 0 0
0 Py 0 0
0 0 Px 0
0 0 0 Py

⎞
⎟⎠ (A11)

with the propagator Pi = exp[ik0nid]. If the crystal is rotated
around z with respect to the principal coordinate system, the
corresponding S matrix can be obtained by using Eq. (14).

The S matrix for the interface between two anisotropic
layers (1,2) with the same crystal axes aligned to the principal
coordinate system and refractive index pairs ni = (nxi,nyi) is
given by

Sn1,n2 =

⎛
⎜⎜⎜⎜⎝

2nx1
nx1+nx,2

0 nx1−nx2
nx1+nx2

0

0 2ny1

ny1+ny2
0 ny1−ny2

ny1+ny2

− nx1−nx2
nx1+nx2

0 2nx2
nx1+nx2

0

0 − ny1−ny2

ny1+ny2
0 2ny2

ny1+ny2

⎞
⎟⎟⎟⎟⎠.

(A12)

The more sophisticated case of anisotropic layers (n1,n2) with
crystal axes rotated by an angle ϕ1 and ϕ2 [see Eq. (14)] can
be obtained by taking the star product of the rotated interface
S matrices between an arbitrary isotropic medium with n0 and
the anisotropic medium ni :

Sϕ2
n0,n2

� Sϕ1
n1,n0

. (A13)

If bi-isotropic chiral layers with refractive index n and
chirality parameter κ are used, the following S matrix for
the propagation has to be used:

Sn,κ,d = exp[ik0nd]

⎛
⎜⎝

cos ϕ sin ϕ 0 0
− sin ϕ cos ϕ 0 0

0 0 cos ϕ − sin ϕ

0 0 sin ϕ cos ϕ

⎞
⎟⎠

(A14)

with ϕ = k0κd. For the interface from and to chiral media the
standard isotropic interface S matrix of Eq. (8) can be used.

3. Permittivity of gold used for FDTD

For the FDTD calculations performed with short pulse
excitation we had to model the permittivity by a Drude and a
Lorentzian term as

ε(ω) = ε∞ + δ1

−ω2 − iγ1ω
+ δ2

−ω2 − iγ2ω + c2
(A15)

with ω = 2π/λ in [μm−1]. The normalized parameters are
ε∞ = 5.53,δ1 = 2178.43,γ1 = 0.30978,δ2 = 465.79,γ2 =
2.94869, and c2 = 228.713.

The fit as shown in Fig. 10 is performed on ellipsometric
data of in-house-made gold, in very good agreement with
Johnson-Christy data [72]. The fit just slightly overestimates
the imaginary part of ε(ω) close to frequencies around 100
THz.

FIG. 10. Comparison of the real and imaginary part of the
permittivity ε(ω) as obtained by the ellipsometric fit and the tabulated
data from Johnson and Christy [72].
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