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PT -symmetry breaking in waveguides with competing loss-gain pairs
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We consider a periodic waveguide array whose unit cell consists of a PT -symmetric quadrimer with two
competing loss-gain parameter pairs which lead to qualitatively different symmetry-broken phases. It is shown
that the transitions between the phases are described by a symmetry-adapted nonlocal current which maps
the spectral properties to the spatially resolved field, for the lattice as well as for the isolated quadrimer. Its site
average acts like a natural order parameter for the general class of one-dimensional PT -symmetric Hamiltonians,
vanishing in the unbroken phase and being nonzero in the broken phase. We investigate how the beam dynamics
in the array is affected by the presence of competing loss-gain rates in the unit cell, showing that the enriched
band structure yields the possibility to control the propagation length before divergence when the system resides
in the broken PT phase.
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I. INTRODUCTION

The concept of non-Hermitian systems with PT symmetry
has developed into a rapidly evolving research field in
contemporary physics, extending from quantum mechanics [1]
and field theory [2] to systems with topological states [3–5],
optics [6–11], and acoustics [12–14]. In the seminal work
of Bender et al. [15] it was demonstrated that a class of
non-Hermitian Hamiltonians can possess, for certain para-
metric ranges, entirely real eigenvalue spectra, indicating the
unbroken PT -symmetric phase where the Hamiltonian H and
the PT operator share the same set of eigenvectors. On the
other hand, by varying the parameter which determines the
amount of loss and gain, a spontaneous symmetry breaking
occurs such that H and PT , though still commuting, possess
different eigenvectors with complex energy eigenvalues.

The progress in the field of PT -symmetric systems has
since been enormous, to a wide extent impelled by the adapta-
tion of the corresponding concepts in optical structures and
the experimental realization of spontaneous PT -symmetry
breaking [16,17]. The link between classical optics and
quantum mechanics here stems from the effective description
of light propagation in waveguide systems by the Schrödinger
equation, with time represented by the waveguide axis within
the paraxial approximation [18]. In the realm of discrete optics,
one-dimensional (1D) PT -symmetric photonic waveguide
systems have been associated with remarkable phenomena
such as double refraction [7], power oscillations [16], and
nonreciprocal diffraction [19]. In the presence of nonlinearity,
unidirectional [20] and asymmetric [21,22] wave propagation
have been observed. Such intriguing properties are present
in a large class of oligomers [21,23,24], i.e., single PT
dimers [20,25], trimers [26], and quadrimers [27–31]. More-
over, in extended PT -symmetric lattices the occurrence of
Bloch oscillations [32] and universality in beam dynamics [33]
have been reported. The addition of a second loss-gain rate was
discussed in Refs. [27,34] where the focus was on nonlinear
modes in finite PT -symmetric systems and in Ref. [35] where
a closed-form quadrimer was addressed. An open perspective
is the effect of competing pairs of loss-gain elements on the

band structure of lattice systems and on the induced beam
dynamics.

PT -symmetric wave mechanics has also been applied
to light scattering, owing to the isomorphy between the
Helmholtz and stationary Schrödinger equations. With refrac-
tion index landscapes obeying n(x) = n∗(−x), which corre-
sponds to balanced gain and loss [36], such PT -symmetric
setups have been shown to feature scattering properties
such as simultaneous coherent absorption and lasing [32,37]
and anisotropic transmission resonances [38]. In contrast to
bound or periodic PT -symmetric systems, here the energy
(frequency) of the incoming wave is real by definition, and
the unbroken phase is indicated by the field itself being
in a PT eigenstate. Considering the plethora of different
types of PT -symmetric settings in general wave mechanics,
and continuous or discrete systems with closed, periodic, or
scattering boundary conditions, the need for a simple yet
universal quantity that pinpoints the broken and unbroken
PT phases in all cases—thus going beyond the Hamiltonian
spectrum—becomes clear.

In the present work we show that the spatial average of a
discrete, PT -adapted nonlocal current can take on this role
in general 1D lattice systems. Together with its continuous
counterpart proposed recently for scattering systems [39–44],
this quantity provides a natural order parameter for PT -
symmetric 1D systems, derived directly from their eigenstates,
which universally describes the transition between broken
and unbroken phases. We here demonstrate its applicability
for a periodic PT -symmetric waveguide array with multiple,
qualitatively different regimes of non-Hermitian evolution
owing to the interplay of two competing pairs of loss-gain
elements within a quadrimer constituting the unit cell. Using
a Bloch mode analysis we associate the light propagation
properties in extended waveguide arrays to the enriched
band-structure landscape which allows for the control of the
propagation distance of Gaussian wave packets prior to their
divergence in the PT -broken phase.

The paper is organized as follows: In Sec. II we introduce
the setup and the nonlocal currents which are used to obtain the
corresponding phase diagram of the isolated quadrimer cell. In
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Sec. III we investigate the lattice band structure for varying cell
parameters and show that the symmetry-breaking information
can be extracted from the nonlocal currents of Bloch states.
We then demonstrate how the loss-gain pair competition may
be used to control the dynamics of designed wave packets in
the broken phase. In Sec. IV we conclude our results.

II. PT -SYMMETRY BREAKING AND NONLOCAL
CURRENTS FOR COMPETING LOSS-GAIN PAIRS

We start by analyzing a PT -symmetric finite array of
N = 4 photonic waveguides (quadrimer) as shown in Fig. 1,
which later constitutes the unit cell of a periodic array. The
quadrimer has on-site elements υm = nm + iγm with common
refraction index nm = n and two different loss-gain rates
γ and γ̃ in PT -symmetric arrangement: γ1 = −γ4 = γ ,
γ2 = −γ3 = γ̃ . In the paraxial approximation [18], the
propagation of the light field along the z axis is described by
a set of four (m = 1,2,3,4) equations

i
dψm

dz
= υmψm + hm,m+1ψm+1 + hm,m−1ψm−1, (1)

where hm,m±1 couples light from waveguide m ± 1 to m.
Considering common internal couplings hm,m±1 = h and
h0 = h5 = 0, the state vector |�〉 = (ψ1,ψ2,ψ3,ψ4)� of
the isolated quadrimer is then governed by the Schrödinger
equation i d

dz
|�〉 = H|�〉 with Hamiltonian matrix

H =

⎛
⎜⎝

υ h 0 0
h υ̃ h 0
0 h υ̃∗ h

0 0 h υ∗

⎞
⎟⎠, (2)

where υ = n + iγ , υ̃ = n + iγ̃ . If |�〉 = |�(j )〉 is a (right)
eigenvector of H with eigenvalue εj , ψ

(j )
m = α

(j )
m eiεj z, then

the close-coupling equations (1) become

εjα
(j )
m = υmα(j )

m + h
(
α

(j )
m+1 + α

(j )
m−1

)
. (3)

Throughout the paper, we measure lengths, field amplitudes,
and H elements in units of a0 (lattice constant), α0 (amplitude
unit), and ε0 (H-element unit), respectively, which are in turn
set to unity, a0 = α0 = ε0 = 1.

The aim is now to extract the information on whether this
state is PT broken or unbroken from mode amplitudes α

(j )
m

alone, in terms of a single quantity. To do so, we combine
Eq. (3) with its complex conjugate at the PT -related site m̄ =
N + 1 − m = 5 − m to construct the difference

Q(j )
m − Q

(j )
m−1 = (εj − ε∗

j )α(j )
m α

∗(j )
m̄ , (4)

FIG. 1. Schematic of the setup, consisting of four waveguides
with equal refraction indices n, uniform hoppings h, and two
competing loss-gain parameters γ , γ̃ .

FIG. 2. (a) Phase diagram of the setup of Fig. 1 defined by the
site-averaged current 〈Q〉 as a function of the loss-gain parameter γ̃ ,
for γ = 0.08, h = 0.1, and n = 0.1. Dotted vertical lines indicate
transition points γ̃ci

(γ̃ ′
ci

), i = 1,2, between different PT phases
denoted by regions I, II, and III (I′, II′, and III′) for γ̃ > 0 (γ̃ < 0).
The region shadings highlight their qualitative difference: real (I, I′),
complex (II, II′, with distinct partial degeneracy), and imaginary (III,
III′) spectra. (b) Imaginary part of the eigenvalue spectrum (in units
of the hopping h) of the setup of Fig. 1 as a function of the loss-gain
parameter γ̃ .

where thePT symmetry υm = υ∗
m̄ has been taken into account,

with the nonlocal current of mode α(j ) defined here as

Q(j )
m = h

(
α

(j )
m+1α

∗(j )
m̄ − α

∗(j )
m̄−1α

(j )
m

)
. (5)

If the eigenvalue εj is complex, then Q
(j )
m varies along the

array, but for εj = ε∗
j we have from Eq. (4) that Q

(j )
m = Q

(j )
m−1,

and so the nonlocal current is spatially constant for real
εj , and further vanishes, Q

(j )
m = 0, since |�(j )〉 is then a

PT eigenstate. Hence, we can use the site-averaged current
〈Q(j )〉 = ∑

m Q
(j )
m /N as a single quantity which distinguishes

the unbroken phase with 〈Q(j )〉 = 0 from the broken one
with 〈Q(j )〉 �= 0. This extends the use of a symmetry-adapted
nonlocal current as an order parameter for phase transitions
in PT -symmetric systems from scattering in continuous
setups [39] to eigenmodes in discrete setups (note that no
site average is needed for scattering where ε is a real input
parameter). A generic account on nonlocal currents in discrete
models with symmetry domains is given elsewhere [45].
Here we employ them to describe the spontaneous symmetry
breaking in globally PT -symmetric finite and periodic arrays.

Figure 2 shows 〈Q(j )〉 for the four eigenmodes of the
quadrimer together with the imaginary part of its eigenenergies
(given in Sec. A 1) as a function of γ̃ (note that all 〈Q(j )〉 are
real for any length N of thePT -symmetric array). Variation of
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γ̃ in the presence of the additional loss-gain rate γ allows for a
variety of transitions between broken and unbroken or between
different broken PT phases at multiple transition points,
generally not symmetric around γ̃ = 0. For example, region II′

is characterized by two real εj and a complex conjugate pair,
indicating wave propagation which is qualitatively different
from region II with two conjugate eigenvalue pairs. The
qualitatively different propagation properties in regions I and
II are discussed in Sec. A 2, with the behavior around the
transition at the exceptional point γ̃c1 highlighted in Sec. A 3.
Regions III and III′ both have two distinct conjugate pairs of
imaginary eigenvalues, though arising from different types of
transitions from regions II and II′, with a double splitting of
degenerate imaginary pairs (at γ̃c2 ) as opposed to a splitting
and two branch continuations (at γ̃ ′

c2
).

As is seen, all four 〈Q(j )〉 vanish in the PT -unbroken phase
with Im[εj ] = 0 (regions I′ and I), while following the profile
of the Im[εj ] �= 0 in the PT -broken phases. The nonlocal
current is thus a quantity that exposes the non-Hermitian part of
the discrete spectrum although being constructed solely from
the spatially resolved wave function with no direct reference
to the on-site potential or the mode eigenvalues. It equally
characterizes, however, PT phase transitions for scattering
states with real energy, as shown in Ref. [39], thus unifying
the description of PT -symmetric bound and unbound systems
(instead of employing either the Hamiltonian or S-matrix
eigenvalues, respectively).

Let us now elaborate further on the information contained
in the quantities 〈Q(j )〉. Specifically, they can be used to
express symmetry remnants in the nondegenerate phases of
brokenPT symmetry, where the individual 〈Q(j )〉 are nonzero.
Due to the commutation [PT ,H] = 0, in the PT -broken
phases with complex εj (such as regions II, II′, III′, and
III′ of Fig. 2) we have that eigenstate pairs |�(j )〉 , |�(j ′)〉
with complex conjugate eigenenergies εj = ε∗

j ′ are related by

|�(j )〉 = PT |�(j ′)〉. This remnant of PT symmetry in the
broken phase is encoded in the nonlocal currents: Whereas
both Q

(j )
m ,Q

(j ′)
m of a PT -related pair are nonzero and vary

spatially, their sum always vanishes,

Q(j )
m + Q(j ′)

m = 0 ∀m, (6)

which is due to thePT antisymmetry of Q
(j )
m itself. At the level

of the average nonlocal currents we have 〈Q(j )〉 + 〈Q(j ′)〉 =
0 as a single parameter describing the symmetry remnant
in each subspace of PT -related mode pairs. Equivalently,
we can express the symmetry remnant of the system by
the vanishing sum

∑
j 〈Q(j )〉 over all modes, signaling the

invariance of the complete eigenspace of the Hamiltonian
under PT operation (up to a phase for PT -unbroken modes).
This further demonstrates the capability of the 〈Q(j )〉 to capture
features related to the PT -symmetry breaking and indicates
that they can serve as a generic tool for a systematic approach
to symmetry breaking in 1D systems.

At this point, let us comment on some similarities which
can be identified between the transition from thePT -unbroken
to the PT -broken phase and the thermodynamic phase tran-
sitions in the mean-field approach (e.g., Landau theory [46])
where critical fluctuations are absent:

(i) In both cases there exists a quantity which is zero
(nonzero) in the phase of the unbroken (broken) symmetry,
this being the order parameter 〈O〉 in thermodynamics (e.g.,
the mean magnetization for the Ising case), while in PT -
symmetry breaking this role is assigned to 〈Q〉.

(ii) In the vicinity of the transition from unbroken to broken
phases both 〈O〉 and 〈Q〉 follow a power law with exponent 1/2
(in the present case the explicit form is 〈Q〉 ∼ |γ̃ − γ̃c|1/2). The
same occurs in a multitude of PT transition scenarios for, e.g.,
single dimers or quadrimers with γ = γ̃ or with γ = −γ̃ . Such
common transition features arise for spontaneous symmetry
breaking upon varying a suitable parameter (loss-gain rates in
PT -symmetric systems and temperature in thermodynamics),
as a result of the absence of interactions and criticality in the
mean-field approximation.

Before proceeding to the extended lattice in the next
section, we briefly address the relation of the so-called
quasipower PQ = ∑N

m=1 ψmψ∗
m̄ to the nonlocal currents [45],

here based on Eq. (4). The quasipower has been shown [47]
to be conserved along z in PT -symmetric systems for any
propagating excitation and any choice of loss-gain parameter
values, in contrast to the usual power P = ∑N

m=1 |ψm|2 which
generally oscillates in the PT -symmetric phase or grows
in the PT -broken phase [19]. To study the behavior of the
quasipower of a single mode j , its nonlocal current Q(j ) can
be employed: Summing Eq. (4) over m yields

Q
(j )
N − Q

(j )
0 = 2i Im[εj ] P

(j )
Q , (7)

where P
(j )
Q = ∑N

m=1 α
(j )
m α

∗(j )
N+1−m (with N = 4 for the

quadrimer). Now, since α0 = αN+1 = 0 due to the boundary
conditions, it follows that Q0 = QN = 0, showing that the
quasipower vanishes for any eigenmode in the PT -broken
phases of a finite array.

III. BAND STRUCTURE AND BEAM DYNAMICS

We now turn to the periodic lattice with the quadrimer above
as the unit cell. The aim is to investigate how the competing
loss-gain pairs affect the band structure and accordingly the
beam dynamics in large waveguide arrays, as well as the
existence of nonlocal currents which describe the occurrence
of PT eigenstates. The index m now enumerates the repeated
quadrimers coupled by intercell hopping η, and wave fields
Am(z), Bm(z), Cm(z), and Dm(z) are assigned (from the left)
to the waveguides of the mth quadrimer. The coupled mode
equations describing the evolution of the fields along the z axis
are then

i
dAm(z)

dz
= υAm(z) + ηDm−1(z) + hBm(z),

i
dBm(z)

dz
= υ̃Bm(z) + hAm(z) + hCm(z),

i
dCm(z)

dz
= υ̃∗Cm(z) + hBm(z) + hDm(z),

i
dDm(z)

dz
= υ∗Dm(z) + hCm(z) + ηAm+1(z). (8)

To obtain the band structure of the system we use the Fourier
transform of the fields in the first Brillouin zone (BZ), Am(z) =
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FIG. 3. (a) Real and (b) imaginary parts of the dispersion relation
εj (k) of the periodic waveguide array with a quadrimer unit cell as a
function of the loss-gain parameter γ̃ , for γ = 0.01, n = 0.1, and h =
η = 0.1. The inset shows the band structure around zero, elucidating
the cases γ̃ = γ and γ̃ = −γ . (c) Re[〈Q(j )

P 〉] and (d) Im[〈Q(j )
P 〉]

of Bloch modes j = 1,2,3,4 for varying γ̃ . (e) Band structure for
γ̃ = 0.04 with enumerated bands. Propagation length zL up to power
divergence for varying width σ of a Gaussian wave packet launched at
the center of an array of N = 400 waveguides with initial momentum
(f) p0 = 0.05 and (g) p0 = 0.25, indicated by the solid and dashed
vertical lines in (e), respectively.

1
2π

∫ π/L

−π/L
Ãke

ikLm dk, etc., with L = 4 being the lattice period,

so that Eqs. (8) yield the evolution of |�̃k〉 = (Ãk,B̃k,C̃k,D̃k)�
according to i d

dz
| |�̃k〉 = Hk|�̃k〉 with the Bloch Hamiltonian

Hk =

⎛
⎜⎝

υ h 0 ηe−ikL

h υ̃ h 0
0 h υ̃∗ h

ηeikL 0 h υ∗

⎞
⎟⎠. (9)

The four eigenvalues εj (k) (j = 1,2,3,4) of Hk constitute
the band structure of the system, whose real and imaginary
parts are shown for varying γ̃ in Figs. 3(a) and 3(b),
respectively, with the competing loss-gain parameter γ kept
fixed. As we see, the bands have imaginary branches for any
γ̃ �= 0, indicating the general absence of a PT -symmetric

phase (that is, Im[εj (k)] = 0 ∀k) for the chosen parameters
(this is a general feature for η = h). In particular, the interplay
of γ,γ̃ causes the coexistence of real and complex energy
regions. The latter appear around the center and edges of
the BZ with their size tuned by γ̃ , which in turn determines
the width of the k-regions with Im[εj (k)] = 0. Note that for
γ = γ̃ (γ = −γ̃ ) complex energy regions appear only at the
edges (center) of the BZ [see inset in Fig. 3(b)], indicating the
decisive role of the γ,γ̃ coexistence in the shape of the bands.

The enriched dispersion relation induced by the loss-
gain parameter competition thus offers an additional degree
of freedom for the manipulation of the regimes of stable
propagation, as we see below. Let us first, however, investigate
whether the nonlocal currents for the periodic system 〈Q(j )

P 〉 do
capture the PT -symmetry-breaking characteristics as they did
for the isolated quadrimer above. Taking the Q

(j )
m expressions

of Eq. (5) and employing the Bloch theorem, the evaluation
of 〈Q(j )

P 〉 for the corresponding four Bloch modes (j =
1,2,3,4) is straightforward. Figures 3(c) and 3(d) show the
Re[〈Q(j )

P 〉] and Im[〈Q(j )
P 〉], respectively, as a function of k

and γ̃ . Indeed, the characteristics which are related to the
breaking of PT symmetry are accurately captured by 〈Q(j )

P 〉,
since the k-regions where 〈Q(j )

P 〉 = 0 [flat areas in Figs. 3(c)
and 3(d)], which indicate that the |�̃k〉 are PT eigenstates,
coincide with the real regions of the corresponding bands
εj (k) [flat area in Fig. 3(b)]. This confirms the applicability
of the nonlocal currents also in periodic lattice systems as
state-derived indicators ofPT -broken andPT -unbroken parts
in the BZ.

The key advantage of the coexistence of competing loss-
gain parameter pairs, as indicated above, is the flexibility to
engineer the band with desired regions of complex energies
around the center and edges of the BZ. This suggests the
possibility to design setups where suitably prepared beams
will propagate substantial distances (in fact, beyond the
experimentally realized waveguide length) without divergence
even in the PT -broken phase. To elaborate on this concept
via an exemplary case we focus on the band structure for
γ̃ = 0.04, shown in Fig. 3(e), with complex band branches
around the center (|k| � 0.075) and edges (|k| � 0.66). The
distance zL where divergence of a launched wave packet
sets in [which we define by the doubling of optical power,
P (zL) ≡ 2P (0)] depends on how well it is localized around
its initial momentum p0 and in turn whether p0 lies on (or
close to) band branches with Im[εj ] < 0 causing exponential
increase (recall that a mode j evolves in z as eiεj z).

Figures 3(f) and 3(g) show the distance zL for a Gaussian
wave packet A(n; z = 0) = ( 4

√
π

√
σ )−1

eip0ne−i(n−n0)2/2σ 2
as a

function of its width σ , for different initial momenta p0. The
array is chosen large enough to enable a connection between
the basic wave-packet propagation properties and the features
of the given band structure. For a small momentum p0 = 0.05,
the distance zL decreases with increasing σ [Fig. 3(f)]. In
contrast, for a moderate momentum p0 = 0.25 the trend of
zL is reversed, with the propagation distance now increasing
with σ [Fig. 3(g)]. As we see, the wave packet can indeed
travel a long distance zL without diverging [as in Fig. 3(f)
for small σ ], even though an unbroken PT -symmetric phase
(defined by Im[εj (k)] = 0 ∀j,k) is overall absent in the band
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FIG. 4. (a) Propagation of a Gaussian wave packet of width σ =
13 launched from the center of an array of N = 400 waveguides
with initial momentum p0 = π/9 and corresponding optical power
evolution P (z) (see inset). (b) Expansion coefficients |cj (k)|2 in the
right Bloch states of the corresponding periodic system, in each of
the four bands j = 1,2,3,4. Green dashed (solid) lines show the
imaginary (real) part of each band multiplied by 1.5 × 103. Arrows
indicate the gradual population of the regions with Im[εj (k)] < 0
causing the exponential increase.

structure. In other words, propagation properties which would
be expected only in the PT -symmetric phase of a setup may
also be encountered as transient phenomena in the much larger
parameter regions of PT -broken phases. In the following, we
analyze this behavior in terms of the Bloch state composition
of a launched beam.

Since the associated Bloch momenta are not conserved in
the finite periodic setup, the decomposition of a wave packet
in k-space will evolve in time, thus eventually extending to
other regions in the BZ. If the wave packet is spatially broad
and strongly localized in k-space, the dispersion [Fig. 3(e)]
suggests that it will diverge after a relatively long (short) prop-
agation distance zL when it is initially localized in a k-region
without (with) Im[εj (k)] < 0. To illustrate this mechanism in
the beam dynamics, we show in Fig. 4(a) the evolution of a
relatively broad wave packet (σ = 13) with initial momentum
p0 = π/9 [indicated by the dotted vertical line in the band
structure of Fig. 3(e)] up to the length of power divergence (as
depicted in the inset) together with its Bloch state coefficients
|cj (k)|2 in Fig. 4(b). The wave packet is split into four
beams of different intensities, with slopes corresponding to
the group velocities of (the real parts of) the dispersion regions
populated in each of the four bands. One main beam is more
intense, which is reflected also in its k-space decomposition
in the first band. After some propagation distance (z � 400)
the light field starts populating Bloch momenta in the k-
regions with complex band branches. In particular, regions
with Im[ε1(k)] < 0 (indicated by arrows) are increasingly

populated with z, thus leading to exponential divergence of
the light intensity in the corresponding k-space contribution.

The above analysis demonstrates that PT -symmetric pe-
riodic lattices can be designed for quasistable propagation of
appropriately launched wave packets even in the PT -broken
phase of the stationary dynamics, parametrically tunable in
terms of different loss-gain parameters.

IV. CONCLUSIONS

We have shown that spontaneous PT -symmetry breaking
in isolated PT -symmetric discrete-wave mechanical systems
can be described by symmetry-adapted nonlocal currents Qm

which are zero (nonzero) in the PT -unbroken (PT -broken)
phase. The spatial average 〈Q〉 then constitutes a single
parameter which is constructed by the field amplitudes and un-
ambiguously parametrizes thePT phase transition with values
following the behavior of the imaginary part of the eigenvalue
spectrum. With its continuous version describing the PT
phase transition also in scattering systems [39] with real wave
frequencies, 〈Q〉 is proposed as a natural “order parameter”
for symmetry breaking in the generic class of PT -symmetric
1D systems (discrete or continuous, bound or scattering).

The introduced concepts were applied to a photonic
waveguide quadrimer with two competing pairs of loss-gain
elements, employed as the unit cell of a periodic lattice.
The 〈Q〉 here further reveal remnants of the spontaneously
broken symmetry in subspaces of eigenstates of the quadrimer,
and the characterization of PT eigenstates by vanishing 〈Q〉
carries over to Bloch states of the lattice. The additional
competing loss-gain parameter γ̃ was shown to enrich the
band structure, giving rise to additional k-space regions with
complex energies which are absent for a single loss-gain rate
and whose extent can be tuned by γ̃ . Employing a Bloch mode
analysis and guided by the complex band structure we finally
demonstrated how a wave packet can be designed in order
to control its propagation distance before starting to diverge.
This offers the possibility to observe propagation properties
in the parametrically extended PT -broken phases which are
typically accessible only in the PT -unbroken phase.
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APPENDIX: LIGHT PROPAGATION IN THE QUADRIMER

In this Appendix we briefly analyze the spectral and light
propagation properties of the isolated quadrimer of Fig. 1. First
the quadrimer eigenvalues are provided and subsequently the
qualitative difference of light propagation in the PT -broken
and -unbroken phases is highlighted with a focus on the
transition between them.

063831-5



KALOZOUMIS, MORFONIOS, DIAKONOS, AND SCHMELCHER PHYSICAL REVIEW A 93, 063831 (2016)

FIG. 5. Light propagation along the waveguide quadrimer for
h = 0.1, n = 0.1, and γ = 0.08, with light launched in the (marked)
second waveguide. (a)PT -unbroken phase with γ̃ = 0.015: intensity
I(x,z) = |�(x,z)|2 smoothened along x by convolution with a
Gaussian function (color plot) and power P (inset) as a function of
propagation length z. (b) PT -broken phase with γ̃ = 0.06: intensity
evolution up to the length z = 167 where the sixth maximum in
the first waveguide occurs, and the corresponding power (inset).
(c) Intensity evolution in the first (dashed blue line) and second
(solid green line) waveguide for the parameter choice in (b): in each
waveguide the maxima are equidistant with separation 2π/Re[ε2 −
ε1] ≈ 29.64, with the maxima of the first waveguide lagging by 18.61
length units.

1. Quadrimer eigenvalues

Diagonalization of the matrix H yields the following four
energy eigenvalues:

εj = ± 1√
2

(

√
a ±

√
b + n), j = 1,2,3,4, (A1)

where

a = −(γ 2 + γ̃ 2 − 3h2),

b = (γ 2 − γ̃ 2)2 − 2(γ + γ̃ )(γ + 3γ̃ )h2 + 5h4.

The eigenvalues are drastically affected by the combination
of γ and γ̃ , with the variation of Im[εj ] with γ̃ for fixed γ

displayed in Fig. 2(b).

2. Evolution of single waveguide excitation

Since the eigenvectors of a non-Hermitian system are not
orthonormal, we use the biorthogonal basis employing the
left and the right eigenvectors of H [33] to compute the
light propagation. Figure 5 illustrates the intensity evolution
and the corresponding power P (insets) following a unit
excitation in the second waveguide. In the PT -unbroken
parameter regions I and I′ [Fig. 5(a)] the light propagates
without divergence and the power oscillates as expected [25].
In contrast, the purely imaginary spectrum in the PT -broken
regions III and III′ leads to a monotonous exponential increase
of intensity and power with the propagation distance. Of
particular interest are the characteristics of the propagation
in the PT -broken region II. A key characteristic is here an

FIG. 6. (a) Power evolution as a function of the loss-gain param-
eter γ̃ across the PT phase transition around the exceptional point
γ̃c1 (indicated by the dashed line), with intensity and power (insets)
evolution shown for (b) γ̃ = γ̃c1 − 0.001 and (c) γ̃c1 = γ̃c1 + 0.001.

exponentially growing light intensity with a superimposed
oscillation, caused by the imaginary and real parts of the
eigenvalues, respectively. This propagation pattern causes
the intensity maximum to oscillate between the two gain
waveguides along z, as shown in Fig. 5(b). With the real part of
the energy spectrum in this regime being doubly degenerate,
the oscillations correspond to the single real energy difference
yielding a period 2π/Re[ε2 − ε1] ≈ 29.64. As indicated in
Fig. 5(c), the oscillating pattern is also shifted by a constant
length between the first and second waveguides.

3. Propagation around exceptional point

Figure 6(a) shows the evolution of the power P along z for
a range of the loss-gain parameter γ̃ around the exceptional
point (EP) at γ̃c1 . For a certain γ̃ in region I, the power generally
oscillates in a superposition of four different frequencies
corresponding to the four absolute differences between the
real energies εj of the spectrum. As the EP is approached from
below, the branches of the spectrum also approach each other
and become pairwise doubly degenerate at the EP which is thus
characterized by a single oscillation frequency. Marginally
below the EP at γ̃ = γ̃c1 − 0.001 we have two dominant
frequencies producing a beating profile in the intensity along
each waveguide as well as in the overall power. Indeed, the
light intensity is characterized by revivals in each waveguide
and P has two different oscillation scales. This is shown
in Fig. 6(b) for a single waveguide excitation: The power
trajectory performs fast oscillations within a slowly oscillating
envelope with minima close to zero for the specific choice of
parameters. As the EP is approached the envelope frequency
decreases and vanishes exactly at the EP where the field
intensity and the power become periodic. Above γ̃c1 the fast
oscillation persists, but the negative imaginary parts in the
spectrum add an exponential increase to intensity and power,
as described above.
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