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Localized topological states in Bragg multihelicoidal fibers with twist defects

C. N. Alexeyev,1,* B. P. Lapin,1 G. Milione,2 and M. A. Yavorsky1

1V. I. Vernadsky Crimean Federal University, Vernadsky Prospekt, 4, Simferopol 295007, Crimea, Ukraine
2Institute for Ultrafast Spectroscopy and Lasers, Physics Department, City College of New York of the City University of New York,

160 Convent Avenue, New York, New York 10031, USA
(Received 29 March 2016; published 16 June 2016)

We have studied the influence of a twist defect in multihelicoidal Bragg fibers on the emerging of localized
defect modes. We have shown that if such a fiber is excited with a Gaussian beam this leads to the appearance
of a defect-localized topological state, whose topological charge coincides with the order of rotational symmetry
of the fiber’s refractive index. We have shown that this effect has a pronounced crossover behavior. We have
also formulated a principle of creating the systems that can nestle defect-localized topologically charged modes.
According to this principle, such systems have to possess topological activity, that is, the ability to change the
topological charge of the incoming field, and operate in the Bragg regime.
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I. INTRODUCTION

Since the discovery of Anderson localization—the absence
of diffusion of electrons in disordered lattices—the construc-
tive role of static defects in the creation of localized states has
been recognized [1,2]. Subsequently, it has been found that
localized states can form not only in the presence of randomly
positioned defects, but also on single defects in periodic
dielectric structures. The idea to use regular defects in such
structures dates back to the seminal papers by Yablonovitch
[3,4]. Introducing defects in photonic band-gap structures
enables creation of low-loss waveguides in them [5]. As has
been pointed out [4], for band-gap photonic structures the
presence of a localized defect results in the emergence of a
localized defect mode, the spectral line of which is positioned
within the forbidden spectral band. It is the existence of such
defect-localized gap mode that enables low-threshold lasing
through this frequency window created by the defect mode
while spontaneous emission occurs in solids. This property
has found application in vertical cavity surface-emitting lasers,
in which an amplifying defect layer is sandwiched between
periodic dielectric structures [6]. Also photonic band-gap
structures with defects may be used for narrow-band filters
[7] and for second harmonic emission due to an enhancement
of nonlinear phenomena at defects [8].

The type of a defect which can be created in a periodic
structure essentially depends on the symmetry of the dielectric
lattice. In this way, for a layered structure, which is the most
common representation of a one-dimensional (1D) photonic
crystal, such a localized defect can be implemented by
changing the width of the particular layer or its refractive index.
Unlike photonic crystals composed of isotropic materials, the
band-gap anisotropic structures allow greater versatility in
defects insertion. One of the most important types of such
systems is a periodic chiral medium, an example of which
is given by self-organized cholesteric liquid crystals. Such
systems allow an additional degree of freedom in inserting
the defect, namely, twisting one part of the sample with
respect to the other chiral structure. This type of a defect
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can be experimentally created by glancing-angle deposition
on a rotating substrate [5]. For a millimeter-wavelength range
such chiral media with a twist defect can be made of stacks
of transparency sheets [9,10]. In the optical range such a twist
defect was demonstrated for cholesteric polymer films [11,12].
Transmission characteristics of such a 1D chiral crystal with
a twist defect were shown to demonstrate a pronounced
crossover behavior, which had been attributed to the presence
of a localized mode, nested on the defect.

Despite essential progress achieved in this area, those
studies were limited to the case of the waves with no wave-front
dislocations. Recent progress in singular optics [13] has
opened new possibilities for investigations of the evolution of
topologically charged electromagnetic waves in optical media
with defects. The questions of Anderson localization for the
light with topological dislocations in waveguides are currently
under consideration [14]. In this paper we make a further step
in studying defect-localized modes with embedded topological
charge. Leaving beyond its scope the matters concerned with
localization in the presence of random defects, we focus our
attention on studying the periodic chiral structure with a single
defect of a twist discontinuity type.

Simple geometry of transversely homogeneous layered
media does not allow imprinting any topological charge into
the structure. This can be achieved only in optical systems with
specially engineered transverse distribution of the refractive
index. As has been recently shown, such imprinting of the
topological charge can be attained in multihelicoidal fibers
(MHFs) [15], in which refractive index distribution forms
l spirals (l is an integer). As has been demonstrated, at
certain conditions MHFs change the topological charge of the
incoming beam by ±l. Such systems with multifold symmetry
of the refractive index distribution also exhibit optical activity
[16]. The effect of the twist defect in such fibers has been
studied in recent works [17]. It has been pointed out that by
changing the magnitude of the twist defect one can control
the value of the average orbital angular momentum of the
outcoming beam. However, those studies were limited to the
case of long-period fiber gratings. Meanwhile, the existence of
defect-localized modes is possible only in Bragg-type fibers,
in which the spatial period of the lattice is comparable with
the wavelength.
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In this paper we propose a principle of creating the
structures that are able to nestle a topologically charged defect
mode. According to this principle, the defect mode with a
topological charge may be excited at the boundary of two
topologically active media each operating in the Bragg regime.
Here a topologically active medium is defined as a medium
that possesses the ability to change the topological charge of
the incoming field. We illustrate this principle at the example
of the exactly solvable problem of a multihelicoidal Bragg
fiber with a twist defect. To this end we study the influence of
the twist defect in such fibers on the transmission of optical
vortices (OVs) and Gaussian beams (GBs). We show that the
transmission coefficient for the GB demonstrates band-gap
behavior. The presence of the twist defect results in a sharp
transmission peak within the transmission gap. In the reflected
field the incoming GB is transformed into the OV, whose
charge is determined by the topological charge imprinted
into the chiral fiber lattice. We show that such peculiarities
of the reflection and transmission characteristics arise due to
the presence of a localized defect mode. We study the spatial
structure of this mode and show that its topological charge
coincides with the charge imprinted into the lattice.

II. COUPLED MODES OF BRAGG MULTIHELICOIDAL
FIBERS

The refractive index distribution of a defectless MHF is
given by [18]

n2(r,ϕ) ≈ n2
co[1 − 2�f (r)] + 2�δf ′

r r cos [l(ϕ − α)], (1)

where α = qz is the rotation angle of the cross section with
coordinate z, � is the height of the profile f , δ � 1 is the
dimensionless parameter of the cross section’s deformation,
nco is the core’s refractive index, q = 2π/H is the lattice
vector of the helical grating, H is the pitch of the grating,
and (r,ϕ,z) are the cylindrical-polar coordinates. The twist
defect is introduced in the standard way (see Fig. 1). Since
the greatest effect is obtained in case the defect is located
in the middle of the sample [9,10,17] we restrict our further
considerations just to this limiting case. In the presence of such
a twist defect rotation angle α becomes

α =
{
qz, z < 0
qz + θ, z > 0 , (2)

where θ is the angle of rotational shift at the defect.

FIG. 1. Geometry of the model of a multihelicoidal fiber with
a twist defect. A MHF of length d (here with a hexagonal type of
symmetry � = 6) is cut in the middle across the XY plane. Then its
marked half is rotated through an angle θ with respect to the other
part.

For an infinite Bragg MHF it proves sufficient to use, for
the mode description, the scalar approximation waveguide
equation:

∇2Et + k2n2Et = 0, (3)

where Et is the transverse electric field, k is the wave number
in vacuum, ∇2 is the Laplace operator, and the refractive index
is given by Eq. (1). Under the change of variables r̃ = r,z̃ =
z,ϕ̃ = ϕ − qz, one restores the translational invariance in z̃ of
Eq. (3), which upon substitution, Et = et (r̃ ,ϕ̃) exp(iβz̃), where
β is some propagation constant, becomes

{
∂2

∂r̃2
+ 1

r̃

∂

∂r̃
+ 1

r̃2

∂2

∂ϕ̃2
+

(
iβ̄ − q

∂

∂ϕ̃

)2

+ k2n2(r̃ ,ϕ̃)

}

× et (r̃ ,ϕ̃) = 0. (4)

Treating the ϕ-periodic part of the refractive index as
perturbation one can obtain for the spectrum β̄m of zero-
approximation equation

{
∂2

∂r̃2
+ 1

r̃

∂

∂r̃
+ 1

r̃2

∂2

∂ϕ̃2
+

(
iβ̄ − q

∂

∂ϕ̃

)2

+ k2ñ2(r̃ ,ϕ̃)

}

× ẽt (r̃ ,ϕ̃) = 0, (5)

where ñ2 = n2
co[1 − 2�f (r)], the following result:

β̄ = ±β̃m + mq. (6)

Here m = 0, ± 1 · · · and the upper sign relates to forward-
propagating fields, whereas the lower sign describes backward-
propagating fields. In the basis of linear polarizations |e〉 =
col(ex,ey) the solutions of Eq. (5) can be chosen in the form
of circularly polarized OVs:

|σ,m〉 =
(

1
iσ

)
exp(imϕ̃)Fm(r), (7)

where σ = ±1 specifies the sign of polarization, m co-
incides with the topological charge of the OV, and Fm

satisfies ( ∂2

∂r2 + 1
r

∂
∂r

+ k2ñ2 − m2

r2 − β̃2
m)Fm(r) = 0. Here β̃m is

the scalar propagation constant of the ideal fiber’s mode with
the orbital index m.

On the plane (q,β) zero-approximation spectral curves are
given by straight lines, which may intersect at certain q.
Figure 2 illustrates such intersection events for spectral curves
of the fundamental mode |1,0〉 and the OVs |1, ± m〉. It should
be noted that there are two points of intersection with the
same lattice parameter q. In the first point (a) the forward-
propagating mode |1,0〉 gets coupled with the backward-
propagating mode |1,m〉. In the point (b) the backward-
propagating mode |1,0〉 couples with forward-propagating
mode |1, − m〉. In such points of accidental degeneracy
to allow for ϕ-periodic perturbation it is necessary to use
perturbation theory with degeneracy to study the effect of
perturbation on modification of spectral curves. Although there
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FIG. 2. Zero-approximation spectra of MHF modes vs reciprocal
lattice vector q. The type of the mode is indicated at the corresponding
curve. Red lines correspond to forward-propagating modes, blue ones
to backward-propagating fields.

are also intersections points where copropagating modes may
be coupled (not shown in Fig. 2), in the following we focus
our attention on coupling between forward- and backward-
propagating zero-approximation modes, which corresponds to
a Bragg-type coupling. The spectral curves βm and βm′ of such
oppositely propagating modes intersect at

qi = β̃m + β̃m′

m′ − m
, (8)

which represents the generalized kinematical Bragg condition
for the fields with nonzero topological charges. Near such
points one should construct the matrix Hij of the total
differential operator on the left of Eq. (4) on the basis of those
zero-approximation eigenvectors |σ,m〉 and |σ ′,m′〉, whose
spectral curves intersect at the point given by Eq. (8). This
procedure entails obtaining the matrix element Vij = 〈i|V̂ |j 〉
of the perturbation operator V̂ = −2k2n2

cor̃�δf ′
r̃ cos(lϕ̃). Note

that since V̂ does not affect the polarization of the state,
the polarizations of the coupled eigenvectors are the same;
that is, σ = σ ′. In this way, the matrix elements can be
calculated using the standard definition of the scalar product,
〈a | b〉 = ∫∫

S
a∗bdS, where S is the total cross section. Also,

due to the specific form of V̂ these matrix elements prove to be
nonzero if the following dynamical selection rule is fulfilled:

|m − m′| = l. (9)

Otherwise the fields do not couple in the intersection points.
If one of the coupled fields is the fundamental mode with

m = 0, the condition Eq. (9) yields |m′| = l; that is, the
fundamental mode can be coupled to the counterpropagating
OV of the same polarization and with topological charge
±l. Then the only nonzero matrix elements generated by
perturbation V̂ are

V12 = V21 = 〈σ,0|V̂ |σ,l〉 = −k2n2
co�δ

N0Nl

≡ A. (10)

Here we assume a step-index fiber; the normalization
factors are N2

i = ∫ ∞
0 xF 2

i (x)dx. For this situation the coor-

dinates of intersection points on the plane (q,β) are a(q1,β̃0)
and b(q1, − β̃0), where q1 = (β̃0 + β̃l)/l. The matrix of the
operator on the left of Eq. (4) built on the basis of eigenvectors
|1,0〉 and |1,l〉 has the form

H =
(

β̃2
0 − β2 A

A β̃2
l − (β − lq)2

)
. (11)

This matrix enables one to determine the structure of
hybrid modes and their spectrum β near the intersection point
(a) through solving the eigenvalue equation Hx = 0. The
eigenvector x = col(x1,x2) defines the hybrid mode |�〉 as
|�〉 = x1|1,0〉 + x2|1,l〉. Near the point (b) one should invert
in Eq. (11) the sign of l, as well as in the expression for |�〉.

It is advantageous to introduce near these intersection points
the detunings δa,b and ε as

β = ∓β̃0 + δa,b, q = q1 + ε, (12)

which reduces the eigenvector problem to

[
∓2β̃0δ

a,b A

A ±2β̃l(δa,b ∓ lε)

]
xa,b = 0, (13)

where the upper sign corresponds to the point (a). The spectrum
corrections

δa
1,2 = 0.5(lε ± R), δb

1,2 = 0.5(−lε ± R), (14)

where R = (l2ε2 − Q2)1/2 and Q2 ≈ A2/β̃2
0 , describe repul-

sion of spectral curves, which leads to the appearance of
spectral gaps of width Q/l in the q domain. Note that both
gaps have identical position and width. The coupled modes
near the upper intersection point (a) look like

|ψ1a〉 = {p1|1,0〉 + p2|1,l〉e−iqlz} exp(iβ+z),

|ψ2a〉 = {p2|1,0〉 + p1|1,l〉e−iqlz} exp(iβ−z),
(15)

where β± = (lq − lq1 ± R)/2 and p1,2 = (1 ∓ R/lε)1/2/
√

2.
Note that these modes are essentially the combinations of
forward-propagating fundamental mode |1,0〉 and backward-
propagating OV |1,l〉, as is implied by Fig. 2. Analogously,
the expressions for coupled modes near the lower intersection
point (b) are

|ψ1b〉 = {p2|1,0〉 + p1|1, − l〉eilqz} exp(iβ−z),

|ψ2b〉 = {p1|1,0〉 + p2|1, − l〉eilqz} exp(iβ+z).
(16)

These hybrid modes are also the superposition of oppositely
propagating fields. These results could be also obtained by the
standard coupled mode theory. It should be emphasized that
along with the coupled modes, Eqs. (15) and (16), there are also
two nonhybridized OVs: the forward-propagating OV |1,l〉 and
backward-propagating OV |1, − l〉. These six fields constitute
the complete set of modes for studying transmission of the GB
through MHFs with twist defects.
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III. TRANSMISSION CHARACTERISTICS AND
CROSSOVER

Knowing the set of modes of an infinite regular MHF
enables one to study the transmission of GBs through a
finite-length MHF with a twist defect. The expressions for
modes in the rotated section of the fiber are obtained by the
following transformation of the basis fields |σ,l〉:

|σ,l〉 → |σ,l〉 exp [i(l + σ )θ] ≡ |σ,l〉′. (17)

This phase transformation is formally similar to the
appearance of the Pancharatnam-Berry phase for the light
with both spin (σ ) and orbital (l) angular momentum, which
is currently in the focus of research in connection with its
manifestation in various physical processes [19]. However,
the phase transformation, Eq. (17), is only formal and emerges
due to coordinate frame rotation at the boundary, which we
introduce in the expressions for modes to allow for the twist
defect. Since at the boundary the field’s polarization and
the amplitude of the electric field do not change, this phase
transformation does not correspond to any evolution of the
field’s state, which could be the reason for the appearance
of the actual Pancharatnam-Berry phase. Naturally, no spin-
dependent effects of the kind reported in [19] can be present
in the system in the chosen scalar approximation, where
polarization degrees of freedom are decoupled from the orbital
ones.

To study the transmission of the incident GB through this
system we assume that near the input end such a beam can be
represented by the |1,0〉 field. Near the input end the field is
given by the following superposition of incident and reflected
fields:

|�1(z � −d/2)〉 = |1,0〉eikz + (R1|1,0〉 + R2|1,l〉
+R3|1, − l〉)e−ikz. (18)

Within the first section of the fiber the field can be
represented as

|�2(−d/2 < z < 0)〉 = T1|ψ1a〉+T2|ψ2a〉+T3|ψ1b〉+T4|ψ2b〉
+ T5|1,l〉eiβ̃lz + T6|1, − l〉e−iβ̃l z.

(19)

The field in the twisted section [|�3(0 < z < d/2)〉] is
obtained from this equation by making the substitution
|σ,l〉 → |σ,l〉′ in the corresponding expressions for modes.
Also Ti should be changed to Ti

′. The transmitted field should
read as

|�4(z � d/2)〉 = (P1|1,0〉 + P2|1,l〉 + P3|1, − l〉)eik(z−d/2).

(20)

Here Ri, Ti, Ti
′, and Pi are the unknown coefficients.

The equations in these coefficients are obtained through
matching the fields and their derivatives with respect to z

at the boundaries z = 0 and z = ±d/2. This enables one to
obtain reflection and transmission characteristics of the system
in question. We will focus our attention on the case where
the fiber is excited with the circularly polarized GB. In the
following we carry out numerical simulations for the case

FIG. 3. Crossover event for l = 4 fiber with a twist defect; dco ≈
2 cm. The red curve corresponds to the transmission coefficient for
the mode |1,0〉, whereas the blue one shows the reflection curve of
the OV |1,4〉. Fiber parameters: θ = π/4, nco = 1.5, � = 5 × 10−3,
δ = 0.05, r0 = 10λ0, λ0 = 632.8 nm, and q = 7.436 × 106 m−1. The
fiber is excited with the GB |1,0〉.

l = 4. Additionally, we set θ = π/4, which corresponds to the
maximal influence of the defect.

Chiral fibers are known to possess topological activity in
the reflected field [20]: If the resonance Bragg condition is
met the input GB gets backward scattered into the OV of
charge l [18]. Also, a fraction of the Gaussian component
is present in the transmitted field. The effectiveness of such
conversion essentially depends on the fiber’s length. Evidently,

FIG. 4. Transmission coefficient for |1,0〉 mode (a) and reflection
curve for |1,4〉 OV (b) vs wavelength beyond the crossover length,
d = 2dco.
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FIG. 5. Transmission coefficient for |1,0〉 mode (a) and reflection
curve for |1,4〉 OV (b) vs wavelength below the crossover length,
d = 0.4dco.

for relatively short fibers the share of the reflected OV should
be smaller than the one of the transmitted GB. For long fibers
the situation should reverse. Figure 3 shows the transmitted
power of the GB and reflected power of |1,l〉 OV as function of
the fiber length d. As is seen, at certain length dco, known as the
crossover length, these two curves intersect. This phenomenon
of crossover—to the best of our knowledge, first pointed out
in [9]—along with the crossover length, plays a rather formal
role for defectless MHFs. On the contrary, for MHFs with
twist defects this parameter is crucial for the behavior of
transmission characteristics. Indeed, at d > dco in the narrow
spectral range the transmission coefficient for the |1,0〉 mode
falls to zero [Fig. 4(a)], while the reflection curve for |1,l〉
OV has the plateau [Fig. 4(b)]. This behavior copies the
one for the corresponding transmission (reflection) curves
for defectless MHFs [18]. In this way, at d > dco the system
converts the incident GB into the reflected OV |1,l〉 featuring

FIG. 6. Shift of the position of the transmission peak within
the transmission gap vs defect angle θ below the crossover length,
d = 0.4dco.

the topological activity. Note that, as has been mentioned in
[18], this conversion is not reciprocal: The incident OV |1,l〉
passes through the system without any changes, so that, in a
general sense, there is some orbit-dependent splitting in the
system. However, at d < dco in the middle of the spectral
gap for transmission of the |1,0〉 mode a sharp transmission
peak appears [Fig. 5(a)]. This event is accompanied by the
pronounced dip in the reflection coefficient for the OV |1,l〉
[Fig. 5(b)]. The position of the transmission peak within the
transmission gap depends on the magnitude of θ . As is shown
in Fig. 6, for an l = 4 MHF with a twist defect the position of
the peak shifts from the left margin to the right one if θ changes
from zero to π/2 (maximal influence of defect corresponds to
θ = π/4). The sharpness of the transmission peak for the |1,0〉
mode increases exponentially as the fiber’s length tends to dco.
Figure 7 shows the dependence of ln(�B/B), where �B is the

FIG. 7. Logarithm of relative transmission peak width �B/B

within the transmission gap for |1,0〉 mode vs fiber length d . Here B

is the peak width at d ≈ 0.1dco, which approximately coincides with
the width of the spectrum gap; dco ≈ 2 cm, θ = π/4.
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peak’s width and B is the width of the transmission gap for the
|1,0〉 mode, on the fiber’s length d. As is seen, at d = dco the
initial peak’s width decreases approximately 105 times. The
narrowness of the peak corresponds to a high Q factor of such
an effective resonator.

IV. LOCALIZED TOPOLOGICAL STATES

These unusual behaviors of the transmission characteristics
below the crossover length are connected with the emergence
of defect-localized modes. Since the refractive index, Eq. (1),
comprises only a scalar-type perturbation term such modes
should be of the same circular polarization as the incident GB.
The field within the fiber can be decomposed over the |1,0〉
fundamental mode and |1, ± l〉 OVs as

|�2,3〉 =
∑

ν

A2,3ν |ν〉, (21)

where ν specifies the type of the field |σ,l〉. The linear density
of energy (that is, energy density integrated over the fiber’s
cross section) stored in the field is proportional to |A2,3ν |2.
These functions of z comprise rapidly oscillating (on the
wavelength scale) interference terms. To exclude such terms
one has to carry out averaging over fast spatial oscillations.
If the wave vector of the incident GB falls within the
spectral gap there emerges localization of energy on the twist
defect. Figure 8 shows the distribution of the fast oscillations’
averaged energy within the fiber. As is seen, the presence of
the defect results in the appearance of three modes localized
on the defect: |1,0〉 and |1, ± l〉. Intensity of each of the modes
falls off exponentially with the distance z from the defect. An
immediate precondition for such exponential behavior lies in
the fact that within the spectral gap the mode field, Eqs. (15)
and (16), also depend exponentially on the distance from the
defect. The two principal defect modes, which give maximal

FIG. 8. Logarithm of energy density distribution within the fiber
averaged over fast spatial interference oscillations vs position z

within the fiber: red solid line is the energy of the OV |1, − l〉;
blue dashed line, energy of the OV |1,l〉; green dotted line, energy of
the fundamental mode |1,0〉. Here energy density P is normalized to
energy density P0 of the incident GB.

FIG. 9. Logarithm of peak (z = 0) relative energy density aver-
aged over fast spatial interference oscillations vs fiber length d for
fundamental mode |1,0〉 (green line); |1,l〉 OV (red line); |1, − l〉 OV
(blue line).

contributions, are |1,0〉 and |1,l〉 OV. In this way, the excitation
of a MHF with a twist defect with the GB leads to generation
of a localized topological state nested on the defect. It should
be noted that since energy density at the input end is unity,
the peak energy density strongly exceeds its value in the input
beam. This effect of defect mode localization is the strongest
at d = dco. As d changes, the localization of defect modes
becomes less pronounced and, finally, the effect vanishes (see
Fig. 9).

There is yet one another property of defect-localized
states which has not received due attention in the literature
and which might be useful for practical applications. This
property concerns the total energy stored in the localized
mode. Numerical results show that the value of average energy
stored in a sample by the defect mode is sensitive both to the
defect angle θ (Fig. 10) and the wavelength of the incident
beam (Fig. 11). One can expect, therefore, that by changing
the defect parameter one can generate narrow-band pulses
of topologically charged light. Such sensitivity of the stored
energy to variations of the system’s parameters also opens
possibilities in controlling the orbital angular momentum
(OAM) of light. However, there are drastic differences in

FIG. 10. Average energy density of electromagnetic field (in units
of energy density of the incident GB) stored in the mode within the
fiber vs θ at the central wavelength λ = λ0. Red solid line is the energy
of the fundamental mode |1,0〉; blue dashed line, energy of the OV
|1,l〉; black dotted line, energy of the OV |1, − l〉. Fiber parameters:
� = 4, d = dco = 0.0202 m, nco = 1.5, � = 0.005, and δ = 0.05.
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FIG. 11. Relative average energy density of electromagnetic field
stored in the mode within the fiber vs wavelength. Blue solid line is the
energy of the OV |1, − l〉; green solid line, energy of the fundamental
mode |1,0〉; red dash-dot line, energy of the OV |1,l〉. Here W is the
energy density; W0 is the energy density of the incident GB.

the nature of OAM control in Bragg MHFs with defects as
compared to such control in long-period chiral fiber gratings
[17]. Indeed, in the latter case OAM of the outcoming beam
can be continuously changed in a stationary mode by changing
the angle of the twist defect. For Bragg MHFs with defects
below the crossover length such variation of the twist angle ϑ

results only in the shift of the position of the transmission peak
within the forbidden area (see Figs. 5 and 6). This shift is not
accompanied by the change in the OAM either in transmitted
or in reflected fields. One can infer that no OAM control is
possible for such a system. However, this is true only for
a stationary mode, where the system’s parameters are kept
intact. Meanwhile, there is a formal possibility that while the
OAM of the transmitted (reflected) field is the same for any
two twist angles ϑ1 and ϑ2 in the stationary mode, it may
change in a dynamical process describing this change from ϑ1

to ϑ2. Although solving this problem is far beyond the scope of
our paper, one can qualitatively assess the possibility of such
OAM changing based on the results of the presented stationary
treatment.

To this end it is helpful to determine the OAM of the
field stored in defect-localized modes. This can be easily done
analogously to the method used while obtaining Figs. 10 and
11 if one invokes the ideas of [21]. According to the results
of that paper, in the paraxial approximation the time-averaged
linear density Lz of the total OAM in the transverse cross
section of the beam is connected with the time-averaged
linear density W of the energy in the same cross section
through

Lz

W
= 1

ω

〈�| − i ∂
∂ϕ

|�〉
〈� | �〉 , (22)

where |�〉 is the state vector in an arbitrary representation;
ω is the frequency. It should be emphasized that whereas
Eq. (22) is valid for a field propagating in some direction,
the defect-localized modes are formed by counterpropagating
fields. In this case one should use the modification of Eq. (22)
provided in [22]. Upon averaging over fast spatial oscillations
one arrives at the relation analogous to Eq. (22), so that
for rough estimates one can still use this expression. After

straightforward calculations one can obtain for the desired
ratio of OAM to energy stored in the system in study,

ωLz

Wl
=

∫ d/2
−d/2 {|al(z)|2 − |a−l(z)|2}dz∫ d/2

−d/2 {|al(z)|2 + |a−l(z)|2 + |a0(z)|2}dz
, (23)

where a±l(z) are the amplitudes of OVs with charges ±l

and a0(z) is the amplitude of the fundamental mode in the
decomposition of the field over this basis.

As it turns out, in some cases this OAM is sensitive
to the parameters of the system. Figure 12(a) demonstrates
its dependence on the sample’s length in the process of its
mechanical elongation or any such changing of the length that
does not alter the number of periods of the helical grating. Such
variations change the lattice parameter q, which in certain
regions leads to essential variation of the stored OAM. The
reason for such variations is that in the points (a)–(c) the picture
of energy density in defect modes is not the same. As is seen
from Figs. 12(b) and 12(d), in the points (a) and (c) the energy is
mostly concentrated in the defect modes connected with |1,0〉
and |1,l〉 modes, which results in relatively larger values of
specific OAM. On the contrary, in the point (b) [Fig. 12(c)] the
energy of the oppositely charged OV |1, − l〉 almost equals the
one of |1,l〉 OV, which leads to effective reduction of OAM [cf.
the nominator in Eq. (23)]. Although in the stationary process
in all these points the system simply converts the incident GB
into the reflected OV of the same power, upon transition a → b

and c → b one can expect irradiation of the extra OAM in both
directions. In this way, by changing geometrical parameters
it may prove possible to achieve modulation of OAM. It is
useful to note that for silica with the coefficient of thermal
expansion of 5.5 × 10−7 K−1 the relative elongation necessary
for effective modulation of OAM by varying the temperature is
achieved at temperature variations of order 0.03 K. The same
effect can be obtained through twisting the fiber at a constant
length, which would also modulate the lattice parameter q.

The solved problem opens an alternate field in the study of
propagation of electromagnetic waves in topologically active
chiral media in the presence of defects. Of immediate interest
is studying the formation of defect modes in MHFs with an
isotropic spacer, in combination with the twist discontinuity
defect, as well as with a pitch jump defect [23]. In general,
almost any problem concerned with the defect modes in
chiral anisotropic systems can find its analog for topologically
active media. Although in the optical range fabrication of
the studied system presents a challenge, proof-of-principle
experiments can be made in a millimeter-wavelength range. In
this connection, it is worth recalling that experiments with an
analog of the helical-core fiber, which is the representative of
the � = 1 multihelical fibers, have first been reported just for
this wavelength range [24].

The main practical application of band-gap periodic struc-
tures with defects is connected with the fact that the existence
of the defect mode enables low-threshold lasing [8], which is
closely related to the increase of the photon’s dwell time on the
defect. In our case such defect structures are expected to radiate
vortex modes; this property might be utilized while creating
in-fiber lasers of a novel type. By corresponding engineering
of the defect’s geometry one can make such devices suitable
for operation with a white light source [25]. In addition, the
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FIG. 12. Panel (a) represents OAM of the defect-localized field (in a. u.) vs relative elongation �d/d of the MHF with the twist defect;
d = 0.01 m, l = 6. Panels (b–d) show logarithm of energy density vs z for points (a–c) marked in (a), respectively. Red dashed line is the
energy of the OV |1,l〉; blue dotted line, energy of the OV |1, − l〉; green solid line, energy of the fundamental mode |1,0〉. Lattice parameter
at δd = 0: q0 = 7.43 × 106 m−1, λ= 6.32 × 10−7.

formulated principle is applicable for generation of vortex
beams in the radio-wave range, which might prove useful in
connection with recent developments in information transfer
via OAM-bearing radio waves [26]. Another application of
topologically charged defect modes might be connected with
the enhanced nonlinear effects in the vicinity of the defect.
Indeed, as follows from our results, energy density at the defect
can be greater than the one of the incoming beam by orders.
This property is currently of wide interest in connection with
the generation of higher harmonics in conventional periodic
structures with defects [27].

Based on the obtained result one can put forward a general
principle of creating the systems that can nestle topologically
charged modes on defects. The first requirement for such
systems is the presence of topological activity in bulk samples,

that is, the ability to change the topological charge of the
incoming field [20]. Secondly, such systems should operate
in the Bragg regime to enable contributions of the partial
evanescent fields into the defect mode’s structure. We believe
that under such conditions the system would be able to nestle
the topologically charged mode on the defect. The most
attractive representatives of topologically active systems, with
the example of which one can verify the proposed principle,
seem to be the standard q plates [28] and their fiber-array
analogs [29].

V. CONCLUSION

In conclusion, we have studied the influence of the twist
defect in the multihelicoidal Bragg fibers on the emerging of
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localized defect modes. We have shown that if such a fiber
with a twist defect is excited with a Gaussian beam this leads
to the appearance of the defect-localized topological state,
whose topological charge coincides with the order of rotational
symmetry of the fiber’s refractive index. We have shown that
this effect has a pronounced crossover behavior and below
the crossover length it is accompanied by the sharp Gaussian
mode’s transmission peak within the transmission gap. Beyond
the crossover length the transmission coefficients for optical
vortices and Gaussian modes have a typical band-gap form.
We have also put forward a principle of creating the systems

that can nestle defect-localized topologically charged modes,
according to which such systems have to possess topological
activity and operate in the Bragg regime. The candidates for
such systems are the q plates and their fiber-array analogs.
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